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We present a numerical study of a quantum phase transition from a spin-polarized to a topologically ordered
phase in a system of spin-1 /2 particles on a torus. We demonstrate that this non-symmetry-breaking topologi-
cal quantum phase transition �TOQPT� is of second order. The transition is analyzed via the ground state
energy and fidelity, block entanglement, Wilson loops, and the recently proposed topological entropy. Only the
topological entropy distinguishes the TOQPT from a standard QPT, and remarkably, does so already for small
system sizes. Thus the topological entropy serves as a proper order parameter. We demonstrate that our
conclusions are robust under the addition of random perturbations, not only in the topological phase, but also
in the spin-polarized phase and even at the critical point.
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I. INTRODUCTION

A quantum phase transition �QPT� occurs when the order
parameter of a quantum system becomes discontinuous or
singular.1 This is associated with a drastic change of the
ground state wave function. Unlike classical phase transi-
tions, QPTs occur at T=0 and thus are not driven by thermal
fluctuations. Instead, quantum fluctuations are capable of
changing the internal order of a system and cause the transi-
tion. When a quantum Hamiltonian H���, which depends
smoothly on external parameters �, approaches a quantum
critical point �c from a gapped phase, the gap � above the
ground state closes, and the critical system has gapless exci-
tations. This corresponds to a continuous, second order QPT.

Here, we consider a QPT from a spin-polarized to a topo-
logically ordered phase: a topological quantum phase transi-
tion �TOQPT�. The internal order that characterizes topologi-
cally ordered phases cannot be explained by the standard
Ginzburg-Landau theory of symmetry breaking and local or-
der parameters. Instead, it requires the notion of topological
order �TO�.2 TO manifests itself in a ground state degen-
eracy, which depends on the topology of the physical system,
and it is robust against arbitrary local perturbations.3 This
robustness is at the root of topological quantum computation,
i.e., the ground state degeneracy can be used as a robust
memory, and the topological interactions among the quasi-
particles can be used to construct robust logic gates.4,5 On
the other hand, to what extent a TOQPT is affected by per-
turbations is a problem that has only very recently been
addressed,6,7 and is a focus of this work. Moreover, the clas-
sification of TO is still an open question. Ground state de-
generacy, quasiparticle statistics, and edge states, all measure
and detect TO but do not suffice to give a full description.
Tools from quantum information theory, specifically
entanglement8,9 and the ground state fidelity,10 have recently
been widely exploited to characterize QPTs. To date, all the

QPTs studied with these tools have been of the usual
symmetry-breaking type. Here we apply them to the transi-
tion from a spin-polarized phase to a TO phase, and find that
they are universal in the sense that they detect this transition.
However, these tools do not suffice to distinguish a
symmetry-breaking QPT from a TOQPT. Recently, the new
concept of “topological entropy” Stop was introduced.11 The
topological entropy vanishes in the thermodynamic limit for
a normal state, whereas Stop�0 for a TO state. Therefore,
Stop can serve as an order parameter. Moreover, TO is not
only a property of infinite systems, an important question
that was left open in Ref. 11 is the behavior of Stop for finite
systems. Here we shed light on this question by presenting
finite-system calculations of Stop. We report that Stop changes
abruptly at the critical point of a phase transition between
phases with and without TO, even for very small systems. It
is thus an excellent discriminator between the absence and
presence of TO, and moreover, Stop is capable of detecting a
TOQPT.

Specifically, we present an exact time-dependent numeri-
cal study of a TOQPT, introduced in Ref. 6, from a spin-
polarized phase to a TO phase, for both the ideal model and
the model in the presence of an external perturbation. Our
results are the following: �i� standard QPT detectors �deriva-
tive of the ground state energy,1 entanglement of a subsystem
with the remainder of the lattice,8,9 ground state fidelity10�,
are all singular at the critical point of the TOQPT, thus con-
firming that this is indeed a QPT. Ground state fidelity and
block entanglement are thus capable of dealing also with
non-symmetry-breaking QPTs. �ii� Stop detects the TOQPT in
a very sharp manner already for small system sizes. It also
detects TO better than other nonlocal order parameters, in
particular, the expectation value of Wilson loops. It is there-
fore appropriate for the detection and characterization of
TOQPTs and for studying TO. These results complement and
strengthen the conclusions of Ref. 11. �iii� Adiabatic evolu-
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tion can initialize topological quantum memory faithfully:
even in the presence of perturbations the coupling to other
topological sectors and excited states is negligible. �iv� This
robustness extends to the entire topological phase, and even
to the critical point itself. Perturbations do not affect the
nature of the TOQPT either.

