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We present a Krylov subspace method for evaluating the self-energy matrices used in the Green’s function
formulation of electron transport in nanoscale devices. A procedure based on the Arnoldi method is employed
to obtain solutions of the quadratic eigenvalue problem associated with the infinite layered systems of the
electrodes. One complex and two real shift-and-invert transformations are adopted to select interior eigenpairs
with complex eigenvalues on or in the vicinity of the unit circle that correspond to the propagating and
evanescent modes of most influence in electron transport calculations. Numerical tests within a density func-
tional theory framework are provided to validate the accuracy and robustness of the proposed method, which
in most cases is an order of magnitude faster than conventional methods.
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I. INTRODUCTION

Quantum transport has been an important research subject
for more than a decade due to the ever-growing interest in
simulating and fabricating nanoscale electronic devices. In
particular, the experimental and theoretical investigation of
current-voltage �I-V� characteristics for molecules and
atomic structures placed between conducting electrodes has
attracted much effort.1–11 Most theoretical approaches are
based on the Landauer-Büttiker formulation of quantum
transport,12 where the electrical properties of a central inter-
face are described by the transmission coefficients of a num-
ber of one-electron states propagating coherently through the
system. The widely used Green’s function method13,14 and
the wave function matching method15–17 are two such tech-
niques. To apply these in practice and determine the current
through a device under finite bias, it is necessary to evaluate
the bulk modes or, correspondingly, the self-energy matrices
of each electrode for a considerable number of different en-
ergies �chemical potentials� and possibly k points.18 In many
cases, this represents the dominant part of the computational
work associated with electron transport calculations, assum-
ing that the Hamiltonian of the system has been provided.

In this paper we develop an efficient method for comput-
ing the self-energy matrices using an iterative Krylov sub-
space technique. The foundation of the method is the evalu-
ation of the self-energy matrices for the semi-infinite
electrodes from the solutions of the quadratic eigenvalue
problem �QEP� that arises for infinite periodic systems. This
approach has been suggested by Ando19 and studied by sev-
eral authors.15,16,20–23 It has been shown16,24 to be equivalent
to well-established iterative and recursive schemes.25,26 A
disadvantage of the latter schemes from a computational
point of view is the need to introduce a small imaginary part
in the energy in order to ensure that the iterations converge to
the correct retarded surface Green’s function. This imaginary
part forces complex arithmetic in the numerical algorithms

used, which is not always the case in the eigenproblem
approach.15,19

The key motivation for developing the proposed method
is the physical observation that only the propagating and the
slowly decaying evanescent modes in the bulk electrodes
contribute to the transmission of electrons through a semi-
conductor device of some extension.8 These modes corre-
spond to the solutions of the QEP that have complex eigen-
values in the vicinity of the unit circle. As recently suggested
by Khomyakov et al.,15 this makes it plausible to generate
reduced self-energy matrices on the basis of a few selected
solutions of the QEP, which include all the electrode-device
coupling information that is necessary to determine the cor-
rect transmission. To really exploit such an approach in prac-
tice, an algorithm to search for and compute only the desired
quadratic eigenpairs is required.

We will here consider the Arnoldi method27 combined
with a shift-and-invert strategy in order to obtain the QEP
solutions. These techniques have proven effective in obtain-
ing selected interior eigenvalues of large-scale general com-
plex eigenproblems.28–30 In addition, the recent surge of pa-
pers studying the Arnoldi procedure applied specifically to
polynomial matrix problems indicates that this is a success-
ful technique to build the Krylov subspace for QEPs.31–34

The algorithm we develop assumes real Hamiltonian matri-
ces �generalization to the complex case is described in Ap-
pendix A 2�, and targets the complex eigenvalues which are
on or inside the unit circle by applying shift-and-invert spec-

tral transformations to �1 /�2 and î /�2, where î is the imagi-
nary unit, and subsequently generating a Krylov subspace for
each with the Arnoldi method. Ritz pairs obtained by project-
ing the QEP onto the three Krylov subspaces give good ap-
proximations to the eigenpairs with eigenvalues close to the
corresponding shifts. We will show that this method of pro-
ceeding is both rigorous and efficient by applying it to vari-
ous Hamiltonians obtained using density functional theory
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�DFT� calculations with a localized basis of atomic
orbitals.35

This paper is organized as follows. In Sec. II we give a
brief exposition of our formalism for electron transport. The
Krylov subspace method is introduced in Sec. III with details
on its key parts: the Arnoldi method, the spectral transforma-
tions, and the convergence criterion. Typical convergence be-
havior is discussed in Sec. IV. The paper ends with numerical
examples in Sec. V and a few concluding remarks.

II. ELECTRON TRANSMISSION AND SELF-ENERGY
MATRICES

In this section we introduce our formalism, which com-
bines the well-established Green’s function method used for
electron transport calculations13,14,36 with the self-energy ma-
trices obtained with the eigenvalue approach of Ando19 as
used in the wave function matching �WFM� method.15–17

Our goal in combining the methods is to obtain, in the most
efficient way, the spectrum of transmission coefficients T�E�
for two-probe systems �see top illustration in Fig. 1� in order
to calculate the current I=2e / h�−�

� T�E��nF�E−�L�−nF�E
−�R��dE through the device, where E are the energies, nF is
the Fermi function, and �L and �R are the chemical poten-
tials of the left �L� and right �R� electron reservoirs.13,14

A. Two-probe setup

Consider a two-probe system, as illustrated in the lower
part of Fig. 1, where the device corresponds to the central
region �C� and the reservoirs are two semi-infinite electrodes
�L and R�. The system has been divided into principal layers
that interact only with nearest-neighbor layers and each layer
is assumed to be described by appropriate Hamiltonian Hi
and overlap Si matrices, where i is the layer number, as rep-
resented, e.g., in a basis of localized nonorthogonal atomic
orbitals. In this manner the Hamiltonian and overlap matrices

are block-tridiagonal infinite matrices, where the off-
diagonal blocks may be written Hi,j and Si,j. For the elec-
trode Hamiltonian and overlap matrices we use subscripts L
and R instead of numbers i , j. Notice also that the C region in
this setup contains at least one layer of each electrode, which
means that H1=HL and Hn=HR.

We refer the reader to Refs. 13, 14, and 36 for details on
how to apply the Green’s function method to the current
setup. Here we limit ourselves to writing the primary results:
First, the finite central region part of the infinite retarded
Green’s function matrix can be obtained as

GC
r = ��E + î��S − HC − �L − �R�−1, �1�

where � is an infinitesimal quantity, HC is the central region
Hamiltonian, and the effect of the semi-infinite electrodes is
accommodated through self-energy matrices �L and �R. Sec-
ond, the total transmission coefficient T�E� is then given by

T�E� = Tr��LGC
r �RGC

a � , �2�

where �L/R= î��L/R−�L/R
† � are coupling matrices and GC

a is
the advanced central Green’s function matrix, which is ob-

tained from Eq. �1� by using −î� as the infinitesimal imagi-
nary component in all terms �i.e., implicitly in �L and �R�.

