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Hartree-Fock study of electronic ferroelectricity in the Falicov-Kimball model with f-f hopping
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The Hartree-Fock (HF) approximation with the charge-density-wave (CDW) instability is used to study the
ground-state phase diagram of the spinless Falicov-Kimball model (FKM) extended by f-f hopping in two and
three dimensions. It is shown that the HF solutions with the CDW instability perfectly reproduce the two-
dimensional intermediate-coupling phase diagram of the FKM model with f-f hopping, which was recently
calculated using the constrained path Monte Carlo (CPMC) method. Using this fact, we have extended our HF
study on cases that have been not described by CPMC, namely, (i) the case of small values of f-electron
hopping integrals, (ii) the case of weak Coulomb interactions, and (iii) the three-dimensional case. We have
found that ferroelectricity remains robust with respect to the reducing strength of coupling (f-electron hopping)
as well as with respect to the increasing dimension of the system.
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I. INTRODUCTION

The Falicov-Kimball model (FKM) is a paradigmatic ex-
ample of a simple model to study correlation effects of in-
teracting fermion systems on a lattice.! The model was origi-
nally proposed to describe metal-insulator transitions and has
since been investigated in connection with a variety of prob-
lems such as binary alloys,? the formation of ionic crystals,?
and ordering in mixed-valence systems.* In the past few
years, the FKM was extensively studied in connection with
the exciting idea of electronic ferroelectricity.’~!° The moti-
vation for these studies comes from the pioneering work of
Portengen et al,''> who studied the FKM with a
k-dependent hybridization in the Hartree-Fock (HF) approxi-
mation and found that the Coulomb interaction U between
the itinerant d electrons and the localized f electrons gives
rise to a nonvanishing excitonic (f*d)-expectation value even
in the limit of a vanishing hybridization V— 0. As an applied
(optical) electrical field provides for excitations between d
and f states and, thus, for a polarization expectation value
P=(f{d,, the finding of a spontaneous P, (without hybrid-
ization or electric field) has been interpreted as evidence of
electronic ferroelectricity. This result stimulated further the-
oretical studies of the model. Analytical calculations within
well controlled approximation (for U small) performed by
Czycholl® in infinite dimensions did not confirm the exis-
tence of electronic ferroelectricity. In contrast to results ob-
tained by Portengen et al.,'"!?> he found that the FKM in the
symmetric case (nf=nd=0.5) does not allow for a ferroelec-
tric ground state with a spontaneous polarization; i.e., there
is no nonvanishing (f*d)-expectation value in the limit of a
vanishing hybridization. The same conclusion has also been
obtained independently by an extrapolation of small-cluster
exact-diagonalization and density matrix renormalization
group calculations in the one dimension for both intermedi-
ate and strong interactions.® In these regions, the finite-size
effects are negligible and, thus, the results can be satisfacto-
rily extrapolated to the thermodynamic limit.

Hybridization between the itinerant d and localized f
states, however, is not the only way to develop d-f coher-
ence. Recent theoretical works of Batista et al.? showed that
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the ground state with a spontaneous electric polarization can
also be induced by f-f hopping for dimensions D> 1. In the
strong coupling limit, this result has been proven by mapping
the extended FKM into the xxz spin 1/2 model with a mag-
netic field along the z direction, while in the intermediate-
coupling regime the ferroelectric state has been numerically
identified by a constrained path Monte Carlo (CPMC) tech-
nique. On the basis of these results, the authors postulated
the following conditions that favor the formation of the elec-
tronically driven ferroelectric state: (a) The system must be
in a mixed-valence regime and the two bands involved must
have different parities. (b) It is best, though not necessary, if
both bands have similar bandwidths. (c¢) A local Coulomb
repulsion (U) between the different orbitals is required.

In the present paper, we study the extended FKM (the
spinless FKM with f-f hopping) in the HF approximation
with the charge-density-wave (CDW) instability. For reasons
mentioned above, we restrict our studies on dimensions
D> 1. First, we show that the HF solutions with the CDW
instability perfectly reproduce the ground-state phase dia-
gram obtained by the CPMC method (D=2) for intermediate
Coulomb interactions.” This “calibration” allows us to ex-
tend calculations to the case of small values of the f-electron
hopping integral |¢]<0.1, which has been omitted in the
CPMC phase diagram for numerical problems. Just in this
region we have found a phase that corresponds to the inho-
mogeneous solution for the (f*d)-expectation value. This re-
sult completes the ground-state phase diagram of the two-
dimensional FKM extended by f-f hopping for intermediate
couplings. We have also performed the same calculations in
the weak-coupling limit (for D=2) as well as in three dimen-
sions. We have found that the ferroelectricity remains robust
with respect to the reducing strength of the coupling as well
as with respect to the increasing dimension of the system.

