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The nitrogen-vacancy center in diamond is a promising candidate for realizing the spin qubits concept in
quantum information. Even though this defect has been known for a long time, its electronic structure and other
properties have not yet been explored in detail. We study the properties of the nitrogen-vacancy center in
diamond through density functional theory within the local spin density approximation by using supercell
calculations. While this theory is strictly applicable for ground state properties, we are able to give an estimate
for the energy sequence of the excited states of this defect. We also calculate the hyperfine tensors in the
ground state. The results clearly show that �i� the spin density and the appropriate hyperfine constants are
spread along a plane and unevenly distributed around the core of the defect and �ii� the measurable hyperfine
constants can be found within about 7 Å from the vacancy site. These results have important implications on
the decoherence of the electron spin which is crucial in realizing the spin qubits in diamond.
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I. INTRODUCTION

The nitrogen-vacancy �NV� center in diamond has at-
tracted much attention in recent years because it has been
shown to give rise to a single optically active level within the
diamond band gap,1,2 and as such provides an interesting
candidate for a qubit for quantum computing applications.3–8

Besides providing a single photon source for quantum
cryptography,9,10 the NV center is also a promising candidate
as an optically coupled quantum register for scalable
quantum information processing, such as quantum
communication11 and distributed quantum computation.12 In
addition, it has been recently demonstrated that proximal
nuclear spins can be coherently controlled via hyperfine
interaction13 and used as a basis for quantum memory with
an extremely long coherence time.14 Therefore, knowing the
electron-nucleus hyperfine interaction and its position depen-
dence is essential to analyze and optimize coherent control of
proximal nuclear spins.15

Experimentally, the hyperfine constants of the closest at-
oms near the vacancy are known from electron paramagnetic
resonance �EPR� and electron-nuclear double resonance
�ENDOR� studies.16,17 The hyperfine interaction between 13C
isotopes farther from the vacancy contributes to the coherent
electron-nuclear spin states in the measurements.13,14 Ab ini-
tio supercell calculations can be a very useful tool for deter-
mining the hyperfine tensors of a defect. For instance, such
calculations have been used to identify the basic vacancy
defects in silicon carbide by comparing the measured and
calculated hyperfine constants.18–21 In the present paper, we
focus on the calculation of the full hyperfine tensor of the
NV center in diamond, which is of very high importance for
qubit applications. Previous theoretical work has reported a
calculation of the hyperfine constants of the NV center in a
small 64-atom supercell,22 but that work determined only the
Fermi-contact term rather than the full hyperfine tensor. We
will show in the Results and Discussion section that the con-
clusions based on that earlier analysis were adversely af-

fected by the small unit cell size. The larger supercell of 512
atoms employed here does not suffer from this limitation and
provides a realistic picture for the defect properties, which
are in excellent agreement with experimental measurements.

The rest of this paper is organized as follows: Section II
gives a general discussion of the electronic states of the NV
center based on a single-particle picture and the many-body
states that can be constructed from this basis. Section III
describes the method of the first-principles calculations we
performed. Section IV presents and discusses our results
concerning the atomic and electronic structure of the defect,
as obtained from the ab initio calculations. In Sec. V, we
present a detailed discussion of the calculated hyperfine in-
teractions. Finally, we give our conclusions on the nature of
this defect in Sec. VI.

II. ELECTRONIC STATES OF THE NITROGEN-VACANCY
CENTER IN DIAMOND

The electronic structure of the NV center in diamond has
been discussed in detail in a recent paper;23 we briefly review
the main points here. The NV center was found many years
ago in diamond.24 The concentration of NV centers can be
enhanced in N-contaminated diamond by irradiation and
annealing.24,25 The model of the NV center consists of a
substitutional nitrogen atom adjacent to a vacancy in
diamond.16,24–26 The NV center has a strong optical transition
with a zero phonon line �ZPL� at 1.945 eV �637 nm� accom-
panied by a vibronic band at higher energy in absorption and
lower energy in emission. Detailed analysis of the ZPL re-
vealed that the center has trigonal C3v symmetry.25 Later, an
optically induced EPR center was found in diamond which
correlated with the NV center.16 The EPR center showed
trigonal symmetry with a spin polarized triplet state �S=1�.
Since the nitrogen atom has five valence electrons and the
S=1 state implies an even number of electrons, the NV de-
fect must be charged in the EPR measurement. It was as-
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sumed that the NV defect is negatively charged and the extra
electron may be donated from isolated substitutional nitrogen
defects.16 In a recent measurement, the coupling between the
NV center and the nitrogen substitutional has been indeed
detected.27 Loubser and van Wyk16 measured the NV EPR
signal just under the optical excitation, based on which they
proposed that the spin polarization arises from a singlet elec-
tronic system with intersystem crossing to a spin level of a
metastable triplet. Redman et al.28 detected the NV center in
the dark even at 100 K by EPR, from which they concluded
that the S=1 state is the ground state of the NV center. Hole
burning,29 optically detected magnetic resonance,30 and Ra-
man heterodyne measurements31 also showed that the S=1
state is the ground state of the NV center.

A group theory analysis based on a single-particle picture
can be very useful in understanding the nature of the defect
states and the possible optical transitions between them.
While the number of electrons in the NV center has been
disputed in the literature,32,33 a previous ab initio calculation
clearly supported the negatively charged NV defect,34 as was
originally proposed by Loubser and van Wyk.16 We will also
show in the Results and Discussion section that the NV cen-
ter should be negatively charged.

In the NV defect, three carbon atoms have sp3 dangling
bonds near the vacancy and three back bonds each pointing
to the lattice, while the nitrogen atom has also three back
bonds and one dangling bond pointing to the vacant site.
Since nitrogen has five valence electrons the negatively
charged NV defect has altogether six electrons around the
vacant site. The structure of the NV defect, including the
definition of the symmetry �111� axis, is depicted in Fig. 1.

