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In this paper, we study the quasiparticle electronic structure of atomic hydrogen in the body-centered cubic
structure for various densities. We employ the GW approach to compute the electron self energy. For this
model system, we use the local density approximation �LDA�+U/generalized gradient approximation
�GGA�+U method as the mean-field solution starting point, which is known to work better than LDA/GGA for
systems with strongly correlated electrons. In the low-density insulating phase, we find that the calculated GW
quasiparticle gap is quite insensitive to the value of the on-site repulsive U employed over a wide range of
physically reasonable values. Moreover, our result for the electronic gap agrees with the measured difference
between ionization energy and electron affinity in the atomic limit.
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I. INTRODUCTION

Density functional theory �DFT� within the local spin
density �LSDA� and generalized gradient �GGA� approxima-
tions provides accurate results for the ground-state properties
of a broad spectrum of physical systems.1 However, the
method fails to describe properties of systems with strongly
correlated electrons, such as those containing transition
metal or rare earth atoms. In particular, as in
semiconductors,2 the electronic band gaps for the transition
metal oxides are significantly underestimated and in some
cases completely disappear.3,4 The reason for this failure is
that the Kohn–Sham eigenvalues in DFT do not physically
correspond to quasiparticle excitation energies.5

One approximate method proposed to address this dis-
crepancy is the local density approximation �LDA�+U
method.6–9 The introduction of a Hubbard-like U term in the
exchange-correlation functional for the localized orbitals in-
creases the degree of localization of the single particle wave
functions and leads to the augmentation of the electronic gap
and the formation of upper and lower Hubbard bands.

Another method widely applied in the study of the quasi-
particle excitation properties of materials is the calculation of
the electron self-energy within the GW approximation.2,10

The eigenvalue equation that gives the quasiparticle energies
and wave functions is formally written as

�T + Vext + VH + ��� = E� ,

where T is the kinetic energy operator, Vext is the external
potential, VH is the Hartree potential, and � is the self-energy
operator. In general, � is a non-Hermitian, nonlocal, and
energy-dependent operator and its exact calculation is formi-
dable for real materials. Within the GW formalism, however,
if we stop at the first term in the diagrammatic expansion
with respect to the screened Coulomb interaction, this opera-
tor can be approximated by �� iGW, where G is the dressed
Green’s function and W is the screened Coulomb interaction.
The calculation of the quasiparticle spectrum then may be
proceeded by a rearrangement of the terms in the above
equation with Vxc a chosen mean field,

��T + Vext + VH + Vxc� + �� − Vxc��� = E� .

The expression containing the terms in the first set of
parentheses is usually solved within DFT using either the
exchange-correlation functional of LDA or GGA as the mean
field, and the term �−Vxc is then treated as a perturbation.
This method has been widely applied to a range of systems
and the results obtained are in excellent agreement with
experiment.2 In general, the GW method as practised, being a
perturbative technique, works best when the mean-field so-
lution is already close to the correct answer. For systems
with strongly localized electrons, however, this may not be
the case if LDA or GGA are used. Although good results
have been obtained for some d and f electron systems,11–15

the method is not guaranteed to work when the mean field
solution qualitatively fails in describing the quasiparticle
bands. The LDA+U method, on the other hand, should pro-
vide a better mean-field description for these systems and
hence a more accurate starting point for perturbative GW
calculations.

In this work, we combine the two methods, GW with
LDA+U, to perform calculations on solid hydrogen in the
body-centered cubic crystal structure. This particular system
is chosen because it is a model system which has been ex-
tensively studied with techniques beyond simple DFT, and it
exhibits a metal-insulator transition induced by correlation
effects.

