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We propose a bootstrap method for approximating the long-range terms in the contractor renormalization
method. The idea is tested on the two-dimensional Heisenberg antiferromagnet and the frustrated J2-J1 model.
We obtain renormalization group flows that directly reveal the Néel phase of the unfrustrated Heisenberg
antiferromagnet and the existence of a phase transition in the J2-J1 model for weak frustration. However, we
find that this bootstrap method is dependent on blocking and truncation schemes. For this reason, we discuss
these dependencies and unresolved issues that researchers who use this approach must consider.
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I. INTRODUCTION

Contractor renormalization1 �CORE� is a numerical
method for finding the low energy spectrum and generating
the renormalization group flow of operators in quantum
many-body models. Although it has been successfully ap-
plied to many systems �see references in Ref. 2, and for
recent works, see Refs. 3 and 4�, it relies on a cluster expan-
sion whose higher order terms are, in most cases, difficult to
compute. However, as we noted in Ref. 2, in order to have
confidence that a CORE computation is reliable, the conver-
gence of the cluster expansion has to be carefully checked.
This is particularly true for higher-dimensional systems. Un-
fortunately, for even the simplest two-dimensional �2D� sys-
tems, the computation of operators beyond nearest-neighbor
blocks is a formidable task since if we suppose the number
of states per block is m and the cluster expansion up to the
kth term is defined to include all connected operators in a
k�k configuration of blocks, then the brute force calculation
of the kth term would require exact diagonalization of an
mk2

�mk2
matrix. Clearly, this is not feasible for large values

of k. This paper reports our attempts to devise schemes for
approximating these longer-range terms in the cluster expan-
sion.

Getting a reasonably reliable handle on longer-range
terms is important for two reasons. First, we would like to
obtain the best accuracy for the ground-state and excited-
state energies, as well as the best values for critical expo-
nents and other order parameters. Second, and possibly more
important, higher-order terms will generate long-range op-
erators that can introduce frustration, and therefore, possibly
produce qualitative changes in the renormalization group
flows. In this paper, we propose a CORE bootstrap scheme,
wherein we use a variation of CORE itself to compute ap-
proximations to these long-range terms. The key idea behind
this approach is that, since our focus is on the computation of
new connected operators for a small number of blocks, we
use a block adapted version of CORE to approximate the
cluster Hamiltonian. By block adapted, we mean that we use
a truncation and renormalization procedure specifically tai-
lored to the finite size and geometry of the particular con-
figuration.

The outline of this paper is as follows. In Sec. II, we first
test a variety of bootstrap schemes for the case of an unfrus-

trated Heisenberg antiferromagnet �HAF� since the ground
state energy density of this model is exactly known.5 We
show that the increase in accuracy we obtain for the ground
state energy density can show significant dependence on the
blocking scheme. Fortunately, all schemes consistently re-
produce a renormalization flow that illuminates the Néel na-
ture of the HAF ground state. We should remark that these
schemes can be used to calculate observables such as the
staggered magnetization in the manner shown in Ref. 2. Add-
ing observables to the Hamiltonian, however, typically
breaks some symmetries and significantly complicates the
computation. Therefore, we only focus on the energies and
the couplings in this exploratory work of the bootstrap idea.

In Sec. III, we take the best blocking scheme from the
previous section and apply it to a specific frustrated antifer-
romagnet, i.e., the J1-J2 model. This scheme predicts a renor-
malization flow as a function of frustration, in which a phase
transition appears around 0.37�J2 /J1�0.38. This is in
rough agreement with literature. Section IV reports on the
results of some variations of this bootstrap procedure and the
puzzles they pose. Finally, we conclude Sec. V with a dis-
cussion of what we believe the implications of these results
to be.