The group theory analysis of the six electron model has
been previously worked out for this defect.35 We summarize
the results using our notation and conventions: Since it is
known that the carbon and nitrogen atoms relax outward
from the vacancy,22,34 we assume that the overlap between
the dangling bonds ��1–4� is negligible, that is, �i� j =�ij. �1–4
are transformed under the operation of the C3v point group,
forming the following orthonormal states:

a1�1�:�1 = �1 − �2�4 −
�

�3
��1 + �2 + �3� ,

a1�2�:�2 = ��4 +�1 − �2

3
��1 + �2 + �3� ,

ex:�3 =
1
�6

�2�1 − �2 − �3� ,

ey:�4 =
1
�2

��2 − �3� , �1�

where 0���1 is a parameter that determines the extent to
which the nitrogen dangling bond is mixed in the �1 and �2
defect states. There are two fully symmetric one-electron
states �a1� and one doubly degenerate e state, with a total
occupation of six electrons. We note here that the dangling
bond of nitrogen is not mixed in the e state but only in the a1
states. It was found by Goss et al.34 by using ab initio mo-
lecular cluster calculations that the two a1 states are lower in
energy than the e state. As a consequence, four electrons
occupy the a1 states and two electrons remain for the e state.
Our calculated one-electron levels obtained by ab initio su-
percell calculations are shown in Fig. 2. As can be seen from
this analysis, the natural choice is to put the two remaining
electrons in the e level forming an S=1 state �by analogy to
Hund’s rule for the p orbitals of the isolated group IV ele-
ments in the Periodic Table�.

In the C3v point group, the total wave function has 3A2
symmetry with S=1. In our special case, we choose MS=1,
so both electrons are spin-up electrons in the e level. The C3v
symmetry can also be maintained by other occupations of the
states. Putting two electrons into four possible quantum
states of the degenerate e level, we end up with six possible

σ1 σ3
σ2

<111> (111)

σ4

FIG. 1. �Color online� The NV center viewed in perspective
�left� and along the �111� direction �right�; this direction is the C3

symmetry axis of the C3v symmetry group of the defect. The vacant
site is indicated by a small pink circle and the neighboring C and N
atoms by gray and cyan balls, respectively. The first neighbor atoms
around the vacant site have sp3 dangling bonds pointing toward the
vacant site, which are labeled �i �i=1,4�, as in the scheme used in
the group theory analysis.
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FIG. 2. �Color online� The calculated spin-resolved single-
electron levels with respect to the valence band maximum �VBM�
in the ground state of the NV defect. Valence and conduction bands
of the host crystal are shown as blue and pink shaded regions,
respectively. The levels are labeled as in Eq. �1� and their occupa-
tion is given for a negatively charged defect �a total of six
electrons�.

GALI, FYTA, AND KAXIRAS PHYSICAL REVIEW B 77, 155206 �2008�

155206-2



multiplets �including the degeneracy�: 3A2, 1A1, and 1E. By
taking 3A2 to be the ground state of the defect �as experi-
ments indicate�, there is no allowed optical transition to first
order since the spin state cannot be changed in a phonon line
�PL� process. The �1 level is relatively deep in the valence
band, so to a good approximation, we can assume that it does
not contribute to the excitation process. However, the �2

level in the gap is not very far from the e level. If one
electron is excited from �2 into the e level ��3 or �4�, then
either a 3E or a 1E multiplet is obtained. If both electrons are
excited from �2 to �3 and �4, then a fully symmetric 1A1
state is obtained. The only allowed transition is 3A2→ 3E to
first order. The electronic configurations of these states are
explained in Table I. Most of these states were discussed in
Ref. 35.

The MS= �1 triplet states can be described by a single
Slater determinant. However, the singlet states �except for
the last 1A1 state� can be described by a linear combination
of two Slater determinants. The two singlet single-Slater-
determinant states of the a1

2�2�e2 configuration are

��2�̄2�3�̄4� =
1
�2

�1E�0,y� + 3A2�0�� , �2a�

��2�̄2�3�̄3� =
1
�2

�1E�0,x� + 1A1�0�� , �2b�

where 1E�0,�� is the multideterminant wave function of the
singlet E state of MS=0 at � row ��=x or y� in Table I. The
singlet single-Slater-determinant state of the a1

1�2�e3 configu-
ration is

��̄2�3�4�̄4� =
1
�2

�3E�0,x� + 1E�0,x�� . �3�

In summary, the following many-body states must be con-
sidered: 3A2, 1A1, 1E, 3E, 1E, and 1A1. The two triplet states
are orthogonal to each other, while the two 1A1 and the two
1E states theoretically can be mixed with each other. This
will be discussed below. Our computational method de-
scribed in the next section cannot take the spin-orbit and
spin-spin interaction into account. From the energetic point
of view those effects are marginal �within few meV�, but
they could have important consequences on the possible op-
tical transitions and the spin state of the NV center.23

III. COMPUTATIONAL METHOD

We use density functional theory with the local spin den-
sity approximation �DFT-LSDA� of Ceperley-Alder,36 as pa-
rametrized by Perdew and Zunger.37 We employed three dif-
ferent codes and somewhat different methodologies to carry
out the calculations. The geometry of the defect was opti-
mized with the VASP code38,39 and the SIESTA code.40 The
latter utilizes numerical atomic orbitals with Troullier–
Martins pseudopotentials.41 We applied the high level
double-� plus polarization functions for both carbon and ni-
trogen atoms. In the SIESTA calculations, no symmetry re-
striction was applied. The linear combination of atomic or-
bitals analysis of the defect states is straightforward in this
methodology through the wave function coefficients that are
directly obtained from the SIESTA calculations. In the VASP

calculations, we use a plane wave basis set with a cutoff of
420 eV�	30 Ry�, which is adequate for well converged cal-
culations using projected augmented wave �PAW� pseudopo-
tentials for the C and N atoms.42,43 In the VASP calculations,
we applied the C3v symmetry, and the energy of the ground
state, as well as that of the excited states are calculated by
setting the appropriate occupation of the defect states in the
gap. In the geometry optimization calculations, all the atoms
were allowed to relax until the magnitude of the calculated
forces was smaller than 0.01 eV /Å. The use of two different
methods �VASP and SIESTA� with very different basis sets is a
stringent check of the reliability of the results. SIESTA is well
suited for the calculation of the coefficient � in Eq. �1�.
Coefficients of the atomic orbitals, VASP, on the other hand,
have variational convergence and are suitable for obtaining
the ground state properties �such as the spin density� because
the convergence of the basis set size can be easily verified.
All together, these methods add to the level of confidence for
the accurate representation of the physics of the system

TABLE I. The electronic configurations and the possible total
wave functions with C3v symmetry. For simplicity, we abbreviate
�2→2, etc., in the last column. The overbar in a wave function
means spin-down electrons, while the rest are spin-up electrons. We
assume that a1�1� :�1 is fully occupied. Hence, here we do not show
that part of the wave function. In the second and third columns, we
give the symmetry of the total wave function �	� and its spin pro-
jection �MS�, respectively. In the case of doubly degenerate repre-
sentations �E states�, we designate which transforms as x or y in the
last column.

