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The class of the generalized coherent-potential approximations �GCPAs� to the density functional theory
�DFT� is introduced within the multiple scattering theory formalism with the aim of dealing with ordered or
disordered metallic alloys. All GCPA theories are based on a common ansatz for the kinetic part of the
Hohenberg–Kohn functional and each theory of the class is specified by an external model concerning the
potential reconstruction. Most existing DFT implementations of CPA-based theories belong to the GCPA class.
The analysis of the formal properties of the density functional defined by GCPA theories shows that it consists
of marginally coupled local contributions. Furthermore, it is shown that the GCPA functional does not depend
on the details of the charge density and that it can be exactly rewritten as a function of the appropriate charge
multipole moments to be associated with each lattice site. A general procedure based on the integration of the
qV laws is described that allows for the explicit construction of the same function. The coarse-grained nature
of the GCPA density functional implies a great deal of computational advantages and is connected with the
O�N� scalability of GCPA algorithms. Moreover, it is shown that a convenient truncated series expansion of the
GCPA functional leads to the charge-excess functional �CEF� theory �E. Bruno et al., Phys. Rev. Lett. 91,
166401 �2003��, which here is offered in a generalized version that includes multipolar interactions. CEF and
the GCPA numerical results are compared with status of art linearized augmented plane wave �LAPW� full-
potential density functional calculations for 62 bcc- and fcc-based ordered CuZn alloys, in all the range of
concentrations. Two facts clearly emerge from these extensive tests. In the first place, the discrepancies
between GCPA and CEF results are always within the numerical accuracy of the calculations, both for the site
charges and the total energies. In the second place, the GCPA �or the CEF� is able to very carefully reproduce
the LAPW site charges and a good agreement is obtained also about the total energies.
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I. INTRODUCTION

After 40 years of studies and applications, it is now clear
that the density functional theory �DFT�1,2 constitutes a for-
midable tool for the understanding of the matter. Nowadays,
DFT-based total energy calculations3–6 and Car–Parrinello
molecular dynamics simulations7 are used in a growing num-
ber of scientific fields, ranging from physics to chemistry to
biology. The reason of such a ubiquitous fortune is that these
methods are ab initio, in the sense that the only underlying
models are the fundamental interaction laws and quantum
mechanics. However, just because of their ab initio nature,
DFT-based methods generally require large computational
resources. In spite of the availability of faster and faster com-
puters, this circumstance sets up the limitations to the appli-
cability of the same methods.

Most DFT implementations are based on the Kohn–Sham
scheme8 and require the solution for the wave functions of
the appropriate Kohn–Sham Schrödinger equation. This usu-
ally implies the orthogonalization or the inversion of large
matrices and, hence, a number of operations scaling, in prin-
ciple, as N3, where N is the number of atoms in the system.
While for semiconductors or insulators, the wave-function
localization quite naturally leads to sparse problems, the case
of metals appears to be the most challenging. For metallic
systems, in fact, the computational effort required by wave-
function-based approaches remains O�N3�. Nevertheless,
even for metals, approaches based on the direct minimization
of the Hohenberg–Kohn functional with respect to the charge

density9–11 could achieve O�N� scaling. In this case, the basic
strategy consists in partitioning the system under consider-
ation in a collection of weakly interacting fragments.12,13

Even with present day computers, the scaling properties of
DFT algorithms with respect to the size of the system remain
a crucial issue since they determine which classes of phe-
nomena can be studied by ab initio methods.

Among DFT implementations, the oldest methods using
such a divide and conquer strategy for metallic systems are
perhaps the self-consistent versions of the Korringa,14 and
Kohn and Rostoker15 multiple scattering theory �MST�. The
MST method6 views the system under consideration as a
collection of fragments �usually in a one to one correspon-
dence to lattice sites�, whose scattering properties are deter-
mined by solving a Kohn–Sham Schrödinger equation. Once
the fragment �or single site� scattering matrices are deter-
mined, they are assembled together with the free electron
propagator in order to obtain the scattering matrix or, equiva-
lently, the Green’s function of the system. Both the determi-
nation of the fragment scattering matrices and the potential
reconstruction are O�N�, while, in principle, the solution for
the global scattering matrix is an O�N3� problem, as it cor-
responds to the determination of the appropriate boundary
conditions for the wave function in each fragment. However,
a number of algorithms have been devised16–18 that are able
to obtain O�N� scaling by mapping the determination of the
system’s Green function in a sparse problem. This is usually
obtained by assuming zero the electronic propagator outside
the so-called local interaction zone �LIZ� of each fragment. If
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the free electron propagator is used, about ten neighbor
shells should be included in the LIZ,16 while using screened
propagators19 allows us to have much smaller LIZs: typically
one or two neighbors shells17 are sufficient. Another remark-
able feature of the MST method is that, being based on
Green functions rather than on wave functions, it can easily
deal with disordered systems and ensemble statistical aver-
ages. For this reason, since many years, the coherent-
potential approximation �CPA� theory20 for disordered alloys
has been used in conjuction with the MST21 and the DFT.22

