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The charge susceptibility of the two-dimensional repulsive Hubbard model is investigated by using the
diagram technique developed for the case of strong correlations. In this technique, a power series in the
hopping constant is used. It is shown that once the Fermi level crosses one of the Hubbard subbands, a sharp
peak appears in the momentum dependence of the static susceptibility. With further departure from half-filling,
the peak transforms to a ridge around the � point. Within the considered range 0� �1− n̄��0.2 of the electron
filling n̄, the static susceptibility is finite, which points to the absence of long-range charge ordering. However,
for �1− n̄��0.12, the susceptibility maxima are located halfway between the center and the boundaries of the
Brillouin zone. In this case, an interaction of the carriers with the tetragonal distortions can stabilize the
charge-density wave with the wavelength of four lattice spacings, as experimentally observed in the low-
temperature tetragonal phase of lanthanum cuprates. Within the range of parameters inherent in cuprate per-
ovskites, the character of the susceptibility evolution with n̄ depends only weakly on the ratio of the nearest-
neighbor hopping constant to the Hubbard repulsion and on details of the initial band structure. The location of
the susceptibility maxima in the Brillouin zone is mainly determined by the value of n̄.
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I. INTRODUCTION

A variety of numerical methods have been used to eluci-
date the existence of phase separation in the ground states of
the Hubbard and the related t-J models. States with charge-
density waves �CDWs� �stripes� were obtained in Refs. 1–6
by using the mean-field approximation, the variational prin-
ciple with the Gutzwiller-type variational functions, and the
density matrix renormalization group calculations. However,
the results of the Monte Carlo simulations7–9 and cluster
calculations10,11 cast doubt on this finding. Hence, different
techniques give different results, which reflect the fact that
nearly degenerate low-lying states of the models have differ-
ent natures.

Experimentally static stripes were observed12–15 in the
low-temperature tetragonal �LTT� phase of lanthanum cu-
prates, La1.6−xNd0.4SrxCuO4 and La2−xBaxCuO4. One of the
manifestations of the stripe formation is the anomalous sup-
pression of superconductivity near the hole concentration x
= 1 / 8 in La2−xBaxCuO4. A weaker suppression of Tc near this
hole concentration is also observed in La2−xSrxCuO4 in the
low-temperature orthorhombic �LTO� phase.16 The men-
tioned phases are characterized by tilts of the CuO6 octahe-
drons about the axes �LTT� and the diagonals �LTO� of the
Cu-O planes. These experimental observations suggest that
the interaction of the carriers with the respective phonons
plays an essential role in the stripe stabilization.

For investigating the instabilities of a system, it is conve-
nient to use the corresponding static susceptibilities. Similar
to the divergence of magnetic susceptibility, which points to
the establishment of long-range magnetic order while finite
maxima indicate short-range ordering, a divergence of
charge susceptibility means the appearance of a CDW, while
the finite peaks are manifestations of the respective charge
fluctuations. In this paper, we calculate the charge suscepti-

bility of the two-dimensional repulsive Hubbard model by
using the strong-coupling diagram technique. In this
technique,17–20 on the assumption of strong electron correla-
tions, Green’s functions are calculated by using an expansion
in powers of the hopping constant. The terms of this expan-
sion are expressed by means of site cumulants of electron
creation and annihilation operators.

It is found that once the Fermi level crosses one of the
Hubbard subbands, a sharp maximum appears in the momen-
tum dependence of the static susceptibility near the � point.
With further departure of the electron filling n̄ from the half-
filling value n̄=1, the maximum transforms into a ridge
around the � point. Within the considered range of the elec-
tron filling 0� �1− n̄��0.2, the static susceptibility is finite,
which implies the absence of long-range charge ordering.
However, the obtained results give some insight into the way
in which phonons can stabilize stripes. For �1− n̄��0.12, the
susceptibility maxima are located halfway between the cen-
ter and the boundaries of the Brillouin zone. In this case, an
interaction of the carriers with the tetragonal distortions
gives a maximal energy gain for the CDW with a wavelength
of four lattice spacings, as experimentally observed in the
LTT phase of lanthanum cuprates. The calculations were car-
ried out for the t-t�-U Hubbard model for the ratios of the
Hubbard repulsion to the nearest-neighbor hopping constant
U / �t�=8 and 12 and for the next-nearest-neighbor hopping
constant t�=0 and −0.3t. The above-discussed evolution of
the susceptibility with n̄ is not qualitatively changed with
variations in U / t and t� / t. The shape of the susceptibility and
the location of its maxima in the Brillouin zone are mainly
determined by the value of n̄. The mentioned values of the
parameters belong to the parameter range that is widely be-
lieved to be suitable for cuprate perovskites.