Configuration 	 MS �x ,y� Wave function

a1
2�2�e2 3A2 1 �22̄34�

0 1
�2

��22̄34̄�+ �22̄3̄4��
−1 �22̄3̄4̄�

1A1 0 1
�2

��22̄33̄�+ �22̄44̄��
1E 0 x 1

�2
��22̄33̄�− �22̄44̄��

y 1
�2

��22̄34̄�− �22̄3̄4��
a1

1�2�e3 3E 1 x �2344̄�
y �233̄4�

0 x 1
�2

��2̄344̄�+ �23̄44̄��
y 1

�2
��2̄33̄4�+ �233̄4̄��

−1 x �2̄3̄44̄�
y �2̄33̄4̄�

1E 0 x 1
�2

��2̄344̄�− �23̄44̄��
y 1

�2
��2̄33̄4�− �233̄4̄��

a1
0�2�e4 1A1 0 �33̄44̄�
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under study. We have also compared the results that are sepa-
rately obtained by these two schemes and found that they are
in very good agreement. The hyperfine tensor of the NV
center was calculated by the CPPAW code.44 In the CPPAW

calculations, we used a 30 Ry cutoff for the plane wave basis
with PAW projectors, a methodology virtually equivalent
with the one used in the VASP calculations.

Convergence of calculated defect properties with super-
cell size is an important consideration. For this reason, we
have chosen to model the NV center by using a large 512-
atom simple cubic supercell. The lattice constant of the su-
percell �	14.2 Å� is four times larger than the lattice con-
stant of the conventional cubic cell of diamond �a0

=3.54 Å�. We used the 	-point sampling in the Brillouin
zone, which corresponds to sampling finer than a 6
6
6
grid of the primitive lattice; this provides a well converged
charge density. It is also advantageous to restrict the calcu-
lations to the 	 point in order to keep the degeneracy of the
e defect states, which may split in a general k-point sampling
of the Brillouin zone. We checked that the geometry was
practically identical �to within 0.01 Å� going from a 216-
atom fcc supercell to the 512-atom simple cubic supercell.
We will show that the calculated spin density, for instance,
decays at much shorter distance than the lattice constant of
the supercell. Thus, the 512-atom supercell is adequate to
represent the isolated NV defect in a realistic manner.

We calculated the hyperfine tensor of the defect with the
optimized geometry obtained by the VASP code. In the calcu-
lation of the hyperfine tensor, the relativistic effects are taken
into account.45 The hyperfine tensor of nucleus I consists of
the Fermi-contact term �first parentheses in the following
equation� and the dipole-dipole term �second parentheses�,

Aij
�I� =

1

2S

 d3rns�r��I�e�

2��8


3
��r�
 + �3xixj

r5 −
�ij

r3 
� ,

�4�

where ns�r� is the spin density of the spin state S, �I is the
nuclear Bohr magneton of nucleus I, and �e is the electron
Bohr magneton. The Fermi-contact term is proportional to
the spin density localized at the place of the nucleus, which
is dominant compared to the dipole-dipole term. We calcu-
late the hyperfine tensor and diagonalize it in order to obtain
its principal values, also called hyperfine constants. These
hyperfine constants can be directly compared to experimental
data. The Fermi-contact and the dipole-dipole terms are sim-
ply derived from the trace of the hyperfine constants
�Tr�Aij� /3� and the deviation from the trace ��A33
−Tr�Aij� /3�� /2�. If the dipole-dipole term is nonzero, then
the signal is anisotropic. The ratio of the Fermi-contact and
dipole-dipole terms characterizes the shape of the spin den-
sity.

The contribution of s-like wave functions to the charge
density has a large effect on the Fermi-contact term, but,
negligible effect on the dipole-dipole term since the s-like
wave function has a maximum at the positions of the nuclei
and is an even function. In contrast to this, the contribution
of p-like wave functions to the charge density has a negli-
gible effect on the Fermi-contact term, but a large effect on
the dipole-dipole term since the p-like wave function has a
node at the place of nuclei and is an odd function. Typically,
the contribution of the dipole-dipole term is significant for
the spin density built from well-localized dangling bonds,
that is, the sp3 hybrid orbitals �see Table II�. We note that the
pseudopotential methodology produces artificially smooth

TABLE II. The calculated principal values of the hyperfine tensor �columns 3–5� compared to the known experimental data �columns
6–8� in megahertz. The average of the three principal values yields the Fermi-contact term. The difference between the principal values and
the Fermi-contact term gives the dipole-dipole term. Only atoms with a signal larger than 2 MHz are shown. The symmetrically equivalent
number of C atoms is shown in the first column and their distance in angstroms from the vacant site in the second column. The experimental
data on 14N is taken from Refs. 17 and 49. Experimental data on 13C atoms were taken from Ref. 49. EPR studies can directly measure only
the absolute value of the hyperfine constants, which is indicated by adding a �sign to experimental values. The calculated hyperfine tensors
can be used for comparison with spin-echo measurements �see text�. The modulation frequency ��X� in Eq. �7� is also given in megahertz.
The experimental values �expt

�X� �in megahertz� are shown in parentheses, whenever the accuracy of the calculation does not allow for an
unambiguous identification of the origin of �expt

�X� .

Atom Rvac A11 A22 A33 A11
expt A22

expt A33
expt ��X� �expt

�X�

14N 1.68 −1.7 −1.7 −1.7 �2.1 �2.1 �2.3 1.7

3C 1.61 109.5 110.2 185.4 �123 �123 �205 158.5

6C 2.47 −4.8 −3.7 −1.5 3.2

3C 2.49 −7.4 −7.3 −5.8 7.3 9

6C 2.90 2.8 3.3 4.6 3.3

3C 2.92 1.4 2.4 2.9 1.6

3C 2.93 3.4 4.7 4.9 4.0 �4�
6C 3.85 13.5 14.2 19.4 17.5

3C 3.86 12.8 12.8 18.0 �15.0 �15.0 �15.0 16.2 14

6C 4.99 2.6 2.7 3.8 2.8

3C 5.00 1.5 1.5 2.2 1.5
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wave functions close to the nuclei; therefore, only the all-
electron PAW methodology can provide reliable hyperfine
tensors. In the PAW methodology the calculation of the hy-
perfine tensor is somewhat more subtle than that shown in
Eq. �4� and the dipole-dipole term is not fully calculated �see
the appropriate note in Ref. 45� which causes about 0.3 MHz
inaccuracy in the calculated dipole-dipole term in our case.
This error could be important to take into account for hyper-
fine tensors with small matrix elements ��3 MHz�. The total
spin density, ns�r�, can be defined as

ns�r� = nup�r� − ndown�r� ,

where nup�r� and ndown�r� are the spin densities built from
spin-up and spin-down electrons, respectively. By taking the
MS=1 state of the 3A2 state into account, as shown in Fig. 2,
we expect that ns�r� will be positive. We will show that this
is not true for the entire space around the defect.