II. PRELIMINARIES

Consider a square lattice L with periodic boundary condi-
tions �torus� and with n spin-1 /2 degrees of freedom occu-
pying its vertices. The Hilbert space is given by H
=span��0� , �1���n, where �0� and �1� are the � eigenvectors
of the Pauli �z matrix. As shown in Fig. 1, the n plaquettes
can be partitioned into two sublattices, denoted by different
colors. Following Kitaev,4 we associate with every white
plaquette p an operator Bp�� j��p� j

x that flips all spins along
the boundary of p. A “closed string operator” is a product of
plaquette operators Bp that flips all spins around a loop �or

around a loop net�. The “group of closed strings” X̄ is the
group of products of plaquettes Bp. Similarly, with every
pink plaquette s, we associate an operator As�� j�s� j

z which
counts if there is an even or odd number of flipped spins
around the plaquette s. Kitaev’s toric code Hamiltonian4 is
then given by HU,g=−U	sAs−g	pBp�HU+Hg, which real-
izes a Z2 lattice gauge theory in the limit U→�. The ground
state is an equal superposition of all closed strings �loops�
acting on the spin-polarized state �vac���0�1 � . . . � �0�n—it
is in a string-condensed phase. The ground state manifold is

given by L=span{�X̄�−1/2�t1
x�i�t2

x� j	x�X̄x �vac� ; i , j� �0,1�},
which is fourfold degenerate.12 The t1,2

x s flip all the spins
along an incontractible loop around the torus �see Fig. 1�,
taking a vector in L to an orthogonal one in the same mani-
fold because they commute with HU,g. On a lattice on a
Riemann surface of genus g, there are 2g incontractible
loops �tj

x� j=1
2g , and therefore L is 22g-fold degenerate4,14 �for a

torus g=1�.
Model and the QPT. Now consider the following time-

dependent Hamiltonian, introduced in Ref. 6 as a model for a
TOQPT:

H0��� = HU + �Hg + �1 − ��H�, �1�

where H��−�	r=1
n �r

z, �= t /T� 
0,1�, and T is the total time.
The nondegenerate ground state of H�0�=HU+H� is the spin-
polarized state �vac�, which is the vacuum of the strings. The
term �1−��H� acts as a tension for the strings, whereas �Hg
causes the strings to fluctuate. As � increases, the string fluc-
tuations increase while the loop tension decreases. For a
critical value of ���g / �1−���, and in the thermodynamic
limit, a continuous QPT occurs to a TO phase of string con-
densation. This QPT is not symmetry breaking, i.e., is a
TOQPT. As argued in Ref. 6, provided T	1 /�min �the mini-
mum gap, as a function of �, between the ground state and
the first excited state� evolution according to H��� is an adia-
batic preparation mechanism of a TO state: one of the 22g

degenerate ground states of Kitaev’s toric code model.4 Ref-
erence 6 showed that �min�1 /
n. H��� can be mapped onto
an Ising model in a transverse field, which is known to have
a second order QPT6 �see also Ref. 7�. However, in this work
we do not resort to such a mapping, because it is nonlocal
and does not preserve entanglement measures. Instead, we
numerically study H��� for �� 
0,1� in ��=0.01 increments
on lattices Ln with n= �8,18,32� spins, and set U=100, �
=g=1. The computational methods used here are �i� the
Housholder algorithm15 for the full diagonalization �all
eigenstates� of L8, and �ii� a modified Lanczos method16 to
obtain the low-energy sectors of L18 and L32. We observe
that for all �� 
0,1� the ground state comprises only closed
strings. Since this is the case for every finite system size, and
in order to reduce computation cost, we diagonalize L32 only
in the relevant symmetry subspaces, defined by the constraint
As �
��� j�s� j

z �
�= �
�, ∀ s.