We find that an efficient approach �see Appendix A 1� to
applying Eqs. �1� and �2� is to compute only a single diago-
nal block of GC

r in order to evaluate T�E�. The question
remains how to calculate the required self-energy matrices
�L/R in the most efficient manner.

B. Electrode self-energy matrices from QEPs

It is known that the surface Green’s function matrices for
a semi-infinite ideal electrode can be evaluated by recursive
techniques that take 2n−1 electrode layers into account in n
iterations.25,26 This is a fast and widely used approach to
obtain the self-energy matrices when employing the Green’s
function method.1,37

Another approach has been proposed by Ando,19 where
one constructs and solves an appropriate QEP �introducing
notation H	ES−H�

HL,L
† �k + �kHL�k + �k

2HL,L�k = 0, �3�

for k=1, . . . ,2ML, where ML is the number of orbitals local
to the unit cell of the left electrode and similarly for the right
electrode with L→R. The procedure to determine the non-
trivial solutions �i.e., the Bloch factors �k and electrode
modes �k� from Eq. �3�, and subsequently characterize these
as propagating or evanescent, right-going �+� or left-going
�−�, is well described in the literature �we refer the reader to
details in Refs. 15 and 16�.

Applying Ando’s approach via the formalism of the WFM
method yields expressions16

�0
L = − HL,L

† �BL
−�−1, �4�

�n+1
R = − HR,RBR

+ �5�

for the electrode self-energy matrices in the layers 0 and n

.... ........

I

µL µR

Vb

VbDevice

HL HL HRHRH1 H2 H3 Hn−2Hn−1Hn

L C R

−∞, . . . , 0, 1, 2, . . . , n − 1, n, n + 1, . . . ,∞

FIG. 1. �Color online� Schematic representation of a two-probe
device with applied bias Vb. The top figure illustrates the Landauer-
Büttiker picture of coherent scattering between electron reservoirs
kept at chemical potentials �L and �R. The bottom figure shows the
device part modeled by two semi-infinite electrodes �L and R� and a
central region �C�, each divided into principal layers that interact
only with nearest-neighbor layers. The layers are described by
square Hamiltonian matrices Hi of varying sizes and numbered
i=−� , . . . ,�, as indicated.
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+1 just outside the C region, where BL/R
� are the Bloch ma-

trices constructed from the solutions �k and �k �see the ex-
pressions in Ref. 16, in which the notation is FL/R��� for the
Bloch matrices, and �n��� and un��� for the solutions�. Af-
ter evaluating these self-energy matrices we use them in the
Green’s function method described above �we set �=0 in
this case, since the retarded Green’s function is already
uniquely defined by the self-energies16,21� and follow the
steps outlined in Appendix A 1.

C. Reduced self-energy matrices

From a numerical perspective, it is convenient to keep
only those eigenpairs from Eq. �3� that have eigenvalues �k
within specific intervals15

�min 	 
�k
+
 	 1, 1 	 
�k

−
 	 �min
−1 , �6�

for a reasonable choice of �min. Evanescent modes with 
�k

outside these intervals are decaying or growing so fast that
they have negligible influence in a two-probe setup like ours.
The decisive factor in choosing �min is that the sets ��k

+� and
��k

−� of electrode modes included must be complete in the
sense that they can fully represent the transmitted and re-
flected waves �cf. the WFM formalism�.

In what follows, we exploit that a reasonable choice of
�min for transmission calculations with our setup is often of
the order 0.1.38 For example, in the case of the polar plot in
Fig. 2, where the Bloch factors with 
�k
	1 of a 27-atom
Au�111� electrode unit cell are shown, the computationally
significant modes can be identified as the eigenvalues inside
the shaded area �i.e., by setting �min=0.1�. The numerical
results given in Sec. V illustrate this observation quantita-
tively. A proper formal analysis is left for a future
publication.39

III. KRYLOV SUBSPACE METHOD

In this section, we describe the Krylov subspace method
for evaluating the electrode self-energy matrices �0

L and
�n+1

R . The crucial assumption in the approach is that we may
strip the less important modes from the sets ��k

+� and ��k
−�,

and still obtain a good approximation to the self-energy ma-
trix to be used in transmission calculations. For simplicity,
we also assume that the electrode Hamiltonians are real, and
give in Appendix A 2 a prescription to generalize to the
complex case. Our current method, which targets the specific
modes that are most important, can be characterized as a
shift-and-invert Arnoldi method with adaptive subspace size.
We will describe the key ingredients of the method: the Ar-
noldi procedure, the spectral transformations, and the con-
vergence criterion. The goal is to present an alternative for
obtaining the self-energy matrices, which is faster than exist-
ing techniques.

A. Arnoldi procedure

The Krylov subspace of dimension m generated by an n

n matrix A and an initial vector v1 is given by
Km�A ,v1�	span�v1 ,Av1 ,A2v1 , . . . ,Am−1v1�.40 In order to
determine this space we apply the Arnoldi procedure27 which
generates an orthonormal basis �v1 , . . . ,vm� for Km�A ,v1�.
We use the numerically most stable scheme that employs the
modified Gram-Schmidt orthogonalization to successively
construct the orthonormal vectors vi. Algorithm I below lists
the steps of a continuable version of the Arnoldi procedure
which is initially called with a parameter k=1 and a random
starting vector v1. After m−1 iterations the n
m matrix
Vm= �v1 , . . . ,vm� is available.

The projection of the matrix A onto Km�A ,v1� is then
Hm=Vm

† AVm, where Hm is m
m and upper Hessenberg �i.e.,
it has zeros below its lower bidiagonal�. The matrix Hm is
also constructed by Algorithm I. Approximate solutions of
the eigenproblem Ax=�x can subsequently be obtained as
the so-called Ritz eigenpairs �� ,Vmy� of the projected eigen-
problem Hmy=�y. As m increases the Ritz pairs become in-
creasingly better approximations to certain eigenpairs of A
�we point to Refs. 38 and 39 for details�.

Algorithm I: Arnoldi procedure (continuable). Input:
k ,m�Z , A�Rn,n, Vk�Rn,k , Hk�Rk,k. Output:
Vm+1�Rn,m+1 , Hm+1�Rm+1,m+1.

�1� If k=1, v1=v1 / �v1�2
�2� for j=k ,k+1, . . . ,m do
�3� v=Av j
�4� for i=1,2 , . . . , j do
�5� hij =vi

Tv
�6� v=v−hijvi
�7� end
�8� hj+1,j = �v�2
�9� if hj+1,j =0, m= j, stop
�10� v j+1=v /hj+1,j
�11� end
One cannot know in advance how many steps will be

needed before the eigenpairs of interest are well approxi-
mated by Ritz pairs. If many steps are necessary, then solv-
ing the projected eigenvalue problem becomes costly. More-
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FIG. 2. �Color online� Positions of the 243 complex eigenvalues
�blue �circles�� inside the unit disk for a Au�111� electrode with 27
atoms per unit cell at E=−2 eV. The 21 eigenvalues corresponding
to propagating modes �red �filled� dots� are located on the unit
circle. The modes of most significance in transmission calculations
are located within the green �shaded� area given by 0.1	 
�
	1.
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over, when applying our Krylov method to evaluate the self-
energy matrices, we do not know the exact number of
eigenpairs wanted and cannot estimate the required dimen-
sion of the Krylov subspace.