II. BLOCKING SCHEMES FOR THE BOOTSTRAP STEP

As in Ref. 2, we begin our study of the CORE bootstrap
by studying the 2D spin-1

2 Heisenberg antiferromagnet,

H = �
�i,j�

S� i · S� j = �
�i,j�

Si
x · Sj

x + Si
y · Sj

y + Si
z · Sj

z, �1�

As before, we assume nine-site square blocks for the basic
CORE group computation and truncate to the two lowest
lying eigenstates of the corresponding nine-site Hamiltonian.
The simplicity of the lowest range CORE computation for
this system makes it a good test bed for a computation of the
four-block plaquette operator. Note that the CORE prescrip-
tion for computing this operator exactly would be require
computing those lowest lying eigenstates of the 236�236

cluster Hamiltonian, which have a nonvanishing overlap
with the 16 tensor product states constructed in the trunca-
tion step. In general, this means computing more than the 16
lowest lying eigenstates of the 36-site problem. This is a
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formidable problem and it cannot be done on a personal
computer.

A simplification, which follows from the fact that our
renormalization procedure preserves the rotational invariance
of the original theory, is that the renormalized Hamiltonian
must be rotationally invariant. This means that since we trun-
cate to the lowest spin-1

2 state per block, the generic two-
block and the generic plaquette operators that appear in the
Hamiltonian will have the form

h2 = cuu + 4cxxS1
� · S2

� , �2�

h4 = cuuuu1 + 4cxxuu�S1
� · S2

� + S2
� · S3

� + S3
� · S4

� + S4
� · S1

� �

+ 4cxuxu�S1
� · S3

� + S2
� · S4

� �

+ 16cxxzz�S1
� · S2

� S3
� · S4

� + S1
� · S4

� S2
� · S3

� �

+ 16cxzxz�S1
� · S3

� S2
� · S4

� � , �3�

where the 36 sites in the four nine-site blocks are labeled, as
shown in Fig. 1. The constants appearing in Eq. �3� are put in
to ensure that the coefficients cxzxz are in front of operators
whose trace norm is unity. The coefficients cxuxu and cxzxz
indicate the strength of diagonal interactions, while cxxuu and
cxxzz are for horizontal and/or vertical interactions. Note that

both the cxx and cxxuu terms are S� ·S� on two neighboring sites,
so the total horizontal or vertical coupling should be �cxx
+2cxxuu�. Since the overall scale is irrelevant when we study
the flow of couplings, in the plots to follow we will often
express the couplings in Eq. �3� in units of �cxx+2cxxuu�.
Given this notation, we now turn to a discussion of several
possible bootstrap schemes: the whole block buffering
scheme, the three-site strip blocking scheme, the contour line
blocking scheme, and the “8+1” blocking scheme.

A. First attempt: Whole block buffering

The key to the CORE bootstrap is the introduction of an
intermediate, or buffering, step between each of the original
CORE renormalization group steps. In this intermediate step,
we retain, along with the original spin-1

2 doublet retained in
the first step, additional spin multiplets so that the final num-
ber of retained states per block is 29�k�2. This means that
for a four-block cluster there will be a total of k4 retained
states.

Next, we use the CORE contraction procedure to con-
struct a k4�k4 Hamiltonian, which approximates the full
236�236 in the following sense: one, its low lying states
should have nearly the same eigenvalue spectrum as in the
full 36-site problem; two, if one restricts to the lowest two
states of the single block Hamiltonian, then the renormaliza-
tion group step should produce a reasonable approximation
to the connected operators we would obtain by doing the
exact 36-site computation. To be precise, this approximating
k4�k4 Hamiltonian is constructed as follows: first, we com-
pute the k�k range-1 �single block� terms and k2�k2 con-
nected range-2 �two adjacent block� terms; second, we add
these terms up to construct the approximate Hamiltonian.
The hope is that since, if we kept all 29 states per block, there
would be no plaquette operator at all, keeping the range-2
approximation for k�2 states will, for big enough k, be a
reasonable thing to do. The only question is how big does k
have to be for this to be true.

An important feature of this procedure is that we keep the
original spin-1

2 multiplet as one of our k retained states. This
means that, if we carry out a nearest neighbor renormaliza-
tion group step for this approximate Hamiltonian, keeping
only the lowest spin-1

2 multiplet for a single site, then we will
automatically reproduce the result obtained in the full
eighteen-site, two-block calculation. Obviously, this proce-
dure can be generalized in ways that fail to guarantee that the
connected range-1 and connected range-2 terms computed
for the effective problem will be the same as those obtained
from the original 18-site calculations. In that case, however,
the question of what is the proper definition of the connected
plaquette operator raises its ugly head. To avoid this compli-
cation, in what follows, we will only discuss buffering stages
for which this cannot happen.