II. CALCULATION

The crystal structure of our model system, solid antiferro-
magnetic hydrogen in the body-centered cubic geometry, is
given by a simple cubic lattice with two atoms of opposite
spins per unit cell, one at the vertex and one at the body
center of the cube. The lattice constant can be represented by
the Wigner–Seitz parameter rs, which is the radius of the
sphere containing one electron. Since hydrogen has only one
s localized valence orbital, the intra-atomic exchange param-
eter J in the LDA+U formalism is zero. We performed a
series of DFT+U calculations for various values of the den-
sity and the U parameter using both LSDA �Ceperley–Alder
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results16 in the Perdew–Zunger parametrization17� and GGA
�Perdew–Burke–Ernzerhof18� for the exchange-correlation
functional. A Troullier–Martins pseudopotential19 was used
to describe the electron-proton interaction and a plane wave
basis with a cutoff of 80 Ry was employed.20 The value of
the Monkhorst–Pack21 grid spacing for each density was de-
termined by converging the energy eigenvalues to better than
10−3 Ry. The orbital occupations of the LDA+U formalism
were calculated by projecting the wave functions on normal-
ized hydrogen 1s pseudoatomic orbitals. The random phase
approximation was used for the calculation of the static di-
electric function and the generalized plasmon pole model2

was used for the extrapolation of the static dielectric function
to finite frequency.

III. RESULTS

The dependence of the wave function shape on the U
parameter for rs=2.8aB is shown in Fig. 1. The two ends of
the x axis correspond to the positions of two nearest-
neighbor hydrogen atoms �along the �111� direction� with
opposite net local magnetic moments. As shown in the Fig.
1, the wave function becomes more localized for increasing
values of U. It will be shown later that the LDA+U band gap
linearly increases with respect to the U parameter. The wid-
ening of the band gap is due partly to the enhanced localiza-
tion of the wave function, but mostly due to the presence of
the U term in the Hamiltonian. Moreover, Fig. 1 shows that
by increasing the value of U the majority spin population on
each site increases, while the minority spin is suppressed.
Therefore, the local net magnetic moment at each hydrogen
site increases for larger U, and thus the antiferromagnetism
is enhanced.

One of the GW /LDA+U quasiparticle band structures we
obtained is shown in Fig. 2, which shows the opening of the
band gap induced by the GW self-energy correction. We can
see that the material is an indirect-gap insulator, the gap ap-
pearing between k-points R and X. This behavior was found
for all densities and values of U for which the material is an
insulator. Henceforth, the notion of the gap in this material
refers to this indirect minimum gap.

The dependence of the gap on the U parameter is shown
in Fig. 3. As anticipated, the Kohn–Sham gap for LDA+U

and GGA+U monotonically increases with increasing U. In-
cluding GW corrections, we see that the behavior changes.
For small values of U, the gap significantly opens up as
expected. As U increases to physically expected values of
5–12 eV, however, the change in the GW gap is much
smaller than that of the DFT+U calculation and approaches
saturation at large U. The reason is that the exchange-
correlation term Vxc, which explicitly contains U, has been
subtracted from the quasiparticle eigenvalues. The depen-
dence of the GW band gap on U primarily comes from the
fact that the wave functions are more localized for the larger
U and, to a lesser extent, to the U dependence of the dielec-
tric properties. Inevitably, the two curves will cross for some
value of U.

We would like to emphasize that this is an important and
correct physical result. The GW results should be indepen-
dent of the starting mean-field solution, provided the mean
field solution is reasonably close to the final result so that
perturbation theory is operative. Figure 3 illustrates this point
very nicely. For U in the range of 5–12 eV, which is reason-
able for hydrogen atoms in a low density environment, the
final GW quasiparticle band is very insensitive to the starting
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FIG. 1. ��↑�2 for the valence band at � using LDA+U for rs

=2.8aB and different values of U, plotted along the �111� direction.
Solid curve: LDA result �U=0.0�. Dashed curves: LDA+U for dif-
ferent values of U �in eV�.
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FIG. 2. The valence and conduction bands of solid bcc hydrogen
calculated within LDA+U �solid line� and GW /LDA+U �dashed
line� for rs=3.3aB and U=4.0 eV.
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FIG. 3. The Kohn–Sham and quasiparticle gap versus the pa-
rameter U using mean field LDA+U �left� and GGA+U �right� for
a density corresponding to rs=3.3aB.
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mean-field gap �may it be either too small or large compared
to the final result�. We expect on physical grounds that the
optimal result, with our theoretical framework, for the band
gap is the value at where the two curves cross.