IV. ATOMIC AND ELECTRONIC STRUCTURE OF THE
NITROGEN-VACANCY DEFECT

A. Geometry and electronic levels

We begin with a discussion of the geometry optimization
of the negatively charged NV center obtained from the SI-

ESTA calculations using spin polarization and no symmetry
restrictions. The defect automatically finds the S=1 state and
maintains the C3v symmetry of the original unrelaxed struc-
ture. The calculated one-electron defect levels are shown in
Fig. 2. The first neighbor C and N atoms clearly relaxed
outward from the vacancy. The calculated distances from the
vacant site are 1.63 and 1.69 Å for the C atoms and the N
atom, respectively. That is, the N atom relaxes more than the
C atoms. We note that the C-vacancy distances are the same
within 0.0002 Å without any symmetry constraints after ge-
ometry optimization. The N-C bond lengths are 1.46 Å,
while the bond lengths of C radicals are 1.50 Å, which is not
far from 1.44 and 1.45 Å, respectively, obtained in an LDA
molecular cluster calculation.34 The localized basis sets can
have problems in the description of vacancy-like defects.
Our VASP calculation, which employs a plane wave basis set,
basically shows the same geometry after optimization: the
calculated distances from the vacant site are 1.62 and 1.68 Å
for the C atoms and the N atom, respectively. Thus, we con-
clude that the double-� plus polarization basis provides re-
sults very close to those of the converged plane wave basis
set.

In an earlier work by Łuszczek et al.,22 a plane wave basis
set with pseudopotentials was employed in a 64-atom cubic
supercell using 2
2
2 Monkhorst-Pack Brillouin zone
sampling46 to investigate the NV defect in diamond. In that
work, only the nearest neighbor atoms to the vacant site were
allowed to relax without symmetry restrictions and a geom-
etry close to C3v symmetry was obtained; the largest devia-
tion in the C-vacancy distances was about 0.001 Å. The cal-
culated distances from the vacancy were 1.67 and 1.66 Å for
the C atoms and the N atom, respectively, which shows the
opposite trend from what we find both in the SIESTA and in
the VASP calculations in the larger unit cell. Most probably

the difference is due to the insufficient relaxation condition
restricted only to the first neighbor atoms around the vacant
site. We plot the wave functions of the defect states obtained
by the LSDA calculations in Fig. 3.

The group theory analysis based on the single-particle
picture describes very well the defect states. Naturally, the
defect states are not strictly localized on the first neighbor
atoms of the vacancy, but the largest portion of the wave
functions can be indeed found there. The SIESTA calculation
gives �	0.7 for the parameter that appears in Eq. �1�. This
means that the N orbital is mostly localized on the a1�2� :�2
defect level and has no amplitude on the e levels. Therefore,
the nitrogen atom is only very weakly spin polarized in the
3A2 state, while it is strongly spin polarized in the 3E state
�when one electron is excited from the a1�2� to level to the e
level�. This is clearly shown in Fig. 4. It is apparent, from
this figure, that the N atom is only weakly polarized �small
negative spin density� in the 3A2 state, while it is strongly
polarized in the 3E state comparable to the C ligands �large
positive spin density�. The spin density is always highly lo-

<111>

<111>

<111> (111)

(111)

(111)

<111> (111)

1

1

e y

ex

a

a

(2)

(1)

FIG. 3. �Color online� Isosurfaces of the calculated wave func-
tions of the a1�1�, a1�2�, ex, ey defect states, shown in side �left� and
top �right� views relative to the �111� axis. Blue �red� isosurfaces
correspond to negative �positive� values of the wave function. The
small pink circle represents the position of the vacant site, while the
gray and cyan balls show the C and N atoms, respectively. We show
the atoms up to the second neighbor from the vacant site. Results
are from the SIESTA calculations.
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calized on the three C atoms around the vacant site �orange
lobes in the figure�.

We also checked the situation when we optimized the
geometry with the condition S=0. We already showed that
the ��2�̄2�3�̄3� state is not an eigenstate with C3v symmetry.
In addition, this state is a Jahn-Teller unstable system. In-
deed, the defect reconstructs to C1h symmetry to remove the
degenerate e level. However, this configuration is about
0.3 eV higher in energy than the 3A2 state with C3v symme-
try.

B. Energy sequence of multiplets

From the structural analysis, we conclude that the dan-
gling bonds around the vacancy do not form long bonds
which could be the driving force of the reconstruction. In-
stead, the atoms relax outward from the vacancy and retain
the strongly localized dangling bonds pointing to the vacant
site which maintains the C3v symmetry. Since the degenerate
e defect level is only partially occupied, this is a typical
situation where configurational interaction plays a crucial
role. As shown above, most of the singlet eigenstates can be
described only by multideterminant wave functions in C3v
symmetry. The optical transition takes place between the
triplet states. We already showed the results on the 3A2 state.
In the VASP calculation, it is possible to set the occupation of
one-electron states. The 3E state can be achieved by setting
zero occupation for the spin-down �2 level and full occupa-
tion of �3 spin-up and spin-down levels. The energy of the
3E state can be calculated in the fixed geometry of the 3A2
state, which yields the vertical ionization energy. Upon the
excitation of the electron the nuclei can relax to find the
minimum energy in the new configuration space. This relax-
ation can take place with the help of phonons around the
defect. The ZPL transition corresponds to that energy where
phonons do not participate between the energy minima of the
two configurations, as shown in Fig. 5.

The calculated vertical ionization energy is 1.91 eV
within LSDA. We found that the NV defect significantly re-
laxes due to this internal ionization. The C-vacancy distance
is 1.67 Å, while the N-vacancy distance is 1.61 Å in the 3E
state. This shows the opposite trend than what was found in
the 3A2 state. This may be understood as follows: the N atom
is strongly spin polarized in the 3E state compared to 3A2

state, while the C ligands will be somewhat less spin polar-
ized, which induces different charge transfers between the
atoms in the 3E state, and leads to a different geometry. The
calculated relaxation energy �the Franck-Condon shift� is
0.2 eV. From this, we find a ZPL energy of 1.71 eV, which
can be tentatively compared to the experimental value of
1.945 eV.24,25 We note that a similar value �1.77 eV� was
found by the LSDA molecular cluster calculation.34 The
LSDA excitation energy and the experimental transition en-
ergy are remarkably close to each other. This shows that the
self-interaction error of LSDA for these defect levels does
not differ too much, which is not unexpected since both of
the defect states are basically valence band derived �from
sp3-like hybrid orbitals�. Nevertheless, the calculated
Franck-Condon shift, which is the relaxation energy defined
as the energy difference between the vertical ionization en-
ergy and the ZPL energy, should be even more accurate than
the calculated internal ionization energy. Indeed, the PL
spectrum shows a broad phonon spectrum even at low tem-
perature, and the intensity of the ZPL line is relatively small
compared to the phonon side bands, which indicates a large
Franck-Condon shift.