The main formulas that are used in the calculations are
given in Sec. II. The discussion of the obtained results and
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their comparison with the Monte Carlo simulations are
carried out in Sec. III. Concluding remarks are presented in
Sec. IV.

II. MAIN FORMULAS

The Hubbard model is described by the Hamiltonian,

H = �
ll��

tll�al�
† al�� +

U

2 �
l�

nl�nl,−�, �1�

where al�
† and al� are the electron creation and annihilation

operators, l labels sites of the square plane lattice, �=↑ or ↓
is the spin projection, tll� and U are hopping and on-site
repulsion constants, and nl�=al�

† al�. Below, we consider the
case wherein only the nearest-neighbor t and next-nearest-
neighbor t� hopping constants are nonzero.

As mentioned above, in the considered case of strong cor-
relations, U� �t�, t�, we use the strong-coupling diagram
technique17–20 for calculating the charge Green’s function,

B����l���,l�� = �T�nl��������nl����� , �2�

where �nl�=nl�− �nl�� is the deviation of the electron occu-
pation number from its mean value, the angular brackets de-
note the statistical averaging with the Hamiltonian,

H = H − 	�
l�

nl�,

where 	 is the chemical potential and T is the time-ordering
operator that arranges other operators from right to left in
ascending order of times �. The time evolution of operators
in Eq. �2� is also determined by the Hamiltonian H,

O��� = exp�H��O exp�− H�� .

By using the strong-coupling diagram technique, one can
convince oneself that equations for B are similar to those
derived for the spin Green’s function in Ref. 21. After the
Fourier transformation, these equations read

B����q� = − ����

T

N�
p1

G�p1�G�q + p1�

+ � T

N
	2

�
p1p2


�p1�
�p2�
�q + p1�

�
�q + p2������p1,q + p1,q + p2,p2� , �3�

�����p1,q + p1,q + p2,p2� = ����p1,q + p1,q + p2,p2�

−
T

N
�
p3�1

���1
�p1,q + p1,q

+ p3,p3���p3���q + p3�

���1��p3,q + p3,q + p2,p2� .

�4�

Here, the combined indices q= �k , i��� and pj = �k j , i�nj
� are

introduced, ��=2��T and �n= �2n+1��T are the boson and

fermion Matsubara frequencies with temperature T, k is the
wave vector, G�p�= ��ak� �ak�

† �� is the electron Green’s func-
tion, 
�p�=1+ tkG�p�, tk is the Fourier transform of the hop-
ping constants, which is equal to tk=2t
cos�kx�+cos�ky��
+4t� cos�kx�cos�ky� in the considered case, the lattice spacing
is taken as the unit of length, ��p�= tk��p� is the renormal-
ized hopping, �����p1 , p+ p1 , p+ p2 , p2� is the sum of all of
the four-leg diagrams, ����p1 , p+ p1 , p+ p2 , p2� is its irre-
ducible subset, and N is the number of sites.

The main difference between Eqs. �3� and �4� and the
respective equations for the spin Green’s function21 is in the
spin indices of the irreducible four-leg diagrams. For the
transversal spin Green’s function that was considered in Ref.
21, only ↑↓�p1 , p+ p1 , p+ p2 , p2� enters into the equations.

Equations �3� and �4� can be somewhat simplified if we
take into account the invariance of Hamiltonian �1� with re-
spect to the rotations of the spin quantization axis.22 This
invariance leads to symmetry relations,

B↑↑�q� = B↓↓�q�, B↓↑�q� = B↑↓�q� ,

and analogously for ���� and ���. By using these relations,
we find the following from Eqs. �3� and �4�:

B�q� = −
T

N
�
p1

G�p1�G�q + p1� + � T

N
	2

�
p1p2


�p1�
�p2�

�
�q + p1�
�q + p2���p1,q + p1,q + p2,p2� , �5�

��p1,q + p1,q + p2,p2� = �p1,q + p1,q + p2,p2�

−
T

N
�
p3

�p1,q + p1,q + p3,p3�

���p3���q + p3���p3,q + p3,q

+ p2,p2� , �6�

where

B�q� =
1

2 �
���

B����q� ,

��p1,q + p1,q + p2,p2� =
1

2 �
���

�����p1,q + p1,q + p2,p2� ,

�p1,q + p1,q + p2,p2� =
1

2 �
���

����p1,q + p1,q + p2,p2� .