II. MODEL

The extended FKM for the spinless fermions on a
D-dimensional hypercubic lattice is
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where f7 (f;) and d; (d;) are the creation (annihilation) op-
erators of heavy (f) and light (d) electrons at lattice site i.

The first two terms of Eq. (1) are the kinetic energies
corresponding to quantum-mechanical hopping of d and f
electrons between the nearest neighbor sites i and j with
hopping probabilities 7, and 7, respectively. The third term
represents the on-site Coulomb interaction between the d
electrons W1th density n,= LE d’d; and the f electrons with
density n;= EJ* /i, where L is the number of lattice sites.
Usually, the hopplng integral of the d electrons is taken to be
the unit of energy (7,=1) and the f-electron hopping integral
is considered in the limit |7 < 1. This is why the d electrons
are called light and the f electrons, heavy.

In our HF study of the extended FKM, we go beyond the
usual HF approach,'? in which only homogeneous solutions
are postulated. In accordance with Ref. 14, here, we also
consider inhomogeneous solutions modeled by a periodic
modulation of the order parameters:

(ny=n'+ 8;cos(Q 1)), (2)

(nld> =n+8;cos(Q 1)), (3)

g€+un’  US

X
I

- UA - UAp
- UAp - UA
and
uy
Um
LY I ©
ay
by

The corresponding energy dispersions ef and e,f can be
directly obtained by the Fourier transform of the d- and
f-electron hopping amplitudes, and for the case of hypercu-
bic lattice, they are given by (a=d,f) in the following:

€, =—2t,[cos(k,) +cos(k,)] for

D=2, (10)

D=3.
(11)

The HF parameters n,, 8,1, 8, A,Ap can be written di-
rectly in terms of the Bogoliubov—de Gennes eigenvectors,

¢ =—2t,[cos(k,) + cos(k,) +cos(k,)] for
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(ffdy=A+Apcos(Q-r,), (4)

where 6, and &, are the order parameters of the CDW state
for the d and f electrons and A is the excitonic average. The
nesting vectors are Q=(, ) for D=2 and Q= (7, , ) for
D=3.

Using the expressions for (n{}, (nf), and (f7d,), the HF
Hamiltonian of the extended FKM can be written as

_tdzd d lfszj‘l‘Efz f+ UE [nf

(i)
+ 8 cos(Q - r,»)]nf + U2 [0+ 8, cos(Q - r,-)]nf

- UE [A+Apcos(Q-r,)]dif; + H.c. (5)

Following the work of Brydon et al,'* the effective HF
Hamiltonian is diagonalized by a canonical transformation,

Yo =updp+vpdg+ ap fi+ b fig, m=1,23,4, (6)

where a',b}',uy’, v}’ are solutions of the associated

Bogoliubov—de Gennes eigenequations,

HNV] = EMWY, (7)
with
~UA, ~UA
f d (8)
Ek + U”l + Ef U5d
Us, €+ Un'+ E;

1
NE >l + oo AED), (12)
k m
1
NZ E {Uk uk + U?U?}f(Ekm), (13)
k m
<
n'= NZ D {alal + b bIF(ED), (14)
k m
[
= 52 X byl + al b A(EY), (15)
k m
A= I—VE 2 {apuy + bopyf(ED). (16)
k m
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FIG. 1. Dependence of the HF parameters ny, o5, ng, 9;, A, and Ap on the f-level energy Ey calculated (with step AE= 0.005) for three
different values of #; (tf= —-0.2,-0.5,-0.8) and U=2. Insets show the t;==0.5 case at much higher resolution (the numerical data have been
obtained with step AE;=0.00005). The case of #,=—0.8 is analogous to #;=—0.5.

The same approach was recently used by Brydon et al.'

1 4 m m
AP:X;; 2 b + oI A(EY), (7)o study the interplay between excitonic effects and the
" CDW instability in the FKM with on-site as well as nonlocal
where the prime denotes summation over half the Brillouin hybridization. Here, we use the zero temperature variant of
zone and f(E)=1/{1+exp[B(E-u)]} is the Fermi distribu- this procedure to describe ground-state phase diagram of the
tion function. spinless FKM with f-f hopping.
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III. RESULTS AND DISCUSSION

To determine the ground-state phase diagram of the ex-
tended FKM in the Et; plane (which corresponds to se-
lected U) the HF equations are solved self-consistently for
each pair of (E;,7,) values. We use an exact-diagonalization
method to solve the Bogoliubov—de Gennes equation. We
start with an initial set of order parameters. By solving Eq.
(7), the new order parameters are computed via Egs.
(12)—(17) and are substituted back into Eq. (7). The iteration
is repeated until a desired accuracy is achieved.