In addition to the triplet states it is worthwhile to calculate
the energies of the singlet states because they play a signifi-
cant role in the emission process, but these states have not
yet been directly measured in experiments �see Ref. 23 and
references therein�. LSDA is not a suitable methodology
to accurately calculate these energies. Beside the self-
interaction error �which is relatively small for these defect
levels as discussed above�, LSDA gives the charge density of
the interacting electrons, which is expressed in terms of the
noninteracting Kohn-Sham particles. In DFT-LSDA, the
wave functions are implicitly assumed to be single Slater
determinants and hence they cannot accurately describe the
singlet states, which are multideterminant states. Thus, the
usual DFT-LSDA calculation cannot represent most of the
singlet eigenstates of the NV center. This can be corrected by
using a perturbation theory within DFT-LSDA, as explained
by Lannoo et al.47 Here, though, we adopt a more approxi-
mate method,48 which was already applied for some states of
this defect in Ref. 34. Our goal is to give approximate ener-
gies of the singlet eigenstates in order to predict their se-
quence, and we do not attempt to provide energies directly
comparable to the experiments.

One of the 1A1 states can be described by a single Slater-
determinant �when the a1�2� level is totally empty and the e
level is fully occupied�. This state can be calculated with
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FIG. 4. �Color online� Calculated spin density isosurfaces in the
MS=1 state for the 3A2 �left� and the 3E state �right�. The vacant site
is depicted by a small pink sphere at the center of each plot. Results
are from the VASP calculations.

FIG. 5. Energetics of photoluminescence absorption: VI is the
vertical ionization energy, ZPL is the zero-phonon line transition, E
is the total energy, and Q is the configuration coordinate.
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geometry optimization by LSDA as was explained for the 3E
state. We therefore concentrate on the remaining 1A1 and two
1E states. While the ��2�̄2�3�̄3�, ��2�̄2�3�̄4�, and ��2�3�̄3�̄4�
single Slater determinants are not eigenstates, they can be
expressed as the linear combination of different eigenstates,
as shown in Eqs. �2a�, �2b�, and �3�. von Barth48 showed that
the LSDA total energy �E� of the mixed state can be ex-
pressed as the appropriate sum of the energy of the eigen-
states, which yields the following equations:

E���2�̄2�3�̄4�� =
1

2
�E�1E� + E�3A2�� , �5a�

E���2�̄2�3�̄3�� =
1

2
�E�1E� + E�1A1�� , �5b�

E���̄2�3�4�̄4�� =
1

2
�E�3E� + E��1E�� . �5c�

The 1E state appearing in Eq. �5a� and �5b� belongs to the
a1

2�2�e2 configuration, while the 1E in Eq. �5c� belongs to the
a1

1�2�e3 configuration �see Table I�; hence, the corresponding
energies are different and are denoted by different symbols,
E�1E� and E��1E�, respectively. In Eqs. �5a� and �5c�, we
assume that the energy of the triplet states with MS=0 and
MS=1 is the same. This is a very good approximation since,
for instance, the experimentally measured splitting is about
2.88 GHz �few �eV� for the ground state due to spin-spin
interaction,16 while the spin-orbit splitting for the 3E state is
expected to be within few meV, which is far beyond the
accuracy of LSDA calculations. The energy of the mixed
states on the left hand side of Eqs. �5a�–�5c� can be directly
calculated by LSDA. Since E�3A2� is known, E�1E� can be
determined from Eq. �5a�. Similarly, E�1E� can be deter-
mined from Eq. �5c�. By combining Eqs. �5a� and �5b�, we
arrive at

E�1A1� = �2�E���2�̄2�3�̄3�� − E���2�̄2�3�̄4��� + E�3A2�� .

�6�

Thus, the 1A1 state can also be determined.
von Barth48 successfully applied this approach to calcu-

late the energy of atoms in different states. Formally, this
method can also be applied to the NV defect in diamond, but
attention must be paid to relaxation effects. Generally, if the
electron state changes, then it may imply also relaxation of
the ionic positions, as was the case for the 3E state discussed
earlier. Relaxation effects cannot be taken into account with
this methodology since only the energy of the mixed states
can be directly calculated with LSDA, and the relaxation of
the mixed state is meaningless. In other words, the geometry
must be fixed in these calculations. The occupation of the e
state varies in the case of the 1A1 and 1E states of the a1

2�2�e2

configuration. We assume that the geometry would involve
negligible change from the geometry of the 3A2 state, which
belongs also to the a1

2�2�e2 configuration. Therefore, we fix
the geometry obtained in the 3A2 state when calculating the
1A1 and 1E states of the a1

2�2�e2 configuration. By using the
same argument, we fix the geometry obtained for the 3E state

in the calculation of the 1E state of the a1
1�2�e3 configuration.

With these, we find the following energy sequence of the
multiplets:

E�3A2� ——→
	0.0 eV

E�1A1� ——→
	0.9 eV

E�1E� ——→
	0.8 eV

E�3E�

——→
	0.5 eV

E�1E� ——→
	1.3 eV

E�1A1� .

That is, the deeper 1A1 state is close in energy to the 3A2
state, and the deeper 1E state is below the 3E state. The
energy differences between the triplet states were already
discussed.

We focus next on the singlet states. Within our approxi-
mate methodology the 3A2 and 1A1 states are almost degen-
erate. Close inspection of Eq. �6� reveals that the energy
sequence of the 3A2 and 1A1 states depends on the energy
difference of two singlet states: �E���2�̄2�3�̄3��
−E���2�̄2�3�̄4���. We obtain almost zero for this energy dif-
ference. However, the LSDA self-interaction error may be
larger for the ��2�̄2�3�̄3� state �where the exchange energy
of �3 appears� than for the ��2�̄2�3�̄4� state �where the elec-
trons occupy spatially orthogonal orbitals�. This may raise
the energy of the E�1A1� state. Nevertheless, this fact can be
partially compensated by the relaxation effect of the 1A1
state, which we are neglecting by necessity as explained be-
fore. An additional issue is the possible mixing with the
higher 1A1 state. We argue that the two 1A1 states are not
likely to mix because they are very far from each other in
energy.