The purpose of the buffer step is to reduce numerical
effort, so we limit ourselves to calculating range-2
configurations—those connecting horizontal, vertical, and di-
agonal nine-site blocks. A point worth noting is that after the
first CORE iteration our renormalized Hamiltonian will con-
tain a connected plaquette term which couples every four site
square. Limiting ourselves to range-2 means that the cxxzz
and cxzxz terms at the very center of the 36-site cannot be
included. While these operators have very small norms, this
approach also violates the diameter expansion rule proposed
in Ref. 2 by not including all diameter-�2 operators. This is
potentially a defect of the whole block buffering scheme.
Nevertheless, for the purpose of testing and comparison, we
follow this strategy and see what happens for several values
of k. The resulting energy densities are shown in Fig. 2. The
general question of how best to perform whole block buffer-
ing without discarding any terms is an issue that we may
return to at a later date.

Figure 2 shows that as we add more states, we get closer
and closer to the exact energy density. This is nontrivial and
appears to indicate that we are on the right track, but notice
that for k=6, the energy density at �−0.68 is much worse
than the −0.666 obtained without bootstrap.2 This may be the
result of the defect mentioned above.

Apart from the energy density, this calculation �as well as
all other blocking schemes to be discussed� reveals an im-
portant feature of the HAF. With each successive iteration,

1 2

4 3

FIG. 1. The labeling of the four nine-site blocks.
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the sum of cxx+2cxuxu goes to zero and cxuxu becomes more
and more negative. At the third iteration of k=14, for ex-
ample, we have the following coefficients: cxuxu / �cxx
+2cxuxu��−74, cxxzz / �cxx+2cxuxu��0.006, and cxzxz / �cxx
+2cxuxu��−4. This means that under the renormalization
group flow, our lattice Hamiltonian flows to that of two
weakly coupled interpenetrating ferromagnets �Fig. 3�. This
picture appears to provide a very attractive qualitative expla-
nation as to why, at long range, the HAF ground state is
Néel-like.

B. Three-site strips

The previous blocking scheme leaves the nine-site blocks
intact, but nothing prevents us from breaking them up in the
buffering step. Appropriately, dividing the block into smaller
pieces allows us to include more interactions at a smaller
computational cost. More importantly, this flexibility allows
us to retain four-body interactions we previously discarded,
and so we will do not have to violate the idea of ordering the
cluster expansion by diameter and/or proximity.

Figure 4 shows a way of breaking the nine-site block into
three rectangular strips, along with a list of operators calcu-
lated in the buffering step. Embedding these terms in the
36-site problem, we see that there are two six-strip terms that
connect all four nine-site blocks. For this strip blocking, we
keep two states �a spin 1

2 � per strip, which means that a
six-strip term requires contracting the lowest of 218 states to
26 states. Computationally, this is not much more demanding
than the 218-to-22 contraction required for the original
range-2 calculation without bootstrap. Thus, in this way we
can take into account the four-block interaction more satis-
factorily than in the whole block buffering scheme.

The obvious problem with this approach is the loss of
rotational symmetry. Now, the updown couplings will, in
general, be different from the left-right couplings. This dif-
ference can and will grow as we run the renormalization
group flow. This, of course, limits the number of RG steps
which can be carried out and so, if the limiting behavior of
the renormalized Hamiltonian has not clearly emerged before
these asymmetries grow too large one loses the ability to
understand the long distance behavior of the theory. We can
mitigate this problem somewhat by alternating the blocking
direction at every iteration, but this only improves the energy
from −0.6678 to −0.6679 compared to the exact value at
−0.6694. Both numbers are �0.2% accurate, as was the k
=14 result in Fig. 2.