First, we have examined the two-dimensional extended
FKM model in the intermediate-coupling regime and 7, nega-
tive. For this case, there exists the comprehensive phase dia-
gram of the model obtained by a CPMC technique® for
f-electron hopping integrals |tf|20.l. According to these
Monte Carlo studies, the phase diagram of the extended
FKM consists of only three main phases, namely, (i) the
integer-valent state (n,=0,1,n,=1,0), (ii) the mixed-valent
CDW state (n;=n,=0.5), and (iii) the mixed-valent ferro-
(ele;tric state, which is stable for the remaining values of n,
ng).

In Fig. 1, we have displayed typical examples of our HF
solutions obtained for ny, 9,1y, 5, A, Ap in the intermediate-
coupling regime U=2. It is seen that the extended FKM in
the HF approximation with the CDW instability exhibits
nonvanishing excitonic (f*d)-expectation value for all
[f-electron densities except for the case when nf:O, 1/2 and
1. Thus, in accordance with the quantum Monte Carlo
studies,” we have found that the ferroelectric ground state
with the spontaneous polarization is stabilized when the sys-
tem is in the mixed-valence regime and the sign of the
f-electron hopping integral is opposite the sign of the
d-electron one. The fact that HF solutions can describe the
existence of a ferroelectric ground state with spontaneous
polarization is not surprising, since this state has already
been found in the homogeneous HF solution of the conven-
tional FKM (#;=0) in the limit of vanishing hybridization
V—0,"12 even for all f-electron concentrations (for all val-
ues of E; from the d-electron band). However, what is sur-
prising is that the HF solutions with the CDW instability
perfectly reproduce the ground-state phase diagram obtained
by the CPMC method for all examined values of f-electron
hopping (|t =0.1). This is clearly demonstrated in Fig. 2,
where both phase diagrams are compared.

The fact that the HF approximation with the CDW insta-
bility can describe qualitatively as well as quantitatively
ground-state properties of the FKM with f-electron hopping
motivated us to extend our HF study on cases that have been
not described by quantum Monte Carlo simulations. At first,
there is the case of small f-electron hopping integrals (|tf
<0.1), which were not considered in the original work of
Batista et al.® because of numerical difficulties which appear
in the quantum Monte Carlo simulations for small ¢, (the
limitations in the numerical accuracy). The second interest-
ing case that we would like to study here within the HF
theory is the three-dimensional case for which numerical re-
sults are very rare due to numerical limitations on the size of
clusters.

Let us first discuss our two-dimensional results obtained
in the limit of small values of f-electron hopping integrals. In
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FIG. 2. The HF (@) and CPMC (Ref. 9) ([J) phase diagram of
the two-dimensional FKM with f-f hopping obtained for U=2.

Fig. 3, we present results of a detailed HF analysis performed
in this limit for A, Ap, and §;. It is seen that the nonvanishing
excitonic (f*d)-expectation value also persists for small val-
ues of |tf| but now the inhomogeneous solution Ap# 0 (with
AB-sublattice oscillations in the excitonic and charge order
parameters) is stabilized against the homogeneous one (Ap
=0). The effect is especially strong when we approach the
1;=0 limit. This is clearly demonstrated in Fig. 4, where the
complete intermediate-coupling phase diagram of the FKM
with f-f hopping is displayed. Five different phases depicted
in Fig. 4 as « (the full f band), 8,8’ (the excitonic phases),
v (the CDW phase), and € (the full d band) correspond to
following HF solutions:

a phase, A=0, Ap=0, 6,=0, 6;=0, np=1,
B phase, A>0, Ap<0, 6=0, =0,
O<nf<n; for E;>0,
1—nJ‘L<nf<l for E;<O0,
B’ phase, A>0, Ap,<0, 5f<0, 8;> 0,
n]‘}<nf<1/2 for E;>0,
1/2<nf<1—n; for E;<O0,
y phase, A=0, A,=0, 6;>0, np=1/2,
e phase, Ap=0, &=0, 6,>0, n;=0. (18)

The stability of different HF solutions was also numerically
checked by calculating the total energy and it was found that
all phases presented in the ground-state phase diagram rep-
resent the most stable HF solutions. To determine the type of
transitions between different phases we have performed an
exhaustive numerical study of the £, dependence of the HF
order parameters (the typical examples are shown in Figs. 1
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FIG. 3. Dependence of the HF parameters A, Ap, and &, on the f-level energy E; calculated for different values of #; (¢,=0,-0.01,

-0.02,-0.05) and U=2.

and 3). At first glance, it seems that there are both first-order
(t large) and second-order (¢; small) phase transitions in the
extended FKM with f-f hopping. However, a more detailed
analysis of numerical data (with much higher resolution than
those used in Figs. 1 and 3) showed that the 8’ phase persists
also for large 14, although its stability region is now consid-
erably reduced (see insets in Fig. 1). Thus, there is no differ-

ence between the case of small and large values of 7. In both
cases, the HF order parameters change continuously, indicat-
ing that the phase transitions between different phases pre-
sented in the (Et;) ground-state phase diagram are of the
second order.