From the above analysis, we conclude that the 1A1 state is
indeed close in energy to the 3A2 state. This may imply a
very complicated fine structure of the states. The 3A2 is the
symmetry of the orbital wave function, and the Ms=0 and
Ms= �1 states are degenerate. However, if the spin-spin in-
teraction is taken into account then the energy of the Ms
= �1 and the Ms=0 states will split. In the case of spin-spin
interaction we have to take into account the symmetry of the
spin function as well, which is E for the MS= �1 and A2 for
the Ms=0 state. The symmetry of the total wave function is
the product of the orbital wave function �A2� and the spin
functions. Finally, one obtains A1=A2 � A2 �Ms=0� and E
=A2 � E �Ms= �1�. For more details, see Ref. 23 �specifi-
cally Fig. 1�a��. The 1A1 state becomes A1�MS=0� �the spin
state is not a good quantum number anymore, only its pro-
jection is�. If the two A1�MS=0� states are close in energy,
then they may mix with each other. It is also important to
notice that the energy of the deeper 1E state falls between the
energies of the triplet states. The relaxation effect may lower
the energy of this state. In addition, the two 1E states are not
far from each other in energy, so the off-diagonal elements in
the Hamiltonian may not be neglected. The mixing of the
two 1E states would further lower the energy of the deeper
1E state and would raise the energy of the higher 1E state.
The final conclusion is that there are two singlet states be-
tween the triplet states, and the 1A1 state is much closer in
energy to the ground state than the 1E state. The energies of
the other two singlet states are certainly above that of the 3E
state.
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The deeper singlet 1A1 and 1E states can play an impor-
tant role in the emission process of the NV center. Experi-
ments indicate that there should be a possibly long-living
singlet state between the triplet states �see Ref. 23 and refer-
ences therein�. Usually, the singlet 1A1 is considered in this
process. However, our calculations indicate that there are
two singlet states between the triplet states. Goss et al.34

reported the sequence of 3A2, 1E, 1A1, and 3E states which is
surprising in light of the previous discussion, as these states
were obtained by LSDA molecular cluster calculations. Man-
son et al.23 recently showed that if the 1E state is above the
1A1 state, the known properties of the emission can be con-
sistently explained similar to the original singlet 1A1 model,
with the only difference being that the 1E and 1A1 states both
contribute to the spin polarization process during the optical
cycling and that the effect will be more efficient. Having the
1A1 state higher in energy than the 1E state would result in no
change in spin orientation during optical cycling which is in
contradiction with experiment.23 From this point of view, our
results that are obtained from approximate calculations are
consistent with the PL experiments.

V. HYPERFINE CONSTANTS

As mentioned in the Introduction, the NV center in dia-
mond is a promising candidate to realize qubit solid state
devices operating at room temperature �Ref. 14 and refer-
ences therein�. The qubit is the nonzero �S=1� electron spin
ground state which can interact with the neighbor 13C iso-
topes possessing I=1 /2 nuclear spin via hyperfine interac-
tion. The natural abundance of the 13C isotope is about 1.1%,
so we can assume the same abundance in the diamond lat-
tice. In conventional EPR measurements, the EPR absorption
signal is detected on the ensemble of the defects in the dia-
mond sample. The sample should be thick enough for ab-
sorption measurements and the concentration of the defects
should be sufficiently high. Finally, a large number of defects
is measured at the same time by EPR, so statistics can be
applied to analyze the data. If the spin density is strongly
localized on three symmetrically equivalent C ligands �see
Fig. 4�, then the probability of finding one 13C atom among
them is given by the binomial distribution and is about 3.2%.
Finding two or three of them has negligible probability. Due
to the I=1 /2 nuclear spin, the hyperfine interaction splits
into two lines with Iz=1 /2 and Iz=−1 /2 and therefore the
intensity ratio between the main hyperfine line �involving no
hyperfine interaction with 13C atoms� and the hyperfine line
associated with the C ligands will be roughly 1.5%. This
makes the EPR measurement on 13C hyperfine interaction a
challenging task since the signal to noise ratio should be very
good and the intensity of the EPR signal should be strong
enough and stable to identify the satellite hyperfine lines due
to 13C isotopes.

The 13C hyperfine interaction has been detected in EPR
from two sets of three symmetrically equivalent C atoms by
Loubser and van Wyk.16,49 The larger hyperfine constants
were associated with the C ligands of the NV center. In ad-
dition, the hyperfine interaction of the 14N isotope was found
in the NV center by EPR and ENDOR measurements.16,17 To

our knowledge, hyperfine interaction with other 13C isotopes
has not been directly measured by using EPR. We can esti-
mate the localization of the charge density on the C and N
atoms that are immediate neighbors of the vacant site from
the linear combination of the atomic orbitals as they appear
in the wave functions. He et al.17 estimated that 72% and
0.2% of the charge density is localized on the three C ligands
and the N atom, which leaves approximately 28% of the
charge density to be spread in the lattice. Wrachtrup et al.3

speculated that the spin density exponentially decays as a
function of the distance from the vacant site. Since the hy-
perfine constants are roughly proportional to the spin density,
as Eq. �4� indicates, these authors proposed that nine or more
carbon nuclei should have a hyperfine value of 70 MHz in
the second neighborhood, while the more distant carbon at-
oms should have a hyperfine constant smaller than 10 MHz.
This proposal is not entirely consistent with the known EPR
data since isotropic hyperfine splitting of 5.4 G �	15 MHz�
was measured from three 13C isotopes,49 whereas a value of
70 MHz hyperfine splitting should be measurable by EPR
because it would not be obscured by the main EPR line.

In their theoretical treatment of the NV center, Łuszczek
et al.22 claimed that they can support the proposal of Wracht-
rup et al.3 based on their ab initio results. They optimized the
geometry without symmetry constraints only for the first
neighbor atoms of the vacancy in a 64-atom supercell. The
adequacy of this restriction was already discussed above;
with this restriction, while the C3v symmetry is almost re-
tained, the calculated Fermi-contact hyperfine interactions
for the three C ligands deviate from each other more than
10% �see Table II in Ref. 22�. This suggests that the spin
density was not adequately converged in that calculation
since the small deviation in the geometry from the C3v sym-
metry could not imply such a large discrepancy in the calcu-
lated hyperfine field. These authors also calculated the
Fermi-contact hyperfine interaction for the C atoms situated
about 2.5 Å away from the vacant site. The reported num-
bers were about an order of magnitude smaller than for the C
ligands, which led to the conclusion that the spin density and
the corresponding hyperfine constants should decay fast for
other C atoms farther from the vacant site.