Figure 5 shows how the asymmetry between horizontal
and vertical couplings grows with renormalization under the
alternating strip-blocking scheme. Just as in the whole-block
case, both horizontal and vertical couplings are eventually
dominated by the diagonal couplings. To see this more
clearly, we artificially restore the rotation symmetry by aver-
aging the horizontal and vertical interaction, i.e., set cxx

h

← �cxx
h +cxx

v � /2, etc. where the superscripts indicate horizon-
tal and vertical coefficients. The averaging scheme hardly
changes the energy density, which now becomes −0.6677,
but here we get a clean picture �Fig. 6� of the growth of
diagonal couplings. The flow to two weakly coupled inter-
penetrating ferromagnets is once again made manifest.

C. Contour lines

Since three-site strips artificially break the rotational sym-
metry, one may wonder if we can rearrange the strips to
avoid this. Figure 7 exhibits two arrangements that achieve
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FIG. 2. Approximate energy density as a function of k, the num-
ber of states per block in the buffering step. The four k values are
chosen to preserve whole spin multiplets in the first iteration. For
subsequent iterations, we keep instead all the whole multiplets that
can be fit within the k lowest states.

FIG. 3. Two decoupled interpenetrating lattice. The fact that the
HAF runs toward this configuration illustrates the Néel character of
the ground state.

Types of operators
included:

FIG. 4. Three-site strip blocking. Shown on the right are opera-
tors for the buffering step that can be embedded in the 36 sites that
involve no more than the diagonalization of two original nine-site
blocks.
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this by breaking up the nine sites into 1+3+5 sites, forming
a contour line structure. Notice that this is no longer a
scheme which could be used to compute an RG flow for the
full lattice because no matter how we orient the contour
lines, no single arrangement covers the entire lattice �four
arrangements would be needed�. Nevertheless, in the buffer-
ing step there is no barrier to using either of these arrange-
ments to construct the approximation to the 36-Hamiltonian.

Table I lists the results of a number of different contour
line blockings. Blocking scheme D makes use of the race-
track contour in Fig. 7 and keeps a spin-1

2 multiplet in each
strip �made of one, three or five sites�, which is always pos-

sible with an odd number of sites. This scheme does not
include any extra long-range terms apart from the term con-
necting two adjacent nine-site blocks �made of six strips�, so
it is similar to the whole block buffering scheme. However,
instead of including the interaction between two diagonal
nine-site blocks, we only include the four-site interaction in
the middle, and this does not have to be calculated because
the four sites in the middle have been kept free.

Blocking scheme E takes this further by adding the opera-
tor corresponding to the 16 sites in the middle. To make sure
we are only adding connected operators, we have to calculate
the embedded subblocks, such as the 2�4 rectangle, etc.
Blocking scheme F includes yet another term corresponding
to the 20-site outer ring. Note that there are still many long-
range operators that can be embedded in the 36 sites under
racetrack contour that we have not included. For instance, we
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FIG. 5. �Color online� Running of horizontal and/or vertical
couplings in four CORE iterations using alternating strip blocking.
The two-body horizonal coupling is defined to be 2�cxx
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FIG. 6. �Color online� Running of diagonal couplings in four
CORE iterations using strip blocking with averaging of coefficients.
The two-body diagonal term is 2cxuxu

h / �cxx
h +2cxxuu

h +cxx
v +2cxxuu

v � and
the four-body diagonal term is 2cxzxz

h / �cxx
h +2cxxuu

h +cxx
v +2cxxuu

v �.
This shows that the HAF runs to the two-lattice limit in Fig. 3.

FIG. 7. Two different types of rotationally symmetric contour
line blocking. We will refer to the left configuration as a racetrack
contour, and the right as a cross contour. For the racetrack contour,
we have calculated two operators that couples all four nine-site
blocks; the 4�4 square in the middle �shaded above�, and the 20-
site outer ring. For the cross contour, the 20-site cross in the middle
is the term connecting four blocks we can handle.

TABLE I. Performance of strip and contour-line blocking as
measured by energy density. Two states per strip is assumed except
for scheme G.