�7�

Diagrams corresponding to Eqs. �5� and �6� are plotted in
Fig. 1. In these diagrams, the dual line indicates the electron
Green’s function G�p�, the shaded and open squares stand for
� and , respectively, the single directed line between the
squares is the renormalized hopping ��p�, and the dashed
line is the external line of the four-leg diagram with the
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inserted irreducible two-leg diagrams. The dashed line cor-
responds to 
�p�.

In the following consideration, we simplify the general
equations �5� and �6� by neglecting the irreducible two-leg
diagrams in the external and internal lines of the four-leg
diagrams. In these approximation quantities, 
�p� and ��p�
in Eqs. �5� and �6� are substituted by 1 and tk, respectively.
Besides, we use the lowest-order irreducible four-leg dia-
gram instead of ����p1 ,q+ p1 ,q+ p2 , p2�. This four-leg dia-
gram is described by the second-order cumulant of electron
operators,

K2
������,�,�1�,�1� = �Tā������a�����ā���1��a���1��0

− K1���,��K1��1�,�1�

+ K1���,�1�K1��1�,������, �8�

where the subscript 0 of the angular brackets indicates that
the averaging and time dependencies of operators are deter-
mined by the site Hamiltonian,

Hl = �
�


�U/2�nl�nl,−� − 	nl�� , �9�

āl����=exp�Hl��al�
† exp�−Hl�� and the first-order cumulant

K1��� ,��= �Tā�����a�����0. This cumulant does not depend
on the spin index � and the respective superscript is dropped
in the cumulant notation. All operators in the cumulants be-
long to the same lattice site. Due to the translational symme-
try of the problem, the cumulants do not depend on the site
index, which is therefore omitted in the above equations.

After the Fourier transformation, the expression for K2
���

reads

K2
����n1,� + n1,� + n2,n2� = Z−1��
���0���� − �n1n2

�e−E1� + Z−1���0 − �n1n2
������e−�E0+E2�� − e−2E1���F�n1 + ��F�n2�

− ���,−�e−E0�Ug01�n1 + ��g01�n2�g02�n1 + n2 + ��
g01�n2 + �� + g01�n1�� − ���,−�e−E2�Ug12�n1

+ ��g12�n2�g02�n1 + n2 + ��
g12�n2 + �� + g12�n1�� + ���,−�e−E1�
F�n1 + ��g01�n2�g01�n2 + ��

+ F�n2�g01�n1 + ��g01�n1� + F�n2�g12�n2 + ��
g12�n1 + �� − g01�n1�� + F�n1 + ��g12�n1�
g12�n2�

− g01�n2 + ���� , �10�

where E0=0, E1=−	, and E2=U−2	 are the eigenenergies of site Hamiltonian �9�, �=T−1, Z=e−E0�+2e−E1�+e−E2� is the site
partition function, gij�n�= �i�n+Ei−Ej�−1, and F�n�=g01�n�−g12�n�, and the integers n and � stand for the fermion and the
boson Matsubara frequencies.

Equation �10� can be significantly simplified for the case of principal interest U�T. In this case, if 	 satisfies the condition,

� � 	 � U − � , �11�

where ��T, the exponent e−�E1 is much larger than e−�E0 and e−�E2. Therefore, the terms with e−�E0 and e−�E2 can be omitted

in Eq. �10�. In this case, we obtain the following for the quantity of K2= 1 / 2����K2
���, which is used instead of  in Eq. �6�:

K2�n1,� + n1,� + n2,n2� = −
3

4
��n1n2

F�n1 + ��F�n2� +
1

2
�F�n1 + ��g01�n2�g01�n2 + �� + F�n2�g01�n1 + ��g01�n1�

+ F�n2�g12�n2 + ��
g12�n1 + �� − g01�n1�� + F�n1 + ��g12�n1�
g12�n2� − g01�n2 + ��� . �12�

As can be seen from Eq. �6�, in this approximation, ��k1 ,�n1
;k+k1 ,��+�n1

;k+k2 ,��+�n2
;k2 ,�n2

� does not depend on k1

and k2.
Taking into account these simplifications, we find for the second term on the right-hand side of Eq. �5�

� T

N
	2

�
p1p2

� = −
3

4
T�

n

fk��n�a1�� + n�a1�n� −
1

2

1 + Sky4�k���T�

n

fk��n�a3�− �,� + n�

+
1

2

1 − Sky1�k���T�

n

fk��n�a2�− �,� + n� +
1

2
� 1

i�� − U
− Sky3�k���T�

n

fk��n�a4�− �,� + n�

−
1

2
Sky2�k��T�

n

fk��n�a1�� + n� , �13�

+
2 3 4 5 6 7

2 3 4 5 6 7

2 3 4 5 6 7

2 3 4 5 6 7

2 3 4 5 6 7

2 3 4 5 6 7

=B -

FIG. 1. Diagrams corresponding to Eqs. �5� and �6�.
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where

Sk = N−1�k�
tk+k�tk�,

fk��n� = 
1 − 3
4SkF�� + n�F�n��−1,

a1�n� = F�n�, a2��n� = g01�n�g01�� + n� , �14�

a3��n� = F�n�g12�� + n� ,

a4��n� = g12�n� − g01�� + n� ,

and yi�k�� are solutions of the following system of four lin-
ear equations:

yi�k�� = T2 �
n1n2

fk��n1�K2�n1,� + n1,� + n2,n2�ai��n1�

−
1

2
SkT�

n

fk��n�a1�� + n�ai��n�y2�k��

−
1

2
SkT�

n

fk��n�a2�− �,� + n�ai��n�y1�k��

−
1

2
SkT�

n

fk��n�a4�− �,� + n�ai��n�y3�k��

−
1

2
SkT�

n

fk��n�a3�− �,� + n�ai��n�y4�k�� .

�15�

The system of Eq. �15� follows from Eq. �6�,

yi�k�� = T2 �
n1n2

ai��n1��k�n1,� + n1,� + n2,n2� .

In calculating the first term on the right-hand side of Eq.
�5�, we use the Hubbard-I approximation23 for the electron
Green’s function. Under condition �11�, this function reads

G�kn� =
i�n + 	 − U/2

�i�n + 	��i�n + 	 − U� − tk�i�n + 	 − U/2�
.

�16�

III. CHARGE SUSCEPTIBILITY

In this section, we consider the static charge susceptibil-
ity,

�c�k� = B�k,� = 0� .

As mentioned above, divergence of this quantity points to a
charge instability of the system, while its finite maxima in-
dicate the regions of increased charge response on an exter-
nal field. To check the used approximation, we compare our
results that were obtained for a 4�4 lattice to the data of the
Monte Carlo simulations carried out for the same
conditions.24 This comparison is demonstrated in Fig. 2. In
Fig. 2, n̄=���nl�� is the electron filling. The value n̄=1 cor-
responds to half-filling. We used a small global vertical shift

in our results to better fit the Monte Carlo data. As seen from
Fig. 2, our approximation correctly reproduces the general
shape of the dependence �c�k� and its variation with electron
filling. Notice the rapid increase in the uniform susceptibility
�c�0� with departure from half-filling.

The susceptibility for a larger lattice and a smaller tem-
perature is shown in Fig. 3. At half-filling, the susceptibility
is small and its dependence on momentum is weak, as can be
seen in Fig. 3�a�. This shape of �c�k� is retained until the
Fermi level crosses one of the Hubbard subbands. Immedi-
ately after this crossing, which leads to a departure from
half-filling, a sharp peak appears in the dependence �c�k�. As
shown in Fig. 3�b�, the peak is finite and is located near the
� point, which indicates the appearance of a long-wave
charge fluctuation in the system. With increasing x= �1− n̄�,
the susceptibility grows. For moderate values of x, it peaks
for momenta along a contour that is centered on the � point
and has the shape of a somewhat distorted circle 
see Fig.
3�c��. With the increase in x, the size of the contour grows,
indicating a decrease in the wavelength of charge fluctua-
tions. Notice that in Fig. 3�c�, for x�0.12, the contour
crosses the axes at kx ,ky �� /2. On approaching the bound-
ary of the considered range of 	 
Eq. �11��, the susceptibility
starts to grow near the X and Y 
�0,��� points 
see Fig. 3�d��.
For chemical potentials within this range, the contour does
not cross the boundary of the magnetic Brillouin zone—the
line segment connecting the X and Y points. Notice also that
within this range corresponding to electron fillings of 0�x
�0.2, which are most interesting for cuprate perovskites, the
susceptibility remains finite. This means that a long-range or
stripe ordering of charges does not occur in the Hubbard
model for the considered parameters. The model produces
only charge fluctuations with wave vectors corresponding to
the maxima of the susceptibility. The susceptibility varies
only slightly with a further decrease in temperature from the
value used in Fig. 3.