In addition to the problem of the inconsistent values of the
hyperfine interaction for the three C ligands, several other
issues related to the results of Ref. 22 must be mentioned:

�i� These authors have actually reported the hyperfine field
and not the hyperfine constant. However, the conversion
from the hyperfine field, which is the magnetization density
on the atom and it is a number directly obtained from the
computation, to the hyperfine constant is not unique; there-
fore, it is very difficult to compare the calculated values to
the experimental data.

�ii� Only the Fermi-contact term was calculated, while the
dipole-dipole term can be also significant; this is known
to be the case for the C ligands from experimental
measurements.16,49

�iii� The hyperfine interaction with distant C atoms could
be very important for qubit applications based on this defect,
so the hyperfine tensor must be calculated at larger distances
from the vacancy.
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Based on these arguments, we believe that the nature of
the spin density and the corresponding hyperfine interaction
with the 13C isotopes has not yet been explored in detail
despite its high importance.

Toward establishing the nature of this interaction, we
show first the calculated spin density in our 512-atom super-
cell in Fig. 6. As expected, the spin density is highly local-
ized around the three C ligands nearest to the vacant site
�orange lobes in the figure�, within a radius of 1
a0 from
this site. The spin density practically vanishes at distances
�2
a0 from the vacant site. Below the three C atoms �see
Fig. 6�, there is the N atom with a small negative spin den-
sity. Some C atoms farther from the vacant site also have
negative spin density. The spin density mostly extends on a
plane perpendicular to the �111� direction and no measurable
spin density can be found below the N atom. On the N atom,
the spin density is negative. It was shown earlier that the spin
density mostly comes from the spin-polarized e level local-
ized on the C dangling bonds, and due to symmetry reasons,
orbitals related to the N do not appear in the e level. The tiny
negative charge density on the N atom can be explained by
the polarization of its core states: since the nuclear Bohr
magneton of the N atom is positive, the Fermi-contact term
will be negative �see Table II�. Overall, the spin density is
spread on a plane perpendicular to the �111� direction. There
are some C atoms which have significant negative spin den-
sity which results in a negative Fermi-contact term. No mea-
surable hyperfine interaction �spin density� can be found for
the C atoms below the N atom. Loubser and van Wyk49

speculated that the 15 MHz 13C isotropic hyperfine splitting
comes from the three C atoms bonded to the N atom. Our
calculation negates this possibility.

Table II shows that there is a local maximum of the spin
density at Rvac	3.9 and 5.0 Å, where Rvac is the distance
from the vacant site. At Rvac�6.3 Å, the calculated hyperfine
constants are below 1 MHz, which means that the spin den-
sity vanishes at Rvac	2
a0. Apparently, the 64-atom super-
cell is too small to capture these properties due to the artifi-
cial overlap of the spin density caused by the periodic

boundary conditions. We also find that the charge density
does not monotonically decay such as an exponential func-
tion, but oscillates with the distance from the vacant site and
decays fast �see Fig. 7�.

It is important to compare the calculated hyperfine values
to the known experimental data in order to estimate the ac-
curacy of our calculations. For that purpose, the hyperfine
constant of the N atom is not the best choice because its
value is very small and it is caused by only indirect spin-
polarization effect. As mentioned above, there is an inherent
inaccuracy in the calculated dipole-dipole term of about
0.3 MHz; therefore, it is reasonable to consider only values
of the hyperfine constants that are significantly larger than
this limit. Accordingly, we restrict the comparison to values
that are higher than 2 MHz. By comparing the hyperfine
constants of the C ligands, we estimate the inaccuracy for
both the Fermi-contact term and the dipole-dipole term to be
about 10%. This is usual for LSDA calculations.18–21 The
calculated ratio between the Fermi-contact term and the
dipole-dipole term remarkably agrees well with experiment
for the C ligands, i.e., 5.36 and 5.50, respectively. This
shows that the shape of the spin density is very well de-
scribed by LSDA. This ratio indicates that the p-functions
dominate by about 90% in the dangling bonds, so those are
more p-like orbitals than sp3 hybrids. The reason is most
likely the outward relaxation of the C atoms from the vacant
site. The plotted wave functions indeed show a very strong p
contribution of the e levels in Fig. 3, while the spherical s
contribution is very small. The shape of the wave functions
can be directly compared to the proposed wave functions in
Eq. �1� from the group theory analysis of the defect diagram.
Specifically, the a1�1� state is a combination of the p orbitals
of all three carbon dangling bonds with that of nitrogen �all
�i, i=1,4 in Fig. 1�, with the same sign in the wave function,
as shown by the blue isosurface that surrounds all these at-
oms. Similarly, the a1�2� state is formed again by the com-
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FIG. 6. �Color online� �a� The 512-atom cubic supercell with all
C atoms shown �atoms within a 64-atom supercell are shown in
red�. The supercell size in angstroms and in units of the conven-
tional cubic cell lattice constant a0 is indicated on the side of the
cube. �b� Perspective view of the calculated spin density isosurfaces
in the MS=1 state. Only atoms up to the second nearest neighbor of
the vacant site are shown. �c� View along the �111� direction indi-
cating the C3v symmetry of the spin density, which is given in
colored contours. The black lines denote the size of the 512-atom
supercell, while the red dotted ones show the boundaries of the
64-atom supercell.
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FIG. 7. �Color online� Variation of the principal values of the
hyperfine tensors A11 and A33 as a function of the distance from the
vacant site �Rvac� for the set of three symmetrically equivalent C
atoms �3C�. In the inset, we show changes farther from the vacant
site on a finer scale. The variation for the set of six symmetrically
equivalent C atoms closely follows the one shown for 3C.
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bination of all first neighbors to the vacant site. In this case,
the sign of the wave function localized on the carbon atoms
is the opposite of that localized on the nitrogen atom, as
indicated by the different colors of the isosurface in Fig. 3.
On the other hand, the ex and ey states are formed only by the
carbon dangling bonds. In the former, all three carbon dan-
gling bonds are involved, as indicated by the red and blue
isosurfaces around them, while in the latter, only two of them
��2 and �3 in Fig. 3� are involved in the bonding.