Bootstrap scheme used

Approximated energy density
and percentage error
�exact=−0.669 43�

A �three-site strip� −0.6678 �+0.24% �
B �scheme A with alternating

orientation�
−0.6679 �+0.22% �

C �scheme A with horizontal and/or vertical
coefficients averaged�

−0.6677 �+0.25% �

D �racetrack contour without
extra long-range terms�

−0.6729 �−0.52% �

E �scheme D with 4�4 square in the
middle included�

−0.6658 �+0.54% �

F �scheme E with 20-site outer ring� −0.6646 �+0.72% �
G �like scheme D but with four

states instead of two kept in
each five-site strip�

−0.6669 �+0.37% �

H �cross contour with 20-site
cross in the middle�

−0.6718 �−0.36% �

I �coefficients from schemes F
and H averaged at the end
of each iteration�

−0.6668 �+0.39% �
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have not calculated the 20-site T-shaped term corresponding
to two nine-site blocks plus two other free sites in the
middle. However, it would seem that schemes E and F al-
ready encodes most of the interaction coupling the four nine-
site blocks, and this we know is important because the diag-
onal coupling grows with renormalization.

As apparent from the energy density, our hope was not
borne out. The energy densities obtained from schemes E
and F are even further from the exact value than the result
without bootstrap.2 To see whether including more states
would help, we modify scheme D by increasing the number
of states in five-site strips from two to four �i.e., two spin-1

2
multiplets�. This is blocking scheme G, and while it im-
proves the accuracy, it is only about as good as the nonboot-
strap calculation. Switching from the racetrack contour to the
cross contour and including the 20-site for the strips in the
middle �shaded on the right of Fig. 7� gets us about the same
level of accuracy. Finally, artificially averaging the coeffi-
cients from the racetrack contours with those from the cross
contours does not help either.

This experiment appears to teach us two things. First, we
see that the numbers roughly bracket the exact value, so just
as in Fig. 2, this indicates that a good approximation of the
four-block plaquette should yield a very good energy density.
On the other hand, we learn that a complex blocking scheme
is prone to overemphasizing certain interactions, and that
adding longer-range operators in such situation does not nec-
essarily lead to better accuracy. In the absence of something
resembling the diameter expansion rule2 which only makes
sense in large, uniform lattices�, it is not clear what operators
we should calculate to get improvements.

D. 8+1 blocking scheme

With the lessons of our previous attempts in mind, we
now present a blocking scheme that produces much better
accuracy. We saw that the whole blocks in Sec. II A gave
reasonably good results and did not assume arbitrary struc-
tures. The problem there was that the four-site operator in the
middle, which would be present after the first iteration or in
a frustrated model, cannot be handled in a simple, natural
manner. The minimal way to deal with this is to break the
nine sites into 8+1 sites, leaving the corner site toward the
middle of the four blocks free. This is shown in Fig. 8.

To mimic the 14-state whole block calculation, we keep
all the multiplets that can be fit within the lowest eight states
in the L-shaped eight sites. This turns out to be seven states
in the first iteration, so together with the free site we would
have 14 states per nine-site block. This simple scheme yields
a remarkable value of −0.669 27 as energy density, which is
+0.03% from the exact value. With this encouraging result,
we are ready to see what happens in the more complicated
J1-J2 model.

III. J1-J2 MODEL

As we have seen, CORE’s way of exhibiting the long-
range Néel order of the HAF is that RG with bootstrap al-
ways generates strong diagonal couplings; i.e., in all the
blocking schemes, cxuxu / �cxx+2cxxuu� flows to a large nega-
tive number. This raises the question of what happens if we
add a large positive cxuxu at the initial step. This, of course,
brings us to the well known frustrated J1-J2 model,

H = J1�
nn

S� · S� + J2�
diag

S� · S� , �4�

where the first sum is over nearest neighbors and the second
sum is over diagonal sites. This corresponds to 	cxx=J1,
cxuxu=J2 /J1, cxxuu=cxzxz=cxxzz=0
. The J2-J1 model has been
extensively studied in the condensed-matter literature �see
Refs. 6–8 and references therein� and it is generally believed
that there are several phase transitions within the region 0
�J2 /J1�1. Reference 6, for example, lists four conjectured
critical points at J2 /J1=0.34, 0.38, 0.5, and 0.62. In this
work, the ground state transitions from the Néel phase to
various dimerized configurations with increasing frustration.