We have also performed the same calculations in the
weak-coupling limit (U=1). We have found that the phase
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FIG. 4. The complete HF phase diagram of the two-dimensional
extended FKM in the intermediate-coupling (U=2) and weak-
coupling (U=1) regimes.

diagrams obtained in the weak- and intermediate-coupling
regimes have qualitatively the same form and the only dif-
ference between them is that the ferroelectric domain () is
stabilized against remaining phases with decreasing Cou-
lomb interaction (see Fig. 4). Of course, this fact does not
automatically imply that the excitonic (f*d) expectation
value also persists for vanishing U and that the Coulomb
interaction U is not necessary for a stabilization of the ferro-
electric state, a fact that should be in contradiction with con-
clusions based on the CPMC simulations. Indeed, calcula-
tions that we have performed for different values of 7; at the
selected f-electron density n,=1/4 showed (see Fig. 5) that
the excitonic {f*d) expectation value is zero for U=0; it
rapidly increases with increasing U and tends to the saturated
state for sufficiently large U. This independently confirms
the third postulate of Batista et al.’? namely, that the local
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FIG. 5. Dependence of the HF parameter A on the Coulomb
interaction U calculated for different values of 7, and n;=1/4.
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Coulomb interaction between the different orbitals is re-
quired in order to stabilize the ferroelectric state with the
spontaneous polarization.

Before discussing the case of positive #;, let us explicitly
show the HF solution for the limit of the conventional FKM
(t/=0). For this case, we have found that A=A,=0 in the a,
v, and & phases, while A=—Ap in the B’ phase. The last
solution implies that the excitonic (f;d;)-expectation value is
equal to 2A on the A sublattice of the hypercubic lattice,
while (f/d;)=0 on the B sublattice. For the symmetric case of
E;=0, our solutions are fully consistent with the ones ob-
tained by Czycholl® in the limit of infinite dimensions. On
the other hand, both these inhomogeneous solutions fully
differ from the homogeneous one,'"!'> which predicts a non-
zero excitonic (f7d;)-expectation value for all E; from the
mixed-valence regime with maximum of (f;d;) at E;=0.

Similar calculations for 7,<<0 have also been performed
1;>0. We have found that the ground-state phase diagram for
1,>0 has exactly the same form as that for 7,<<0. However,
five different phases, «, B, B’, v, and &, are now character-
ized by

a phase, A=0, Ap=0, 6,=0, 6;=0, np=1,
B phase, A=0, Ap<0, =0, =0,
0<nf<n}' for E;>0,
1—n}'<nf<1 for E;<O0,
B’ phase, A=0, Ap<0, &=0, =0,
n}<nf<1/2 for E;>0,
12<n;<1-ny for E;<0,
v phase, A=0, Ap=0, 6f<0, 6;=0 ng=1/2,
& phase, Ap=0, =0, §,>0, n=0. (19)

Thus, the main difference between the phase diagrams ob-
tained for negative and positive #; is that the ferroelectric
domain g at ¢,<<0 is replaced by the antiferroelectric one at
1;>0. These two large domains are separated by a relatively
narrow B’ domain within which the sublattice excitonic av-
erages (P? ,Pﬁd) change continuously (see Fig. 6) from the
ferroelectric case (P?d:ijd) to the antiferroelectric case
(P_?'d=_P ]l?d)

We have also observed qualitatively the same picture for
the three-dimensional case. This is illustrated in Fig. 7,
where the ground-state phase diagrams of the extended FKM
are plotted for two different values of Coulomb interaction
(U=2 and U=4). These results indicate that ferroelectricity
remains robust with respect to the increasing dimension of
the system, which should be important for an application of
HF solutions on a description of real three-dimensional sys-
tems.
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FIG. 6. Dependence of the excitonic expectation value Py
=(f{d;) on t; calculated for E;=0.7 and U=2.

In conclusion, we have calculated the ground-state phase
diagram of the spinless FKM with f-f hopping in the HF
approximation with the CDW instability. We have found that
the HF solutions with the CDW instability perfectly repro-
duce the two-dimensional intermediate-coupling phase dia-
gram of the extended FKM as calculated by the CPMC
method. Using this fact, we have extended our HF study on
cases that have been not described by CPMC, namely, the
case of small values of f-electron hopping integrals, the case
of weak Coulomb interactions, and the three-dimensional
case. We have found that the ferroelectric ground state with
the spontaneous polarization remains stable in all examined
cases.
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FIG. 7. The complete HF phase diagram of the three-
dimensional extended FKM calculated for U=2 and U=4.

Note added. Recently, we came to know about the work
of Schneider and Czycholl® who studied the extended FKM
in the limit of infinite dimensions and obtained results simi-
lar to ours.
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