The first difficulty can be circumvented by restarting the
Arnoldi method after a certain number of iterations using the
obtained information to generate a better starting vector, or
by deflating particular eigenvalues.41 However, this will not
improve on the second difficulty which requires an adaptive
maximum dimension of the Krylov subspace. In addition, we
observe in most of our applications that the gain from an
efficient restart procedure �e.g., as devised by Morgan and
Zeng42� does not outweigh the computational expense of the
restarting overhead. The typical size of the self-energy ma-
trices encountered is too small to make it beneficial to use
such techniques, which have been developed for large-scale
applications.

Therefore, we have chosen to employ a simple continua-
tion scheme instead of restarting, where a check for conver-
gence is performed after a given number of Arnoldi itera-
tions, and if we are not satisfied, the procedure simply
continues where it was left off. With the input parameter k,
the listed Arnoldi algorithm is able to generate an initial
Krylov subspace Km of a given dimension m, but also to
continue the process, augmenting the space with subsequent
calls. This allows us to perform iterations as long as the
approximations are unsatisfactory and/or there is doubt
whether all wanted eigenpairs have been found.

An important special case to be considered when applying
the Arnoldi procedure to solve an eigenvalue problem is that
of algebraically multiple eigenvalues. A Krylov subspace
method will, in theory, produce only one eigenvector corre-
sponding to a multiple eigenvalue. So determination of mul-
tiplicity is quite difficult. Several approaches exist that deal
with this problem, including deflation combined with effects
of round-off error,41 block Arnoldi procedures,41 and so-
called random restarts.42,43 The present Krylov method does
not incorporate any mechanisms to take algebraic multiplic-
ity into account because such cases do not occur in practice
for the applications of this work �eigenvalues will not be
identical to machine precision in any of the numerical ex-
amples, but only to within �10–11 digits; see Sec. IV�.

B. Shift-and-invert transformations

Iterative methods based on Krylov subspaces produce
Ritz values that converge fastest to the dominant part of the
eigenvalue spectrum given by the extremal eigenvalues.40 In
the current application, it is the interior of the eigenvalue
spectrum that is of interest, in particular the eigenvalues �
that satisfy �min	 
�
	�min

−1 . To be able to find this part of the
spectrum efficiently, we employ a shift-and-invert strategy
which implies that the QEP in Eq. �3� is rewritten as

��2M + �C + K�c0 = 0, �7�

where

M = HL,L
T + �HL + �2HL,L, �8�

C = HL + 2�HL,L, �9�

K = HL,L, �10�

and

� =
1

� − �
. �11�

With this approach, the eigenvalues � of Eq. �3� have been
shifted by � and inverted while the eigenvectors c0 are un-
changed. Thus the dominant part of the spectrum of Eq. �7�
now corresponds to the eigenvalues of the original QEP clos-
est to the shift �.

The simplest and currently state-of-the-art technique for
solving Eq. �7� is by linearizing it to a generalized eigen-
value problem of twice the size.44 In our case M is nonsin-
gular and has size ML. Therefore, a linearization results in a
standard eigenvalue problem of size 2ML:

Ax = �x , �12�

where A is given by

A = 
 0 I

− M−1K − M−1C
� , �13�

and the 2ML eigenvalues � are identical to the ones of Eq.
�7�. The eigenvectors of Eq. �12� are given by xT= �c0

T ,�c0
T�,

so that the original eigenvectors c0 can be selected as the first
ML elements of x.

If we assume that the Hamiltonian and overlap matrices
for the electrodes are real, then the spectrum of the QEP in
Eq. �3� is symmetric with respect to the real axis of the
complex plane, and the eigenvalues either are real or occur in
complex conjugate pairs.44 In addition, as seen by transpos-
ing Eq. �3�, the eigenvalues in this case also come in pairs, �
and 1 /�. We will use these properties to present a simplified
method for the extraordinary case of real HL and HL,L, and
subsequently discuss the steps required for the general com-
plex case in Appendix A 2.

The purpose of the current method is thus to determine
the eigenpairs �� ,c0� of Eq. �3� that satisfy �min	 
�
	1 for
a given �min
0 �the pairs that satisfy 1	 
�
	�min

−1 can sub-
sequently be obtained as ��−1 ,c0��. As is apparent from the
polar plot example in Fig. 2, the majority of the eigenvalues
with 
�
	1 are located near the origin. Therefore, it is not
efficient to apply the shift �=0 in order to obtain the wanted
eigenvalues, which lie in the outskirts of the unit disk. In-
stead we may apply four different shifts, given by �

= �1 /�2 and �= � î /�2, in four separate Arnoldi proce-
dures. Each of these then covers a quarter slice of the unit
disk and produces Ritz values that converge fast to eigenval-
ues close to the given shift. Simple sorting techniques can be
employed in each Arnoldi procedure to take into account
only the portion of the Ritz pairs that is covered by a given
shift.

When applying the shift-and-invert strategy devised, two
of the shifts have to be complex. In practice this means
working in complex arithmetic or doubling the size of the
problem.45 However, in the case of real Hamiltonians it is
advantageous to search for the complex eigenvalues in con-
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jugate pairs and thereby eliminate one of the complex shifts.
Moreover, this can be done almost entirely in real arithmetic
as follows.

Notice that Eq. �12� was obtained by linearizing the
shifted-and-inverted QEP written in Eq. �7�. We may also
reverse the order of the linearization and shift-and-invert op-
erations. By performing, e.g., a first companion linearization

of Eq. �3� that results in an eigenproblem Âx=�x of double
size, and subsequently a shift-and-invert transformation ar-

riving at �Â−�I�−1x=�x, we see that the matrix applied in
the Arnoldi procedures can also be written44

�Â − �I�−1 = 
 − M−1Ĉ − M−1K

I − �M−1Ĉ − �M−1K
� , �14�

where

Ĉ = HL + �HL,L. �15�

The eigenpairs �� ,x� of �Â−�I�−1x=�x are exactly the
same as those of Eq. �12�. In addition, we may now consider
the combined spectral transformation for two conjugate
shifts � and ��, given by

T = �Â − �I�−1�Â − ��I�−1 =
Im��Â − �I�−1�

Im���
, �16�

which was originally proposed by Parlett and Saad.45 Apply-
ing the matrix T in the Arnoldi procedure generates approxi-
mate solutions to Tx=��x, where the eigenvalues are given
by

�� =
1

�� − ���� − ���
, �17�

which becomes extreme for conjugate eigenvalues � and ��

of Eq. �3� that are close to � and ��. In our case, the complex

shifts are purely imaginary: �= î�, where � is real. Then we
have ��= ��2+�2�−1 and, more importantly, the matrix T is
simply given by �−1 times the imaginary part of Eq. �14�,
written as

T = 
− �−1 Im�M−1Ĉ� − �−1Im�M−1K�

Re�M−1Ĉ� Re�M−1K�
� , �18�

which is purely real. This makes it feasible to use real arith-
metic in all parts of the algorithm except for the initial com-
plex LU factorization of M, which is required for the matrix
multiplications by M−1.