Past works on this subject typically rely on two types of
techniques. One is to use perturbative methods around some
conjectured starting configurations; the other is to perform
calculations on finite lattices with some numerical methods
and extrapolate to an infinite lattice. The bootstrap CORE is
therefore a very different method and may provide indepen-
dent checks on past results. Since we have an RG flow pic-
ture that describes the Néel phase at J2 /J1=0, we would
expect to find at least one critical point where this picture
begins to change.

In what follows, using the 8+1 bootstrap scheme, we
compute the renormalization flow for J2 /J1�0.5, as shown
in Fig. 9. For J2 /J1�0.371, the system flows toward the
unfrustrated case, whereas J2 /J1�0.372, the frustration
grows. The qualitative feature of the entire region can be
seen quite clearly from the plot. To our knowledge, this is the
first time such a renormalization group result has been di-
rectly obtained from first principles for the J2-J1 model. In
Ref. 6, J2 /J1=0.34 is thought to be the point where columnar
spin dimers begin to appear. Another critical point at J2 /J1
=0.38, which is more established, is thought to be where the
system becomes a disordered spin liquid. In between these
two values is a region where columnar dimer order and Néel
order coexist. The critical point we see in Fig. 9 appears to
be in agreement with literature.

Things do not go as well for J2 /J1�0.5. As the frustration
increases, there is more competition among states and the

FIG. 8. The 8+1 blocking scheme. One site out of each nine-
site block is left free, enabling the interaction on the four sites in the
middle to be naturally included.
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gaps decrease and the gap between the lowest spin 1
2 and

other excited states in the nine-site block become very small.
In fact, after one iteration with J2 /J1=0.59 or J2 /J1=0.75,
we arrive at a system where the nine-site block no longer has
a spin 1

2 as its ground state, and so the truncation scheme we
are using should change. If we do not do this, then we see
that, starting with J2 /J1�0.372, the frustration eventually
grows to a point where the CORE recipe breaks down. Fig-
ure 10 shows this happening to the flow of couplings at
J2 /J1�0.5.

While the first iteration always takes us to higher frustra-
tion for 0.372�J2 /J1� �0.9, the flow is quite erratic in the
strong frustration region. This presumably occurs because we
fail to modify our truncation procedure as needed. Another
curious behavior that is probably also due to our failure to
follow the true ground state is that there is a neighborhood
around cxuxu�1 where the flow takes us back to weakly
frustrated regions. For example, if we start with
	cxuxu ,cxxzz ,cxzxz
= 	1.085,−0.064,−0.223
, we would be
taken to 	0.318,−0.021,−0.086
 at the next iteration, and
small changes at the beginning lead to very different cou-
plings later on. To give an idea how serious the gap issue is,
we plot in Fig. 11 the size of the first excited state gap in the
nine-site block as a function of cxuxu / �cxx+2cxxuu� ,cxzxz / �cxx
+2cxxuu�, with cxx=1,cxxuu=−0.2, and cxxzz=0. All of these
results are consistent with what has been seen in one-
dimensional examples when one fails to modify the space of
retained states as needed whenever level crossings occur.

Compared to the couplings, we see that, because it is
largely determined by the first two iterations, the energy den-
sity is a little less sensitive to the small gaps. A plot of the
energy density with respect to J2 /J1 is shown in Fig. 12. This
can be contrasted with Fig. 5 of Ref. 9, where a qualitatively
similar plot is obtained from finite lattice extrapolation. In-
stead of a peak and discontinuity at J2 /J1�0.6, we find a
peak around 0.53. No particular structure is found near
J2 /J1�0.6, but the slope appears to be the steepest there. It
is possible that these features are indirect signs of conjec-
tured phase transitions at J2 /J1=0.5,0.6 �similar features are
found in finite lattice entropy plots8�, but we would have to
run magnetization and other specific operators such as co-
lumnar dimers6 to characterize the phases in detail.