FIG. 2. The static charge susceptibility in a 4�4 lattice for
t=−U /8, t�=0, and T=0.125�t�. The susceptibility is plotted along
the triangular contour in the Brillouin zone. The corners of the
contour are given by the momenta k= �0,0� ���, �� ,0� �X�, and
�� ,�� �M�. The open symbols are the results of the Monte Carlo
simulations �Ref. 24� for n̄=1 �squares� and n̄=0.95 �circles�. The
filled symbols are our results for the same electron fillings.
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The results shown in Fig. 3 were obtained for the t-U
Hubbard model with the ratio of parameters U / �t�=8. To
check how this overall picture is changed with the variation
in the parameters, we carried out analogous calculations for
the t-U model with U / �t�=12 and for the t-t�-U model with
U / �t�=8 and t�=−0.3t. This latter ratio of the hopping con-
stants is believed to adequately describe the band structure of
cuprate perovskites.25 In both cases, the evolution with filling
and the shape of the susceptibility qualitatively look the
same as those shown in Fig. 3. Moreover, the location of the
susceptibility maxima in the Brillouin zone varies only
slightly with the change in the hopping and repulsion con-
stants and is mainly determined by the electron filling. As an
example, the susceptibilities for the two considered sets of
parameters are shown in Fig. 4 for n̄�0.88. These suscepti-
bilities should be compared to Fig. 3�c�. Notice that, as in
Fig. 3�c�, the maxima on the axes of the Brillouin zone are
located approximately halfway between its center and
boundary. It is also worth noting that in the t-t�-U model,
which does not possess electron-hole symmetry, the shapes
of the susceptibility are qualitatively similar for the fillings
n̄=1−x and 1+x.

The appearance of maxima in the susceptibility with de-
parture from half-filling is connected with the fermion poles
of the function �, specifically with the poles given by the
function fk��n� in Eq. �14�. In general, these poles do not
coincide with the poles of the electron Green’s function
G�p�. For �=0, we find four poles of the function fk��
=0,z� at frequencies

�i�k� = − 	 +
U

2
��U2

4
��3

4
U2Sk. �17�

After the transformation to real frequencies, sums over n in
Eqs. �13� and �15� are transformed to sums over the above
poles and the terms of these sums contain the multipliers
nF
�i�k��, where nF���= 
exp����+1�−1 is the Fermi–Dirac
distribution function. Thus, for low temperatures and a small
to moderate departure from half-filling, these sums and the
second term of B�q� 
Eq. �13�� will have a steplike shape as
functions of momentum if one of the dispersions 
Eq. �17��
crosses the Fermi level. This behavior is demonstrated in
Figs. 3�b�, 3�c�, and 4.

FIG. 3. �Color online� The static charge susceptibility in a 40�40 lattice for t=−U /8, t�=0, and T=0.001U. The susceptibility is shown
in the first quadrant of the Brillouin zone for the electron fillings �a� n̄=1, �b� 0.97, �c� 0.88, and �d� 0.8.
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The above results do not support a purely electronic
mechanism of long-range charge ordering. However, they
give some insight into the way in which phonons can stabi-
lize stripes. As mentioned above, an essential role of certain
CuO6 octahedron tilts in such stabilization can be supposed
from experimental results12–15 on lanthanum cuprates. It is
known26,27 that such tilts are strongly coupled to the carriers.
This interaction can be described by using an effective elec-
trostatic potential �l that is connected with the charge fluc-
tuations ��nl� arising in Cu-O planes as a consequence of the
tilts. These fluctuations give the following contributions to
the adiabatic potential:

�E = −
1

2�
l

��nl��l = −
1

2�
k

�c�k��k
2 . �18�

Here, we took into account that the charge susceptibility is
the response of the system on the external potential. In Eq.
�18�, we also allowed for the low frequency of the octahe-
dron tilts.26 The potential �k depends on the coordinates Qkx,
Qky of these vibrations. Due to the symmetry of the problem,

with respect to a reflection in a Cu-O plane, this dependence
contains only even powers of the coordinates and starts from
quadratic terms,