C. Algorithm and convergence criterion

The algorithm for our Krylov method is composed of two
main parts, an iterative part that determines the wanted Ritz
pairs �� ,c0� which approximate the eigenpairs of the QEP in
Eq. �3�, and a noniterative part that sets up the Bloch matri-
ces and evaluates the self-energy matrix from these by direct
methods. The iterative part is organized as three independent
computations, one for each of the used shifts �. It consists of
the application of the Arnoldi procedure together with a

check for convergence plus the initial work to construct the
input matrices for Algorithm I. As described in the previous
section, the actual calculations will depend on whether the
shift is real or imaginary.

The key steps of the Krylov method for evaluating the
self-energy matrix �L of the left electrode are presented in
Algorithm II below. It is important to stress that the details of
each step are kept at a minimum to enhance the readability.
Furthermore, for evaluating the self-energy matrix �R of the
right electrode, the steps are exactly the same, except for the
substitution L→R of all super- and subscripts and the re-
moval of line 1 �this line is only required for left electrodes
in order to obtain �L from solutions ��−1 ,c0�, e.g., by trans-
posing Eq. �3��. In the rest of this section we will discuss the
main aspects of the algorithm.

Algorithm II: Krylov method to evaluate �L. Input: m�Z,
�min� �0,1�, HL ,HL,L ,HL,L

T �RML,ML. Output: �L�CML,ML.
�1� Exchange matrices HL,L and HL,L

T

�2� for �=1 /�2,−1 /�2, î /�2 do
�3� if � is real, calculate A from Eq. �13�
else calculate T from Eq. �18� and set A=T
�4� select random vector v1 of size 2ML
�5� apply Algorithm I to generate Km�A ,v1�
�6� solve the projected eigenproblem Hmy=�y
�7� if � is real, select all �� ,y� that satisfy �min	 
�−1

+�
	1+�, and store the Ritz pairs �� ,c0�= ��−1+� ,Vmy�
that have Re���Re���� 
�
 / 2

else select all �� ,y� that satisfy �min	 
�−1+�2
1/2	1+�,
and evaluate the eigenvalues � with the MR-2 method of
Ref. 44 and store the Ritz pairs �� ,c0�= �� ,Vmy� that have

Im���Im���

 
�
 / 2 .

�8� for all stored Ritz pairs �� ,c0�, find residual ��HL,L
T

+�HL+�2HL,L�c0�2, and check for convergence. If not satis-
fied, increase m appropriately and go to step 5

�9� end
�10� for all stored Ritz pairs �� ,c0� having �1+��−1	�

	1+�, calculate group velocity v �see Ref. 15�; discard the
pairs with v�0 �i.e., the left-going modes�

�11� evaluate BL
+ and �L=−HL,LBL

+ from the remaining
pairs

First consider the steps 3–8 composing the body of the
FOR loop, which are independently executed for the three
given shifts �. Each execution of these steps will determine
Ritz pairs that are located in the corresponding quarter-slices
of the unit disk. An illustration is shown in Fig. 3 for an
Al�100� electrode, where the distinct slices are indicated by
shaded areas and the current shifts by crosses. All wanted
Ritz pairs found independently for the given shifts are as-
sumed to be collected in a combined set when exiting the
loop at step 9.

Initially, in step 3, the linearized and shifted-and-inverted
matrix A to be applied in the Arnoldi procedure is deter-
mined from Eq. �13� if � is real and from Eq. �18� if � is
complex. Then a starting vector v1 is selected randomly in
step 4. A random starting vector is a reasonable choice in our
case, where no prior information about the approximated
eigenspace is available. In step 5 the Arnoldi procedure of
Algorithm I is called to generate a Krylov subspace of size
m, and in step 6, the corresponding eigenpairs �� ,y� of the
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shifted-and-inverted problem are found by solving the pro-
jected eigenproblem with a direct method. This is followed
by an elaborate selection scheme to determine which of the
available solutions �� ,y� correspond to wanted Ritz pairs
�� ,c0� that are located inside the valid quarter slice.

The selection scheme, as outlined in step 7, can be imple-
mented as two separate processes. The first selection process
is designed to identify those solutions �� ,y� that correspond
to eigenpairs of the original QEP which satisfy �min	 
�

	1. It is important to realize, however, that, since all com-
putations are done in finite-precision arithmetic, there is no
guarantee that the propagating Bloch modes of the electrode
will have magnitudes 
�
 exactly equal to 1. Even the left-
going propagating modes that are targeted in our case can
have 
�

1. In practice, we therefore define the propagating
modes to be those Ritz pairs �� ,c0� that satisfy

�1 + ��−1 	 
�
 	 1 + � �19�

where � is a small infinitesimal �set to 10−8 in our implemen-
tation�. In order to make sure that all propagating modes are
taken into consideration it is thus necessary to select all Ritz
pairs that satisfy �min	 
�
	1+�.

To obtain the Ritz values � used in the selection process,
we have to transform the solutions �� ,y� of the projected
eigenproblem to the corresponding Ritz pairs �� ,c0� by re-
versing the shift-and-invert operation. The transformation
again depends on whether the shift � is real or imaginary. In
the case of real �, we have �=�−1+� from Eq. �11�. For

imaginary �, Eq. �17� can be rearranged to �2=�−1+�2,
which has two solutions of equal magnitude. This is suffi-
cient to allow selection on the basis of the magnitude 
�
;
however, when it comes to obtaining the Ritz values � them-
selves, it is necessary to use other means for imaginary �,
e.g., by forming the Rayleigh quotient.40 In our case, and for
QEPs in particular, it is possible and computationally advan-
tageous to use alternatives to the Rayleigh quotient that work
with vectors and matrices of size ML instead of 2ML. Several
such techniques that are both fast and accurate have recently
been devised by Hochstenbach and van der Vorst.46 We will
adopt the MR-2 method of that paper, which yields �=� / �,
for � and � defined as


�

�
� = − Z̃HL,L

T c0, �20�

where Z̃ is the pseudoinverse of Z= �HL,Lc0 ,HLc0�. Since all
eigenvectors are unchanged by the shift-and-invert operation,
the c0 vectors applied here are the first ML elements of the
Ritz vectors Vmy.

The remaining selection process in step 7 should single
out the Ritz pairs that are inside the valid slice of the unit
disk. To this end, we can apply the inner product of
�Re��� , Im���� and �Re��� , Im����, given by

Re���Re��� + Im���Im��� = 
�

�
cos � , �21�

where � is the angle between � and � in a polar representa-
tion of the complex plane. In order for � to be inside the
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FIG. 3. �Color online� Illustra-
tion of the complex eigenvalues
�blue �circles�� for the Al�100�
electrode at E=3 eV. The eigen-
values corresponding to the
wanted right-going modes �red
�filled� dots� can be separated ac-
cording to their location within
three distinct green �shaded� areas
of the unit disk and determined ef-
ficiently using shift-and-invert
spectral transformations to �1 /�2

and î /�2 �crosses�.
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quarter slice that has � on the bisector we must have 
�

	� /4 or equivalently cos ��1 /�2. For real shifts �
= �1 /�2, this observation yields the condition

Re���Re���

�


�
1

2
, �22�

and similarly for imaginary shift �= î /�2,


Im���Im���


�




1

2
, �23�

where the absolute value of the left-hand side is taken to
allow � to be in both the top and the bottom quarter slices.
Notice that the equality is removed since the �very rare�
event of � lying exactly on the border of two slices is already
taken into account in the condition for real �.