IV. PERFORMANCE OF OTHER VARIANTS

In conclusion, we would say that our bootstrap algorithm
appears to be a promising way of increasing the accuracy of

FIG. 9. �Color online� Renormalization group flow generated by
8+1 bootstrap CORE for weak frustration J2 /J1

= 	0.2,0.3,0.35,0.371,0.372,0.373,0.374,0.375,0.39,0.4,0.45
.
All the couplings above are implicitly divided by �cxx+2cxxuu� so
that the overall scale does not affect our analysis of phases. We run
the system starting from several values of cxuxu from 0.2 to 0.45;
each arrow on the lines indicate a CORE iteration; their size indi-
cates amount of change in each step. To avoid cluttering, this region
in parameter space has been selected to give a clear picture of the
quantum phase transition.

FIG. 10. �Color online� Renormalization group flow starting
with strong frustrations. The gap between the lowest spin 1

2 and
other states in the nine-site block is often small or even negative in
much of this region, so our algorithm may not be reliable here. No
clear pattern emerges compared to Fig. 9, and there are many large
erratic jumps from strong to weak frustration region.
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FIG. 11. �Color online� Plot of the gap between the lowest
spin-1

2 multiplet and the first excited states in the nine-site block in
a typical frustrated region. The couplings are implicitly in units of
�cxx+2cxxuu�, with cxx=1,cxxuu=−0.2, and cxxzz=0. The gap is set to
zero when the spin-1

2 multiplet ceases to be the ground states.
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CORE computations. However, we do not have a general
prescription for estimating the number of states to keep in
the buffering step. Moreover, we have not yet tried to do the
more difficult questions of how to handle the truncation
scheme when we flow to points where level crossings occur.

The issue of strong frustration aside, there are other ques-
tions which need more study. How robust are our results?
What specific features in the blocking scheme work best?
How do we characterize the different phases believed to exist
in the J1-J2 model, if the flow of the coefficients in the
Hamiltonian fail to clearly distinguish them? In this section,
we will discuss some preliminary results on variants of the
algorithm and the puzzles they pose.

A. Use of reduced density matrix

Under the 8+1 bootstrap scheme, the retained states on
the eight sites are chosen according to their energies. One
might question the arbitrariness of favoring the energy spec-
trum of this irregular eight-site configuration. One alternative
is to adopt the reduced density matrix truncation technique
from the density matrix renormalization �DMRG�10 litera-
ture. The use of reduced density matrix in CORE first ap-
peared in Ref. 11, where it was suggested as a diagnostic
tool. Reference 2 explored this idea further and argued that
while this diagnostic tool is not necessarily reliable �since
CORE does not rely solely on preservation of state
structure—see Ref. 2 for comparison between DMRG and
CORE�, it can provide an alternative truncation method. This
method has yielded interesting results in Refs. 2 and 3, so it
is instructive to try it on the 8+1 bootstrap calculation.

The truncation method, in the present context, means the
following. We first consider a site configuration �a super-
block if we follow DMRG terminologies� that contains the
eight sites of interest, i.e., a configuration that is the eight
sites plus some “environment” sites. On the superblock, we
will compute a target state, which can be the ground state of

the superblock or a mixed state formed by some low energy
states. Denoting the target state density matrix as � and the
environment as E, we compute the reduced density matrix on
the eight sites as follows:

� = TrE � . �5�

�If the target state is a pure state �	�, �= �	��	�.� The eigen-
vectors corresponding to the largest eigenvalues of this ma-
trix would tell us what states in the eight sites contribute the
most to the formation of �	�, and so this gives us a way to
choose what states to keep.

It should be apparent that the result we get would strongly
depend on how we choose the target state �and the environ-
ment�. To make things as simple as possible in our test, we
choose the superblock to be a 16-site square and the target
state to be its spin-0 ground state. This way we do not have
to worry about degeneracies or enforcement of spin symme-
try. Approximately seven eigenstates of � �depending on the
multiplet structure� with the largest eigenvalues are chosen
as the retained states. With this particular choice of target
state, the 8+1 bootstrap CORE for the unfrustrated HAF
gives us an energy density of −0.669 62, which is −0.03%
from the exact value and as good as our original recipe.