III. PERTURBED MODEL

To test the robustness of the TOQPT, we also studied the
perturbed model given by

H��� = H0��� + V � H0��� + 	
j=1

n


hx�j�� j
x + hz�j�� j

z� . �2�

The perturbation V is random with hz�j� and hx�j� uniformly
distributed in 
−0.2,0.2� and 
−P , P�, respectively, with the
magnitude P variable in our calculations below. We carried
out calculations for L8 �time-dependent� and L18 �ground
state only�. These were averaged over random realizations of
V, and included the full Hilbert space as V disrupts the sym-
metry As �
�= �
�. The z component of the perturbation is
expected to have a small effect as it only slightly modifies
the term H� for ���c, while for ���c TO dominates and
tension effects are suppressed. Our calculations confirmed
this, and hence Figs. 2–7 show the results for hz�j��0.

IV. ADIABATIC EVOLUTION

We numerically simulated the time evolution from the
fully polarized state at �=0 to the string-condensed phase at
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FIG. 1. �Color online� A square lattice with 32 spins. The spin
degrees of freedom are placed on the vertices. The red dashed lines
t1
x , t2

x are the incontractible loops around the torus. The product B7

B8
B11 denotes the loop operator drawn in red. All the spins on
the vertices crossed by a loop are flipped. The region A�B�C is a
ring containing eight spins, used in computing Stop. For the lattice
of 32 spins, the ring has diameter R=2 and width r=1.
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�=1. The possibility of preparation of topological order via
such evolution has been studied theoretically in Ref. 6. A
crucial point is to show that the adiabatic time depends on
the minimum gap that marks the phase transition �and that is
polynomially small in the number of spins�, and not on the
exponentially small splitting of the ground state in the topo-
logical phase. To this end, one must show that transitions to
other topological sectors are forbidden and protected by
topology.6 The initial wave function is the exactly known
ground state of H��=0�. This state is then used as the seed to
compute the ground state of H����. After iteration, this state

is in turn used as the seed for H�2���, etc. We can estimate
to what extent the evolution is adiabatic by numerically solv-
ing, for L18, the time-dependent Schrödinger equation
H
���= i
̇��� for different values of the total evolution time
T. This is shown in Fig. 2�a�, where we plot the fidelity
between the time-evolved wave function 
��� and the instan-
taneous ground state: Fad= ��
��� �
0�����. Moreover, we
compute Fad also for the perturbed model, but the largest
lattice for which we can do this is L8. Figure 2�b� shows
clearly that for P=1 the perturbation does not change the
time-evolved state. Significant effects start at P=2 �not
shown�. We also find that the overlap between the evolved
wave function 
��� and the other sectors �t1

x�i�t2
x� j �
0���� is

of order �10−3 for every �i , j�� �0,0� and value of T tested.
This is numerical evidence for the argument that time evolu-
tion will always keep the instantaneous eigenstate within a
topological sector, even in the presence of perturbations.6

Thus the relevant gap for adiabatic evolution is that to the
other closed string excited states, which implies that the evo-
lution into the TO sector can be used to prepare a topological
quantum memory.6 Henceforth we work only in the sector
�i=0, j=0�, into which the system is initialized as the unique
ground state of H��=0�.
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FIG. 2. �Color online� Fidelity between the time-dependent so-
lution of the Schrödinger equation and the adiabatic state, for dif-
ferent values of the total evolution time: T=20,40,60. �a� The un-
perturbed model for L18. The evolution is adiabatic for T=60. Note
that the drop in adiabaticity is a precursor of the QPT. �b� L8:
fidelity in both the ideal and perturbed �P=1� cases. The perturbed
model is indistinguishable from the ideal one.
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FIG. 3. �Color online� QPT detectors for L8, L18, L32, for the
unperturbed and perturbed model. All graphs show strong resilience
of the model and its QPT against perturbations: �a� Second deriva-
tive of E���, diverging for �c�0.7. The QPT is thus second order.
�b� Derivative of the von Neumann entropy, measuring the en-
tanglement of a plaquette with the rest of the lattice. Its divergence
at criticality also signals a second order QPT. The perturbation has
no effect for P=20 �triangles indistinguishable from circles� but is
visible for P=40. �c� Ground state fidelity F���: the fidelity drop at
the critical point signals a QPT, associated with a drastic change in
the properties of the ground state. �d� Overlap between the per-
turbed and the ideal ground state. The clearly visible susceptibility
to the perturbation at the critical point also signals the QPT.
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V. DETECTING THE QPT WITH STANDARD MEASURES