In step 8 of Algorithm II the check for convergence is
carried out. For each shift, the convergence condition is re-
garded as satisfied when all the Ritz pairs of interest that are
also located inside the valid quarter slice are identified and
accurate to a given tolerance. We estimate the accuracy of
the obtained pairs �� ,c0� by evaluating the corresponding
relative residual norm, which yields the following conver-
gence criterion:

��HL,L
T + �HL + �2HL,L�c0�2

norm�HL�
	 tol �24�

where tol is the convergence tolerance and norm�HL� is an
appropriate norm for matrix HL. In our implementation we
set tol=10−11 and apply the approximation norm�HL�
��diag�HL��2, that is, we include only the diagonal entries
of the two-norm of HL. These choices require very low com-
putational effort and give the correct result for all numerical
examples we have investigated.

In the event that the convergence check in step 8 of Al-
gorithm II is not satisfied, we assume that the dimension m
of the Krylov subspace Km�A ,v1� generated in step 5, is
insufficient. Therefore, we increase m by some fixed amount
and go back to step 5 to continue the Arnoldi procedure
where it was left off. In the current implementation, we
chose to increase the size of the Krylov subspace by �m
=m /2, where m is the initial value of m given as input. Our
experiments show that, for optimal efficiency with this �m,
it is favorable to have the initial m within the range 30–50 if
the sizes of the input matrices are of order less than 1000.
After convergence has been achieved, the final steps 10–11
of Algorithm II present the operations required to collect the
Ritz pairs that have been determined and subsequently obtain
the self-energy matrix.

IV. TYPICAL CONVERGENCE BEHAVIOR

In this section, we briefly exemplify the typical conver-
gence behavior of Algorithm II by monitoring the relative
residual norm of the wanted eigenpairs as a function of the
number of iterations. An expression for this norm for a given
eigenpair �� ,c0� is available as the left-hand side of Eq. �24�.
We will consider the Al�100� electrode at E=3 eV and pa-

rameter �min=0.1, which requires a total of 13 eigenpairs to
be determined �eight propagating modes and five evanescent
modes� from the three separate Arnoldi procedures. This ex-
ample corresponds to the situation illustrated in Fig. 3 and
represents a typical calculation for an Al�100� electrode with
18 atoms per unit cell �the size of the self-energy matrix is
72�.

In Fig. 4 we present curves showing the history of the
residual norms for the wanted eigenpairs in each of the sepa-
rate shift-and-invert Arnoldi procedures. We show only the
45 first iterations since this number is enough for conver-
gence in all cases. Also, only residuals for eigenpairs corre-
sponding to right-going modes are displayed.

The top figure of Fig. 4 illustrates the results from apply-
ing the shift �=1 /�2 and shows that the Arnoldi procedure
determines four different Ritz pairs with individual conver-
gence curves. Comparing with the corresponding polar plot
in Fig. 3 �top left�, we observe a fifth eigenvalue ��=0.95

+0.31î� located inside the valid quarter slice. This fifth ei-
genvalue represents a left-going mode and is thus discarded
in step 10 of Algorithm II. We also see by comparison with
Fig. 3 that the eigenpair with eigenvalues furthest from the
current shift �the cross� in the complex plane, in this case �4,
is the slowest to converge.
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FIG. 4. �Color online� Convergence behavior of the Krylov al-
gorithm for the Al�100� electrode at E=3 eV. The figures show the
residual norm as a function of iterations for Ritz pairs that satisfy
0.1	 
�
	1+�, in the case of shift-and-invert transformations to

�1 /�2 and î /�2, respectively.
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The middle figure of Fig. 4 shows the convergence of the
two Ritz pairs that are covered by the Arnoldi procedure with
�=−1 /�2 and correspond to right-going modes in the
present example. We note that �5 and �6 are nearly multiple
eigenvalues, and that the behavior of the residual norms,
where one eigenpair is available many iterations before its
counterpart, is typical in such a case. Here, in particular, we
see that eigenvalue �5 is determined to an accuracy of
�10−11 after 18 iterations before �6 even shows up as a Ritz
value of the projected eigenproblem. This indicates that �5
and �6 must be identical to around ten significant digits, and
that they cannot be distinguished in our Arnoldi procedure
before this accuracy is achieved. Without additional mecha-
nisms to deal with multiple eigenvalues this then implies an
upper bound condition on the value of the tol parameter.

The bottom figure of Fig. 4 shows the residual norm his-
tory of the remaining seven Ritz pairs required in the current
example. These are determined by the Arnoldi procedure

with imaginary shift �= î /�2 and correspond to filled dots in
the bottom polar plot of Fig. 3 which represent right-going
modes. We observe that the eigenvalue closest to �, here
denoted by �8, constitutes a complex conjugate pair together
with �9, and that these have exactly the same residual norm
curve �indistinguishable in the figure�, although they are ob-
tained separately as individual Ritz pairs in the algorithm.

In all residual norm figures, we see the trend that the
eigenvalues located far from the position of the shift are slow
to converge. This suggests that eigenvalues located in the
vicinity of the intersections between the unit circle and the
dividing lines of the four quarter slices will be the most
difficult to determine since they are furthest from the corre-
sponding shifts. The maximum distance from such an eigen-
value to � is 1 /�2, which is the same as from � to the origin.
This raises concern whether the many unwanted eigenvalues
close to the origin can become dominant compared to the
wanted border eigenvalues. Fortunately, this is not the case
because the unwanted eigenvalues close to the origin are
clustered and therefore easy to represent in the Krylov sub-
space with only a few iterations.40 We observe this in prac-
tice, e.g., from the bottom figure of Fig. 4, where the Ritz
pair corresponding to �12, which lies close to the worst-case
position on the unit circle, initially converges only slightly
slower than the Ritz pair for �8 positioned right next to the
shift.

V. NUMERICAL EXAMPLES

To illustrate the accuracy and practical aspects of the pro-
posed Krylov subspace method we present transmission cal-
culations for a metal-device-metal system that has been
widely studied in the literature. In addition, we compute the
current through this system at 1 and 2 V biases, and use the
parameter �min to investigate the significance of the evanes-
cent modes in obtaining the correct currents. Last, we apply
the method to evaluate the self-energy matrices of a variety
of electrodes �different types and sizes� and compare the ac-
tual measured CPU times47 with those required by conven-
tional methods.