�k = AkQkx
2 + BkQky

2 + CkQkxQky + ¯ . �19�

Hence, contribution �18� is a quartic function of the coordi-
nates. As follows from Eqs. �18� and �19�, finite values of the
vibration coordinates give an energy gain, and the larger the
value of the susceptibility is, the larger is the energy gain that
can be achieved �the lattice stability is provided by other
quartic and higher power terms of the adiabatic potential�.
For weak momentum dependencies of other parameters of
the adiabatic potential, the largest energy gain is achieved for
momenta at which the susceptibility is peaked. From sym-
metry considerations, it can be supposed that for the LTT
distortions �Qkx�0,Qky =0 and vice versa�, this gain is
achieved for maxima on the axes of the crystal plane and for
the LTO distortions �Qkx= �Qky� on its diagonals. Based on
the experimental results,12–15 it is clear that for x within the
range of 0.12�0.02 and for temperatures T�50 K �the do-
main of the LTT phase28 in La2−xBaxCuO4�, parameters of
the adiabatic potential provide the lowest minimum for te-
tragonal distortions and outside this region for orthorhombic
distortions. As can be seen in Figs. 3�c� and 4, for x�0.12,
the susceptibility maxima are located on the axes approxi-
mately halfway between the � and X, �Y� points. Such
maxima give the lowest energy for the CDW with a wave-
length equal to four lattice spacings, as experimentally ob-
served in the LTT phase of lanthanum cuprates.12–15 Such a
CDW is commensurate with the lattice, which is essential for
its stability. On the contrary, for x�0.12, an oblique CDW in
the LTO phase is, in general, incommensurate 
see Figs. 3�c�
and 4�, which can explain its more disordered character.15

Another conclusion that can be made from the analysis of
experimental data14,15 and from the above results concerns
the magnetic incommensurability observed29,30 in p-type cu-
prate perovskites in a wide range of hole concentrations,
namely, that it is unlikely that the magnetic incommensura-
bility is connected with charge stripes. In La2−xBaxCuO4, the
LTT phase with stripes along Cu-O bonds exists in a narrow
range of hole concentrations near x=0.12.28 Outside of this
range, in LTO phase, stripes are more disordered15 and ob-
lique. Based on the assumption that magnetic incommensu-
rability is connected with the stripes, it is difficult to explain
the location of the low-frequency incommensurate maxima
in the magnetic susceptibility along the axes of the Brillouin
zone in both phases and a smooth variation of the incom-
mensurability parameter with doping through these phases.
Mechanisms of the magnetic incommensurability in strongly
correlated systems, which are not based on charge stripes,
were considered in Refs. 21 and 31–33.

IV. CONCLUDING REMARKS

In this paper, we calculated the charge susceptibility of
the two-dimensional repulsive t-t�-U Hubbard model by us-
ing the strong-coupling diagram technique. In this technique,
on the assumption of strong electron correlations, Green’s
functions are calculated by using the expansion in powers of

FIG. 4. �Color online� The static charge susceptibility in a 40
�40 lattice �a� for t=−U /12, t�=0 and �b� for t=−U /8, t�=−0.3t.
In both cases, n̄�0.88 and T=0.001U.
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the hopping constant. The terms of this expansion are ex-
pressed by means of site cumulants of electron creation and
annihilation operators. For a small lattice, we found good
agreement of the results that was obtained by this approach
with the Monte Carlo simulations. In a larger lattice, it was
found that once the Fermi level crosses one of the Hubbard
subbands, a sharp peak appears in the momentum depen-
dence of the static charge susceptibility near the � point.
With further departure from half-filling, the peak transforms
to a ridge around this point. These results were obtained for
three sets of parameters: for the t-U model with ratios of the
parameters U / �t�=8 and 12 and for the t-t�-U model with
U / �t�=8 and t�=−0.3t. We found that the shapes of the sus-
ceptibility and the positions of its maxima are similar in all
three cases and are mainly determined by the value of the
electron filling n̄. This suggests that the obtained shapes of
the susceptibility are inherent in the parameter range of cu-
prate perovskites. Within the considered interval of the elec-
tron filling 0� �1− n̄��0.2, the static susceptibility is finite,
which points to the absence of long-range charge ordering.

However, obtained results give some insight into the way in
which phonons can stabilize stripes. For �1− n̄��0.12, the
susceptibility maxima are located halfway between the cen-
ter and the boundaries of the Brillouin zone. In this case, an
interaction of the carriers with the tetragonal distortions
gives a maximal energy gain for the charge-density wave that
is oriented along the Cu-O bond and has a wavelength equal
to four lattice spacings. Such stripes are observed in the low-
temperature tetragonal phase of lanthanum cuprates. We also
supposed that the obtained incommensurate location of the
susceptibility maxima along the diagonals of the Brillouin
zone can be the reason for the more disordered character of
the oblique stripes in the low-temperature orthorhombic
phase in comparison with the commensurate stripes of the
low-temperature tetragonal phase.
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