To check that the transition from magnetic order to TO is
indeed a QPT, we first computed the energy per particle of
the ground state for L8, L18, L32, and its second derivative.
As seen in Fig. 3�a�, the latter develops a singularity as sys-
tem size increases, signaling a second order QPT with a criti-
cal point at ��0.71, corresponding to a ratio � /g�0.41.
This is in good agreement with the analytical study,18 which
obtained �in the thermodynamic limit� � /g�0.44, even if
this model is only asymptotically equivalent to the toric code
in a magnetic field, in the small field limit. On the other
hand, Ref. 7 found � /g�0.33, using a mapping to the clas-
sical 3D Ising model. In Fig. 3�b� we show the block en-
tanglement between four spins in a small loop �B11, Fig. 1�
and the rest of the lattice, as measured by the von Neumann
entropy. In agreement with the general theory,9 the derivative
of the entanglement diverges at the critical point for a second
order QPT.

A new interesting alternative characterization of QPTs can
be given in terms of the scaling in the fidelity F�����
= ��
��� �
��−����� between two different ground states.10 At
a quantum phase transition, the fidelity should scale to zero
superextensively. Previous work10,20 has shown that the fi-
delity criterion is valid for generic symmetry-breaking sec-
ond order QPTs. Nevertheless, the fidelity criterion is not
strictly local, so one would like to know whether it detects
the QPT to a topologically ordered state. The results are
shown in Fig. 3�c�. The fidelity drop criterion indeed also
detects the QPT. Figures 3�a�–3�c� also show the result for
the perturbed model.

By looking at the behavior of the transition in the pres-
ence of perturbations, we can safely conclude that the QPT is
unaffected by the perturbation for P�10, namely, the value
of �c and the magnitude of the fidelity drop remain un-
changed. In Fig. 3�d�, we plot the overlap between the per-
turbed and unperturbed ground state. The drop in this quan-
tity also signals the QPT, showing that the system is most
sensitive to perturbations at the critical point �see also Ref.
19�. Interestingly, in contrast to the robustness of the en-
tanglement and F�����, the perturbed and unperturbed
ground states differ significantly already for P�2. The re-
sults in Fig. 3 thus allow us to infer unambiguously that there
is indeed a second order QPT in the adiabatic dynamics gen-
erated by H���. However, none of the quantities shown in
Fig. 3 is explicitly designed to detect topological features,
and hence these quantities are incapable of distinguishing
between a symmetry-breaking QPT and a TOQPT.

VI. CHARACTERIZING THE TOPOLOGICAL PHASE

The spin-polarized regime for ���c is characterized by a
finite magnetization. On the other hand, the topologically
ordered phase ���c does not admit a local order
parameter.17 The topologically ordered phase is a string-
condensed phase and an effective Z2 local gauge theory and
thus the observables must be gauge invariant quantities.
These quantities are the Wilson loops. In this theory, we
make a Wilson loop Wx�z�
�� of the x�z� type by drawing a
closed string � on the lattice, and operating with �x��z� on
all the spins encountered by the loop. In the polarized phase,
the tension is high and it is difficult to create large loops. The
expectation value of loops decays with the area enclosed by
the loop. In the topologically ordered phase, large loops are
less costly and their expectation value only decays at most
with the perimeter of the loop. The phase transition is of the
confinement or deconfinement type. We can write any �con-
tractible� Wilson loop as the product of some plaquette op-
erator: Wx�z�
��=�k�SBk. In particular, at the point �=1 when
the model is the exact toric code, the expectation value of
Wilson loops is ��Wx�z�
�� � �=1 for every loop �, indepen-
dently of its size. Of course, large loops are highly nonlocal
observables. We have computed the expectation value of
Wilson loop operators of increasing size as a function of �.
As Fig. 4 shows, the expectation values of large loops vanish
in the spin-polarized phase, and increase exponentially in the
TO phase. However, in the limit of infinite length, Wilson
loops are not observables of the pure gauge theory21 and
cannot be measured.
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Nevertheless, topological order reveals itself in the way
the ground state is entangled. If we compute the von Neu-
mann entropy for a region with perimeter L, the entangle-
ment entropy will be S=L−1 in the topological phase—see
Fig. 6. The spin-polarized phase is not entangled. We see that
there is a finite correction of −1 to the boundary law for the
entanglement, which is due to the presence of topological
order.13,14 Therefore we can consider as an alternative non-
local order parameter the topological entropy:11