A. Carbon wire between aluminum electrodes

To demonstrate the applicability of the proposed Krylov
subspace method, we first consider carbon chains coupled to
metallic electrodes, which have been investigated in detail
recently.1,5,6 Carbon atomic wires are interesting conductors
since the equilibrium conductance of short monatomic chains
varies with their length in an oscillatory fashion. We will
examine the two-probe system shown in Fig. 5 correspond-
ing to a straight wire of seven carbon atoms attached to
Al�100� electrodes �lattice constant 4.05 Å�. This structure
exhibits a local maximum in the oscillatory conductance
since it represents an odd-numbered C chain.5 In our con-
figuration, we fix the C-C distance to 2.5 bohrs and the dis-
tance between the ends of the carbon chain and the first plane
of Al atoms at 1.0 Å. We use single-� basis sets for both
types of atoms. The considered Al�100� electrode unit cell
consists of 18 atoms in four layers with identical unit cells
for the left and right electrodes. Notice that we do not use
any symmetry properties of the metallic electrode to reduce
the lateral size of the cells �as done, e.g., in Ref. 17� but
rather use the full size matrices in Algorithm II. The same
system has been studied by Brandbyge et al.1

We apply the proposed Krylov subspace method to calcu-
late the self-energy matrices �L and �R of the left and right
electrodes for a range of energies E� �−4 eV,4 eV� and for
different choices of the parameter �min. The self-energy ma-
trices are then used in the evaluation of the corresponding
transmission coefficients T�E�.

Figure 6 presents the results for bias voltages Vb=0, 1,
and 2 V in three cases of �min. These significant bias settings
are chosen for benchmarking and comparison reasons. The
�black� full curves corresponding to �min=0.1 reproduce the
transmission spectra obtained in Ref. 1 �for 0 and 1 V� ex-
actly except for the peak at E=3.63 eV �for 0 V�, which is
probably due to finer sampling in our work. In addition, we
have calculated the similar curve with the full sets of elec-
trode modes and the results are indistinguishable from those
with the setting �min=0.1 �and therefore not displayed in the
figure�. We note this as quantitative verification that the ex-
clusion of the rapidly decaying evanescent modes is plau-
sible in our setup.

We also see in Fig. 6 that the curves for the parameter
�min set to 0.1 �black �full�� and 0.5 �red �dashed�� are almost
identical, which indicates that the vast majority of the eva-
nescent modes �those satisfying 
�
�0.5� have very little
influence on T�E� in the energy regime considered. However,
when �min is set to 0.99 �blue �dotted curves��, in which case
only propagating modes and very close to propagating
modes are included in the evaluation of self-energy matrices,

L C R

FIG. 5. Schematic illustration of the Al�100�-C7-Al�100� two-
probe system.
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there are several noticeable deviations from the other curves.
Also inside the bias windows and especially for Vb=2 V, the
disregard of the evanescent modes produces errors in the
obtained transmission coefficients T�E�.

The deviations become even more evident in Fig. 7,
where the current is displayed as a function of the parameter
�min for nonzero bias voltages. As the value of �min is in-
creased from around 0.5 to 1, the computed current I starts to

depart significantly from the correct value. Therefore, we
anticipate that at least some slowly decaying evanescent
modes must be taken into account in order to describe the
transmission properties of the Al�100�-C7-Al�100� system.
Moreover, we see that this can be achieved in a rigorous and
systematic fashion by selecting �min appropriately when us-
ing the proposed Krylov subspace method to calculate the
self-energy matrices.

B. CPU run times

In this section we focus on the typical savings in the com-
putational time that can be achieved when computing the
self-energy matrices �L and �R with the proposed Krylov
subspace method. We will compare run times directly with
some conventional schemes usually applied in electron trans-
port calculations. Our aim is to illustrate a significant
speedup in calculating the self-energy matrices. This is of
interest in future efforts to model much larger systems, and,
in particular, for electrode unit cells that do not have any
lateral symmetry properties.

Table I presents the profiling results when applying three
different methods to calculate the same left self-energy ma-
trix �L for common types of electrodes and various matrix
sizes N. In every case we consider only the � point and use
single-� basis sets, except for Au�111� where a double-
�-polarized set is used. Since the computational cost can vary
significantly with E, the seconds listed represent the accumu-
lated time of 20 independent calculations at equidistant en-
ergies in the interval E� �−2 eV,2 eV�. We focus on the
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FIG. 6. �Color online� Transmission spectrum of the Al�100�-
C7-Al�100� system for different bias voltages Vb. The self-energy
matrices used in the T�E� calculations have been obtained at the �
point by the proposed Krylov subspace method with parameter �min

at several settings: 0.1 �black �full� curve�, 0.5 �red �dashed� curve�,
and 0.99 �blue �dotted� curve�. The bias windows are indicated by
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FIG. 7. �Color online� Current as a function of the parameter
�min used by the Krylov subspace method for the Al�100�-C7-
Al�100� system with applied bias voltages Vb= �a� 1 and �b� 2 V.
The correct currents obtained by conventional methods are I
�38.4 and �77.0 �A, respectively, indicated here by the green
�dashed� lines.

TABLE I. CPU times in seconds for computing the left self-
energy matrix �L at 20 different energies E between −2 and 2 eV
for selected electrode types and matrix sizes N. The parameter �min

was set to 0.1.

Electrode type Size 2n iterative DGEEV Krylov

Lia 16 0.1 0.0 0.0

Feb 54 4.2 2.3 0.6

Al�100�c 72 4.9 3.3 0.8

Al�100�c 128 27.9 17.5 3.6

Au�111�d 243 167.2 73.7 11.5

�2,2� CNTe 64 3.6 2.4 0.7

�4,4� CNTe 128 26.0 14.4 2.9

�8,8� CNTe 256 208.8 118.8 17.0

�12,12� CNTe 384 608.4 373.6 45.6

�16,16� CNTe 512 1230.0 1403.9 121.5

�20,20� CNTe 640 1542.3 1125.7 148.0

aMeasurements from transmission calculations for ideal Li system.
bMeasurements from transmission calculations for Fe-MgO-Fe; see
geometry description in Ref. 10.
cMeasurements from transmission calculations for Al�100�-C7-
Al�100� described in this work �see also Ref. 1�.
dMeasurements from transmission calculations for Au�111�-BDT-
Au�111�; see, e.g., description in Ref. 11.
eMeasurements from transmission calculations for ideal armchair
�n ,n� carbon nanotubes; see, e.g., description in Ref. 4.
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profiling for general electrode configurations and do not use
lattice symmetries to reduce the order of the unit cells to
elementary size even when this is possible.17

In the third column of Table I the run times to compute
the correct self-energy matrices with the widely used itera-
tive scheme of López Sancho et al.26 are displayed. As the
error in �L obtained by this technique is reduced by 1 /2n

after n iterations �we denote this method as 2n iterative�, it
generally converges in n�22 steps. In addition, run times
for the conventional eigenvalue approach to evaluating the
self-energy matrices, in which a standard eigensolver is used
to determine the full set of modes, are presented in the fourth
column. For this version, we simply substituted part of our
Krylov subspace algorithm �steps 1–9 of Algorithm II� with
the state-of-the-art LAPACK routine DGEEV.47 In the last col-
umn the time required by the proposed Krylov subspace
method is shown. In all cases of the latter the parameter �min
was set to 0.1.

From the profiling results in Table I we see that the com-
putational time of the Krylov subspace method is signifi-
cantly reduced compared with the presently widely used
2n-iterative technique. Also the conventional eigensolver
scheme using DGEEV is typically faster than the 2n-iterative
algorithm �the exception for the �16,16� carbon nanotube
�CNT� is related to cache usage48�. A comparison of the tim-
ings in the last two columns verifies that the cost to evaluate
the self-energy matrices from only the few most important
modes of the electrodes, as in our Krylov subspace method,
is in general much lower than required by a direct eigen-
solver to determine all possible modes.