An additional 15 MHz 13C hyperfine splitting was mea-
sured by Loubser et al.49 by using EPR but the measured
spectrum of the NV center was not shown in detail; there-
fore, we cannot comment on the accuracy of this measure-
ment. Nevertheless, that work stated that the hyperfine split-
ting is isotropic, that is, the dipole-dipole term is negligible,
and the relative intensity of the hyperfine satellite line and
the main EPR line indicates the involvement of three sym-
metrically equivalent C atoms.49 The likely candidate for this
signal is found at the third neighbors of the vacant site at
Rvac=3.86 Å. The spin density of these atoms is shown as
yellow lobes above the small green lobes at the highest po-
sition on the side view in Fig. 6. The calculated anisotropy of
this hyperfine interaction is about 3–4 MHz. If the uncer-
tainty in the measurement is in this range due to line broad-
ening, then the signal could be detected as nearly isotropic.
However, our calculations reveal that six additional C atoms
have similar hyperfine splitting at the third neighbor distance
of Rvac=3.85 Å, corresponding to the six yellow lobes later-
ally spread farthest from the vacant site, which is most ob-
vious from the view along the �111� direction in Fig. 6. This
means that the hyperfine splitting due to these six C atoms
would have to be simultaneously detected with the other
three ones. Since the difference in the hyperfine splitting of
these two sets of atoms is small, the six-atom set could ob-
scure the signal of the three-atom set showing an effective
relative intensity associated with six symmetrically equiva-
lent C atoms. We suggest that this part of the spectrum
should be experimentally reinvestigated in detail. The hyper-
fine splitting of 7–8 MHz from the 13C atom may be also
detectable by EPR, while the other signals may be too small
and hence obscured by the main hyperfine lines.

Recently, individual NV centers have been detected by
spin-echo measurements.13,14 In particular, detailed results
for six NV centers in diamond have been reported.13 The
spin-echo measurements have detected the coherent state of
the electron spin coupled with a proximal 13C nucleus. The
coupling is due to hyperfine interaction between the electron
spin and the nuclear spin of 13C isotopes. The resulting spin-
echo signals show a rapidly oscillating function enveloped
by a more slowly oscillating function.13 These authors pro-
posed a theory to explain this signal, and they concluded that
the fast modulation frequency is due to the effective magne-
tization density of the electron spin felt by the 13C nucleus,
which is the same as the hyperfine interaction. The modula-
tion frequency can be well approximated as the norm of the
hyperfine tensor projected to the symmetry axis, which leads
to the following expression within our formulation of the
problem:

��X� = �û�111� � Aij
�X�� , �7�

where û�111� is the appropriate projection vector and Aij
�X� is

the hyperfine tensor of nucleus X. Since we calculate the full
Aij

�X� tensor �see Eq. �4��, the calculation of the modulation
frequency is straightforward. Modulation frequencies have
been reported for four single NV defects �see Fig. 4B of Ref.
13�. A single modulation frequency was measured for each
NV center at 	2, 	4, 	9, and 	14 MHz, respectively, so
these particular NV centers had hyperfine interaction with
one 13C isotope in the lattice.13 It would be useful to com-
pare the hyperfine interaction measured by EPR and spin-
echo techniques which can be an additional validation of the
theory developed by Childress et al.13 As was explained ear-
lier, conventional EPR tools have limitations in detecting 13C
isotopes. A 13C enriched sample would be useful to experi-
mentally study this defect in more detail.

The largest 13C hyperfine splitting corresponds to a modu-
lation frequency that is too large to be detected by spin-echo
measurements. However, an isotropic 13C hyperfine splitting
of 15 MHz has also been reported.49 The isotropic signal
means that the modulation frequency should also be about
15 MHz. This is very close to one of the measured modula-
tion frequencies at 	14 MHz.13 From the calculated hyper-
fine tensors in Table II, this signal must originate from a C
atom, which is a third neighbor of the vacant site at Rvac
=3.86 Å. The calculated modulation frequency is 	16 MHz,
which is close to the measured one taking into account the
limitations of our computational method. If one takes into
account the accuracy in the calculation of the hyperfine con-
stants, then the 6C at 3.85 could be excluded. The 9 MHz
spin-echo signal can originate only from the atoms at Rvac
=2.49 Å, and contributions from other neighbors can be
safely excluded. In this way, the origin of the signal can be
identified. The 4 MHz spin-echo signal can originate either
from atoms at Rvac=2.90 Å or at Rvac=2.93 Å by taking into
account computational limitations. In the first case, six sym-
metrically equivalent C atoms are involved, while in the sec-
ond case, a set of three symmetrically equivalent C atoms are
involved. It is difficult, if not impossible, to identify the ori-
gin of the 1 MHz spin-echo signal, which is beyond the ac-
curacy of our calculations. Nevertheless, the calculations in-
dicate that this signal could arise from at least 12 C atoms.
Most of them are far from the vacant site but some are closer
than the atoms that give rise to the 	14 MHz signal, as is
evident from Fig. 7.

The number of symmetrically equivalent atoms is also
specific to the individual hyperfine constant and therefore to
the modulation frequency. Because of the C3v symmetry, sets
of three or sets of six C atoms are equivalent with each other.
The relative occurrence of the modulation frequencies mea-
sured by spin-echo experiments helps in identifying the
equivalent atoms around the vacancy. Four samples represent
a rather limited set of values for statistical analysis, so the
relative occurrence of 13C isotopes picked up by these mea-
surements cannot be used for such analysis. A much larger
number of NV samples is needed in the spin-echo measure-
ments in order to use the relative occurrence of the 13C iso-
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tope signals for the identification of individual atoms in the
diamond lattice.

VI. SUMMARY AND CONCLUSIONS

In this work, we have investigated the negatively charged
nitrogen-vacancy center in diamond in detail by ab initio
supercell calculations by using density functional theory
methods. We showed that the energy sequence of multiplet
states is 3A2, 1A1, 1E, 3E, 1E, and 1A1. This means that the
singlet 1E state enhances the spin polarization process during
the optical cycling of the defect. The center has nonzero spin
ground state. The full hyperfine tensor for a large number of
atoms around the defect was calculated. The calculated hy-
perfine constants of the C ligands agree well with the experi-
mental values detected by electron paramagnetic resonance
tools. However, there is a controversy about the number of
symmetrically equivalent carbon atoms of the second highest
hyperfine interactions when these are compared to experi-
ment. We propose that part of the electron paramagnetic
resonance spectrum should be reinvestigated in detail in or-
der to clarify this issue. Our calculations reveal that the spin
density of the ground state is spread in the lattice, mostly on

a plane perpendicular to the �111� direction defined by the
positions of the N atom and the vacant site, and that it does
not monotonically decay from the vacant site. As a conse-
quence, only a certain number of 13C isotopes can interact
with the electron spin, which can be used as qubits for quan-
tum computing. By using the limited number of measure-
ments that have been recently published for single nitrogen-
vacancy centers detected by spin-echo measurements, we
were able to identify some individual atoms around the de-
fect. Our results contribute to the understanding of the spin-
echo signals of the defect, which is a crucial step toward
realization of the qubit concept in this system. Additional
spin-echo measurements in NV samples will help identify
other individual 13C atoms around the defect.
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