Unfortunately, this choice does not seem to perform as
well in identifying phase transitions in the J1-J2 model. In
Ref. 2, we have seen that targeting the superblock ground
state could lead to improvement in ground state energy at the
expense of accuracy in excited states. Thus, we might expect
the target state choice to be related to a tradeoff between the
ground state energy and the overall physical picture. Indeed,
what we observe here is a subtly altered RG flow. For rela-
tively weak frustration, say, J2 /J1=0.3, we see an initial flow
to the left of Fig. 9, i.e., the less frustrated region. Yet, as we
enter the far front left region �negative cxuxu and negative
cxxzz�, the renormalization turns around and changes direction
toward strong frustration on the right.

It is possible, of course, that the situation would improve
if we use a mixed target state that targets some states above
the ground state of the superblock. This technique could be
important not only for the choice of states for the bootstrap
step but also for the choice of final retained states in the
nine-site block. We have seen in Fig. 11 that the lowest spin
1
2 may not sufficiently capture the low energy spectrum un-
der strong frustration. If we would like to continue to work
with spin 1

2 , the reduced density matrix approach may be the
only option.

B. Resummation

There is another degree of freedom in the procedure that
affects the choice of retained states, and that is how we de-
cide which part of the Hamiltonian belongs to a given set of
sites. Suppose we want to include all the operators that act
on two bodies A and B, and we know there is an operator O4
that acts on four bodies A, B, C and D. For any operator O2
that acts on A and B, we can always decompose O4 into
�O4−O2�+O2. Hence, it should be equally valid to say that
we have an operator O4−O2 acting on the four bodies, and
an operator O2 that acts on A and B. However, O2 can be
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FIG. 12. �Color online� Energy density as a function of frustra-
tion in the J1-J2 model. The slope appears to be the steepest around
0.6. The last data point at 0.75 should be lower than it appears since
we have to stop after one iteration.
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anything, so what should we choose it to be?
In our case, the question is whether we should set cxx

←cxx+2cxxuu and cxxuu←0, i.e., consider the cxxuu term as a
truly two-body term instead of part of a four body term. This
would seem like a very natural thing to do, but it would
dramatically change the cluster expansion. Running 8+1
bootstrap CORE with this resummation yields −0.669 57 for
the HAF energy density, and the growing ferromagnetic di-
agonal couplings come out as well. However, the behavior of
couplings in the J1-J2 model turns out to be very different.
This time, instead of running toward strong frustration too
early, the system runs to Néel for relatively large J2 /J1. The
critical point shifts to above 0.4. This change may not seem
surprising if we note that applying resummation to the five-
site blocks in Ref. 2 also obliterates the growing spin picture
there. The problem is how we should interpret the effects of
resummation.

Mathematically, the issue of grouping terms in the Hamil-
tonian is hardly different from the issue of selecting a block-
ing scheme, which strongly affects the resulting qualitative
picture in CORE. One possible explanation for the effect of
resummation is that the original grouping contains some
structural information of the model in large scale, such as
what counts as self-interactions within a group of blocks and
what counts as long-range interactions. Since we would like
to study the flow of parameters in the same parameter space,
it may be more consistent to preserve this information. Un-
der this interpretation, resummation can yield very accurate
energies, but we may lose control on the qualitative picture
as a result.

V. FURTHER DISCUSSION

We have shown that it is possible to approximate long-
range terms in CORE using a bootstrap approach and a rela-
tively small number of additional states. In particular, we
have obtained some remarkable renormalization flows that
illuminate the phases of a 2D antiferromagnet. However, an
equally important lesson that can be drawn from our results
is that CORE is sensitive to blocking and truncation
schemes. This suggests that the method itself needs further
study. Moreover, it is clear that one should be careful about
drawing any strong conclusions about specific applications
without checking that the important results one arrives at are
common to several different schemes.

For future directions, our work should be immediately
extended in two ways. The first is to investigate the effect of
using reduced density matrix truncation with different target
states at both stages of the bootstrap approximation. This has
the prospect of resolving symmetry problems and allowing
us to smoothly transition between truncation schemes when
level crossings occur. This would be particularly important in
extending our results to the highly frustrated case. Second, of
course, is that we have not attempted to study how the ex-
pectation values of various relevant operators change in the
J2-J1 model with increasing frustration. Such information is
crucial to shedding more light on the structure of the phases.
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