In order to illustrate the computational complexity of the
methods we show the CNT run times as a function of the
matrix size N in a logarithmic plot in Fig. 8. Clearly, all
methods have O�N3� complexity; however, the Krylov sub-
space method initially follows the typical O�N2� complexity
of the Arnoldi procedure49 until the cost of the shift-and-
invert operations becomes dominant. For N
500 we ob-

serve effects due to more and sometimes less favorable cache
usage. Overall, we see that the Krylov subspace method is
fastest by an order of magnitude for all but the smallest
cases.

It is important to point out that the obtained self-energy
matrices �L are in all cases applied in a subsequent transmis-
sion calculation of T�E� for the two-probe systems indicated
in Table I, and the results then checked against those of the
conventional methods �the resulting transmissions T�E� are
identical for the three methods in all cases of E to at least
three decimals�. Furthermore, the setting of the parameter
�min to 0.1 yields self-energy matrices evaluated from all the
modes that have phases � satisfying 0.1� 
�
�1+�. This is
more than adequate for obtaining correct results to an accu-
racy of three decimals for all the systems considered in this
section. In practice, the parameter �min can often be selected

0.1 if lower accuracy in the T�E� calculation is satisfactory,
and this would show off the approach as even faster.

VI. CONCLUSIONS

In conclusion, we have developed an efficient and robust
Krylov subspace method for evaluating the self-energy ma-
trices that are required in electron transport calculations of
nanoscale devices. The method exploits the observation that
only the propagating and slowly decaying evanescent modes
in the electrodes are computationally significant for deter-
mining the transmission coefficients when the system is ap-
propriately set up.

The proposed method is based on the Arnoldi procedure
and applies carefully chosen shift-and-invert spectral trans-
formations to enhance the convergence toward the wanted
interior eigenpairs that correspond to significant modes. We
have investigated the convergence properties and shown that
the accuracy and efficiency are mainly controlled by two
parameters: the tolerance tol to be satisfied by of the relative
residuals of the obtained Ritz values and the parameter �min
that implicitly sets the number of modes taken into account.

In Sec. V we tested the Krylov subspace method on a
metal-device-metal system and compared it to conventional
methods. The applications show that the proposed method
can be applied to calculate the transmission characteristics in
a rigorous and systematic fashion and that the basic assump-
tion of only including selective solutions in the electrode
self-energy matrix is valid for many two-probe systems. The
overall saving in computational time achieved by the Krylov
subspace method is significant and in most cases more than
an order of magnitude in comparison with conventional
methods.
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APPENDIX A: COMPUTATIONAL DETAILS

1. Fast transmission calculation

We give the numerical steps to efficiently evaluate T�E�
via Eqs. �1� and �2�. From the outset, the computational costs
are reduced by taking into account that the self-energy ma-
trices are nonzero only in the corner blocks, that is,

GC =�
H1 − �1

L H1,2

H1,2
† H2 �

� � �

� Hn−1 Hn−1,n

Hn−1,n
† Hn − �n

R
�

−1

,

�A1�

where the self-energy blocks are numbered similarly to the
Hamiltonian blocks. We then select a given diagonal block k
and define self-energy matrices for every layer of the system,
as50–52

�i
L = Hi−1,i

† �Hi−1 − �i−1
L �−1Hi−1,i, − � � i 	 k , �A2�

�i
R = Hi,i+1�Hi+1 − �i+1

R �−1Hi,i+1
† , k 	 i � � , �A3�

which can be used to recursively evaluate the self-energy
matrices �k

L and �k
R when the matrices �1

L and �n
R �or �0

L and
�n+1

R of the semi-infinite electrodes� are available. The kth
block of the Green’s function matrix is now given by

Gk,k = �Hk − �k
L − �k

R�−1, �A4�

which corresponds to inverting the block of smallest size in
the system, if k is chosen accordingly. Finally Eq. �2� is
applied in a simplified version

T�E� = Tr��k
LGk,k �k

RGk,k
† � , �A5�

where the relation Gk,k
a = �Gk,k

r �† between the advanced �a�
and retarded �r� Green’s functions is used �Ga= �Gr�† is valid
when E is real, since H is Hermitian and �a= ��r�†; see Ref.
13�.

2. Generalization to complex Hamiltonian matrices and
k-point sampling

In the Krylov subspace method presented in this paper we
have assumed that the electrode Hamiltonian matrices are
real in order to simplify the computational procedures. We
now discuss the steps required to handle the case of complex
HL and HL,L, which is the case, e.g., when applying k-point
sampling �Algorithm II works only for the � point�.

As noted in Sec. III B, the assumption of real HL and HL,L
leads to simplifications with the shift-and-invert operations:

First, we may consider only right-going modes �� ,c0� with

�
	1 since the left-going modes are uniquely related as
��−1 ,c0�, and, second, we can use the spectral transformation
T in Eq. �18� to determine the wanted eigenpairs for the two
imaginary shifts �= � î /�2 simultaneously and in real arith-
metic.

In order to generalize the Krylov subspace method to
complex Hamiltonian matrices, it is thus necessary to deter-
mine the left-going modes satisfying 1	 
�
	�min

−1 �i.e, lo-
cated outside the unit circle� directly, since there is no gen-
eral relation to the right-going modes �we note that it is
advantageous to change the shift positions to be outside the
unit circle, although this is not necessary for good conver-
gence�. Furthermore, we must abandon the T matrix and per-
form two independent shift-and-invert operations for �

= � î /�2. It is clear that all this is now done in complex
arithmetic and that the extra shift required will make the
general algorithm a little more expensive �as shown in Sec.
V B, the LU factorization required for each shift-and-invert
operation is the dominant cost of our approach�.

We have implemented the generalization and can illustrate
its applicability by converging the transmission spectrum of
the benzene di-thiol �BDT� molecule coupled to gold �111�
surfaces in Fig. 9 by 3
3 and 7
7 k-point sampling of the
Monkhorst type.53 The calculation setup used is exactly the
same as in Ref. 11 and the results can be confirmed.3,11 Also,
we have computed T�E� for each E and k with self-energy
matrices of both the 2n-iterative method and the Krylov sub-
space method and checked that the results are identical to
within three decimals. The CPU times required for, e.g., the
3
3 curve �eight k points� were 167 and 32 min for the two
methods, respectively, while the �-point curve takes 2.7 min
with Algorithm II. We conclude that the generalized Krylov
subspace algorithm is, in this case, 1.5 times slower �per k
point� than the real matrix version presented in Sec. III but
still more than five times faster than the commonly used
2n-iterative approach.

−4 −3 −2 −1
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8 k-points
Γ-point

0 1 2 3 4
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FIG. 9. �Color online� Transmission spectrum of the Au�111�-
BDT-Au�111� system for different k-point samplings and Vb=0.
The self-energy matrices used in the T�E� calculations have been
obtained by the generalized Krylov subspace method with param-
eter �min=0.1.