Stop
�R,r� = S�A�B�C� − S�A�C� − S�A�B� + SA, �3�

where S� are the entanglement entropies associated with four
cuts �= �A�B�C , A�C ,A�B ,A�, as depicted in Fig. 1.
We computed Stop��� in the instantaneous ground state �
����
for L18 and L32 �L8 is too small� in the ideal model and for
L18 in the perturbed model—see Figs. 5–7. In the spin-
polarized phase, even for finite systems, Stop=0 and it be-
comes different from zero only in the vicinity of the critical
point, after which it rapidly reaches 1 �as predicted in the
thermodynamic limit in Ref. 11�. To test whether Stop can
discriminate between symmetry-breaking QPTs and
TOQPTs, we show in Fig. 5 the behavior of block entangle-
ment and Stop for a quantum Ising model in 2D. This model
admits a QPT between a paramagnetic and magnetically or-
dered phase, which is symmetry breaking. Block entangle-
ment detects the critical point sharply, while Stop does not
�note the different scales on the left and right vertical axes�.
The small nonzero value of Stop is a finite-size effect.

The block entropy in Fig. 6 shows that the state is already
rather entangled in the spin-polarized region, whereas Stop is
almost zero before the transition to TO occurs. Note that the
block entanglement at the critical point is bounded from
above by the final-state entanglement ��=1�, which obeys
the area law. This is an example of the fact that in 2D, critical
systems do not need to violate the area law as in 1D. The
useful feature of Stop is not only that it can be used in order
to locate the critical point �Fig. 7�, but also that it allows one
to understand the type of QPT �symmetry-breaking or TO�.
Remarkably, Figs. 5 and 7 show that Stop has these properties
already for finite and very small systems. The accuracy of
the finite-size Stop at the limit points �=0, 1 is due to the fact
that there the correlations are exactly zero ranged. This, how-

ever, is not the case for intermediate �, especially near the
QPT, so how Stop works as an order parameter, and how
sharply its derivative detects the QPT, are rather nontrivial.

In the presence of the perturbation hx�j�, which tends to
destroy the loop structure, Stop detects the TOQPT up to the
value P�25, after which a transition occurs: see Fig. 7 �in-
set�. Overall, Figs. 6 and 7 show that the robustness of TO
against perturbations is a feature of the whole topological
phase and not only of the analytically solvable model at �
=1. Finally, we note another remarkable fact: setting the x
perturbation V to zero, and moving backward in time from
�=1, we can view also the tension term H� as a perturbation.
This is due to the fact that the toric code is symmetric under
the exchange x↔z in the spin components. The flatness of
Stop in Fig. 6 �squares and circles� shows the robustness of
the topological phase against this perturbation �see also Ref.
7�.

VII. CONCLUSIONS

We have presented a comprehensive numerical study of a
TOQPT. Our results show, using a variety of previously pro-
posed QPT detectors, that this is a second order transition.
Unlike the other detectors, the topological entropy Stop is
capable of distinguishing this TOPQT from a standard one,
already for small lattices. Strikingly, the model and its
TOQPT are highly robust against random perturbations not
only deep inside the topological phase, where the gap pro-
tects the ground state from perturbations, but—even more
surprisingly—at the gapless critical point. This phenomenon
requires further investigation to be properly understood.
Moreover, Stop detects the TOQPT for perturbations of
strength up to 20% of the strongest couplings. Of course
finite-size effects can be important, but it is not possible at
present to compute Stop exactly without direct diagonaliza-
tion, and this poses limits on the maximum size of systems
that can be studied.
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