The magnitude of the quasiparticle gap for different den-
sities is shown in Fig. 4 and the corresponding antiferromag-
netic moment per site in Fig. 5. The gap should take on the
atomic value in the low density limit, which is given by the
difference between the ionization energy and the electron
affinity of the hydrogen atom �Table I�. As the density in-
creases, the gap diminishes, and for some value of the den-
sity, it completely vanishes. By extrapolating our high den-
sity results, we find that the gap disappears at rs=2.24aB for
GW /LDA+U and at rs=2.21aB for GW /GGA+U. In Table
I, we compare the critical density for the metal-insulator
transition to results from previous studies, and we see that
our calculations are in good agreement with variational
quantum Monte Carlo calculations.22 In the low density
limit, we find that the GW /GGA+U gaps are systematically
larger than the GW /LDA+U values, which is expected since
in this density regime the wave functions are very localized
and thus the gradient corrections are more significant. In the
atomic limit, GW /LDA+U slightly underestimates and
GW /GGA+U slightly overestimates the gap compared to
experiment.

The dependence of the dielectric constant on the U pa-
rameter for rs=2.8aB is plotted in Fig. 6�a�. It is clear that the
dielectric properties do depend on the value of U. Larger
values of U increase the localization of the wave function
and decrease the screening, thus increase the value of the

electronic gap. In Fig. 6�b�, the same data are shown, ex-
pressed in terms of the electronic gap averaged over the Bril-
louin zone. As seen in the figure, the data fall very close to
the approximate expression �0=1+ �

�p

Egap
�2.

IV. CONCLUSION

We use the GW approximation to include self-energy cor-
rections in the LDA+U /GGA+U Kohn–Sham band struc-
ture of bcc solid hydrogen. We find that the value of the
quasiparticle gap is very stable over a wide range of realistic
values of U, extending from 5 eV �commonly used for tran-
sition metal oxides26� to 12.9 eV �atomic hydrogen27� with a
variation of Eg of only �5%. Therefore, the method is very
robust against the precise value of U. Moreover, the method
predicts a metal-insulator transition at a density in agreement
with variational quantum Monte Carlo results and gives an
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FIG. 4. The quasiparticle band gap versus the electron density
parameter rs.
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FIG. 5. The antiferromagnetic moment per site versus the elec-
tron density parameter rs.

TABLE I. Wigner–Seitz radius rs at the gap closure and the
quasiparticle gap in the atomic limit computed with different
methods.

Method
rs at gap closure

�a.u.�
Eg in atomic limit

�eV�

GW /LDA+U 2.24 12.3

GW /GGA+U 2.21 13.3

VQMCa 2.20–2.30

SIC-LSDAb 2.45 10.9

GW /LSDAc 2.65 10.8

GW /GGAc 2.42 12.6

Expt.d 12.8

aReference 22.
bReference 23.
cReference 24.
dReference 25.
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FIG. 6. �a� The dependence of the dielectric constant �0

=1 /�G=0,G�=0
−1 �q=0,�=0� on the U parameter for rs=2.8aB. �b� Plot

of the expression ��0−1� /�p
2 versus the inverse of the average gap

squared. The dashed line is the expression y=x.
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accurate value for the gap at the atomic limit, as determined
by experiment. In conclusion, we expect that starting from
LDA+U /GGA+U using a reasonable value of U, one can
apply GW corrections to systems with strongly correlated
electrons to obtain significantly improved quasiparticle band
structures.
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