KRYLOV SUBSPACE METHOD FOR EVALUATING THE… PHYSICAL REVIEW B 77, 155301 �2008�

155301-11



*hhs@imm.dtu.dk
1 M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, and K. Stok-

bro, Phys. Rev. B 65, 165401 �2002�.
2 M. Di Ventra, S. T. Pantelides, and N. D. Lang, Phys. Rev. Lett.

84, 979 �2000�.
3 S. V. Faleev, F. Léonard, D. A. Stewart, and M. van Schilfgaarde,

Phys. Rev. B 71, 195422 �2005�.
4 H. S. Gokturk, in Proceedings of the Fifth IEEE Conference on

Nanotechnology, 2005, Vol. 2, pp. 677–680.
5 N. D. Lang and P. Avouris, Phys. Rev. Lett. 84, 358 �2000�.
6 B. Larade, J. Taylor, H. Mehrez, and H. Guo, Phys. Rev. B 64,

075420 �2001�.
7 A. Nitzan and M. A. Ratner, Science 300, 1384 �2003�.
8 P. Pomorski, C. Roland, and H. Guo, Phys. Rev. B 70, 115408

�2004�.
9 M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour,

Science 278, 252 �1997�.
10 M. Stilling, K. Stokbro, and K. Flensberg, Mol. Simul. 33, 557

�2007�.
11 K. Stokbro, J.-L. Mozos, P. Ordejon, M. Brandbyge, and J. Tay-

lor, Comput. Mater. Sci. 27, 151 �2003�.
12 M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev. B

31, 6207 �1985�.
13 S. Datta, Electronic Transport in Mesoscopic Systems �Cam-

bridge University Press, Cambridge U.K., 1995�.
14 Y. Meir and N. S. Wingreen, Phys. Rev. Lett. 68, 2512 �1992�.
15 P. A. Khomyakov and G. Brocks, Phys. Rev. B 70, 195402

�2004�.
16 P. A. Khomyakov, G. Brocks, V. Karpan, M. Zwierzycki, and P.

J. Kelly, Phys. Rev. B 72, 035450 �2005�.
17 K. Xia, M. Zwierzycki, M. Talanana, P. J. Kelly, and G. E. W.

Bauer, Phys. Rev. B 73, 064420 �2006�.
18 K. S. Thygesen and K. W. Jacobsen, Phys. Rev. B 72, 033401

�2005�.
19 T. Ando, Phys. Rev. B 44, 8017 �1991�.
20 P. S. Krstić, X.-G. Zhang, and W. H. Butler, Phys. Rev. B 66,

205319 �2002�.
21 D. H. Lee and J. D. Joannopoulos, Phys. Rev. B 23, 4997

�1981�.
22 S. Sanvito, C. J. Lambert, J. H. Jefferson, and A. M. Bratkovsky,

Phys. Rev. B 59, 11936 �1999�.
23 T. Shimazaki, H. Maruyama, Y. Asai, and K. Yamashita, J.

Chem. Phys. 123, 164111 �2005�.
24 J. Velev and W. Butler, J. Phys.: Condens. Matter 16, R637

�2004�.
25 F. Guinea, C. Tejedor, F. Flores, and E. Louis, Phys. Rev. B 28,

4397 �1983�.
26 M. P. Lopez Sancho, J. M. Lopez Sancho, J. M. L. Sancho, and

J. Rubio, J. Phys. F: Met. Phys. 15, 851 �1985�.
27 W. E. Arnoldi, Q. Appl. Math. 9, 17 �1951�.
28 M. N. Kooper, H. A. van der Vorst, S. Poedts, and J. P. Goedb-

loed, J. Comput. Phys. 118, 320 �1995�.
29 K. Meerbergen and D. Roose, IMA J. Numer. Anal. 16, 297

�1996�.

30 N. Nayar and J. M. Ortega, J. Comput. Phys. 108, 8 �1993�.
31 Z. Bai and Y. Su, SIAM J. Matrix Anal. Appl. 26, 640 �2005�.
32 L. Hoffnung, R.-C. Li, and Q. Ye, Linear Algebr. Appl. 415, 52

�2006�.
33 U. B. Holz, G. H. Golub, and K. H. Law, SIAM J. Matrix Anal.

Appl. 26, 498 �2004�.
34 Q. Ye, Appl. Math. Comput. 172, 818 �2006�.
35 First-principles DFT calculations are done with the commercial

software package ATOMISTIX TOOLKIT 2.0. We use norm-
conserved pseudopotentials for the core electrons and the local
density approximation for the exchange-correlation potential
�Ref. 1�. More details about the software can be found on the
company website �www.atomistix.com�.

36 P. N. C. Caroli, R. Combescot, and D. Saint-James, J. Phys. C 4,
916 �1971�.

37 M. B. Nardelli, Phys. Rev. B 60, 7828 �1999�.
38 A brief explanation for this is that, since the boundary layers of

the C region in our setup are given by principal electrode layers,
the evanescent modes that decay very fast do not “survive” the
propagation through these layers and therefore do not give any
components outside the sets ��k

+� and ��k
−� at the boundaries of

C.
39 H. H. B. Sørensen, D. E. Petersen, S. Skelboe, P. C. Hansen, and

K. Stokbro �unpublished�.
40 L. N. Trefethen and D. Bau, Numerical Linear Algebra �SIAM,

Philadelphia, 1997�.
41 Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst,

Templates for the Solution of Algebraic Eigenvalue Problems: A
Practical Guide �SIAM, Philadelphia, 2000�.

42 Ronald B. Morgan and M. Zeng, Linear Algebr. Appl. 415, 96
�2006�.

43 Z. Jia, J. Comput. Math. 17, 257 �1999�.
44 F. Tisseur and K. Meerbergen, SIAM Rev. 43, 235 �2001�.
45 B. N. Parlett and Y. Saad, Linear Algebr. Appl. 88–89, 575

�1987�.
46 M. E. Hochstenbach and H. A. van der Vorst, SIAM J. Sci.

Comput. 25, 591 �2003�.
47 All computations in this work were done on a Sun ULTRASPARC

IV dual-core CPUs �1350 MHz/8 MB L2-cache�. We use the
vendor-supplied Sun Performance Library that includes
platform-optimized versions of LAPACK routines.

48 For the armchair �16,16� CNT electrode �N=512� the call to
DGEEV produces an extremely high number of L2 cache misses,
many more than for the larger �18,18� CNT electrode �N=576�.
This causes the very poor run times of the DGEEVmethod for this
particular electrode.

49 G. W. Stewart, Matrix Algorithms �SIAM, Philadelphia, 2001�.
50 E. M. Godfrin, J. Phys.: Condens. Matter 3, 7843 �1991�.
51 D. E. Petersen, H. H. B. Sørensen, S. Skelboe, P. C. Hansen, and

K. Stokbro, J. Comput. Phys. 227, 3174 �2008�.
52 S. Y. Wu, J. Cocks, and C. S. Jayanthi, Phys. Rev. B 49, 7957

�1994�.
53 H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 �1976�.

SØRENSEN et al. PHYSICAL REVIEW B 77, 155301 �2008�

155301-12