The present paper shall be concerned with the study of
metallic alloys in which the nuclei are assumed to occupy the
positions of an ordered lattice, while substitutional disorder
may be permitted. For these systems, in spite of the apparent
complexity of the DFT algorithmic implementations, the
analysis of large supercell calculations has allowed for the
identification of remarkably simple trends. Namely, the
charge excesses associated with each lattice site appear to be
linear functions of the electrostatic potentials at the same
site.23,24 These simple relationships, to be referred in the fol-
lowing as the qV laws, allow us to describe the “atoms” of
each chemical species in an extended metallic system in
terms of two parameters, say, the slope and the intercept of
the above linear functions,25,26 and appear to be the
appropriate generalization of Pauling’s concept of
electronegativity27 to solid state physics. We have already
suggested that the qV laws can lead to important simplifica-
tions for total energy calculations in metallic alloys.26 In the
present paper, we shall introduce the class of the generalized
CPAs �GCPAs� for dealing both with ordered and disordered
metallic alloys. From the computational point of view, GCPA
schemes present O�N� scaling. Their principal virtue, how-
ever, is that, as we shall demonstrate, the GCPA functional
exactly reduces to a function of the relevant charge multipole
moments at the various lattice sites, thus constituting a
coarse-grained approximate version of the original DFT. At
a further level of approximation, the GCPA density func-
tional leads to a Ginzburg–Landau functional, the charge-
excess functional �CEF�,26 which is equivalent to the above
linear qV laws and computationally inexpensive. The predic-
tions of the GCPA and the CEF about the qV laws and total
energies shall be compared vs full-potential linearized aug-
mented plane wave �LAPW� calculations28,29 for 62 ordered
crystal structures.30,31 Our conclusions shall be that, at least
for the systems considered, both GCPA and CEF are gener-
ally able to correctly find out the system ground state and to
fairly well reproduce the energy differences between ordered
structures in a fixed concentration ensemble.

The paper is organized as follows. In Sec. II, we shall
briefly review the MST version of the DFT. In order to have
a functional form as much localized as possible, the relevant
electrostratic contributions shall be rewritten by using an ex-
act multipole expansion. In Sec. III, we shall introduce the
class of the GCPA theories and investigate the analytical
properties of the corresponding approximate density func-
tional. Moreover, we shall obtain, as a further approximation
to the GCPA, the CEF theory, already obtained in a much
more phenomenological context,26 which is offered here in a
generalized form suitable for the inclusion of dipole or quad-
rupole interactions. In Sec. IV, we shall compare the numeri-

cal results obtained from the GCPA and CEF approximations
with those from full-potential LAPW calculations. CEF and
GCPA calculations appear numerically indistinguishable.
Both theories are able to fairly well reproduce the LAPW
total energies. In Sec. V, we shall draw our conclusions,
make our comments, and briefly discuss the possible devel-
opments of CEF and GCPA theories.

II. REVIEW OF THE DENSITY FUNCTIONAL MULTIPLE
SCATTERING THEORY

A. Multiple scattering theory formalism

In this subsection, we shall briefly overview the grand
canonical ensemble formulation of the MST-DFT.2,5 Our aim
shall be to develop a common ground for dealing both with
ordered and substitutionally disordered systems. Although fi-
nite temperature, relativistic and magnetic generalizations
could straightforwardly be carried out,5 in this paper, we fo-
cus on the nonrelativistic non-spin-polarized case at T=0.
Furthermore, when not otherwise stated, we shall consider
the local density approximation �LDA�5 to the DFT and as-
sume to have ions of charge +eZi fixed at the lattice positions
Ri.

In our discussion, the relevant density functional is the
electronic grand potential22,32

��T = 0,V,�� = Etot − �N��� = − �
−�

�

d�N��;��

+ �
−�

�

d���
−�

��
d�

dN��;���
d��

+
e2

2 �
i,j�i�j�

ZiZj

Rij
, �1�

where V is the volume of the system, � is the chemical
potential, and Etot is the sum of the total electronic energy
and the nuclei electrostatic interaction. N�� ;�� is the inte-
grated density of states, which is related to the electronic
density of states �DOS�, n�� ,��, through the following rela-
tionship:

N��,�� = �
−�

�

d�n��,�� . �2�

The notation highlights the implicit � dependence of the
DOS that arises from the effective Kohn–Sham potential. In
a frozen ion treatment, of course, the nuclear interaction term
is just a constant that is included here for future convenience.

The basic idea underlying the MST is partitioning the
system in “small” scattering volumes, vi, �ivi=V, which in
most implementations are “centered” at the nuclei positions.
Although at this stage the partitioning is quite arbitrary, as
we shall see in the following, there is a natural choice for it.
By using Lloyd’s formula,33,34 the integrated DOS, N�� ;��,
can be expressed as the excess with respect to the corre-
sponding free electron quantity, N0���,
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where the trace is taken only over the angular momentum
components. In Eq. �3�, the multiple scattering matrix M= or
the scattering-path matrix35 �==M= −1 are defined in terms of
the single-site scattering matrices71 t�i���, and the free elec-
tron propagator G� ij

0 ��� is given by

M� ij��� = t�i
−1����ij − G� ij

0 ��� . �4�

It is convenient to recall here that the single-site scattering
matrices convey the information about the phase shifts at the
surfaces delimiting each scattering volume. The continuity of
the wave functions at the same surfaces is ensured by the
construction of the scattering-path matrix �=; this is accom-
plished by the numerical inversion of the multiple scattering
matrix M= . Since the size of M= is proportional to the number
of scatterers in the problem, its inversion is the source of
O�N3� scaling in the MST version of the DFT.

Within MST, the link between the electronic density and
the scattering matrices is provided by the Green function6

Gij,LL��r,r�,�� = Zi,L�r,���ij,LL����Zj,L��r�,��

− �	�r − r��Zi,L�r,��Jj,L��r�,��

+ 	�r� − r�Ji,L�r,��Zj,L��r�,����LL��ij ,

�5�

where r
vi, r�
v j. Zi,L�r ,�� and Ji,L�r ,�� are, respectively,
regular and irregular at r=0 solutions72 of the KS
Schrödinger equation for the energy �. For real energies,
both Zi,L�r ,�� and Ji,L�r ,�� are real functions. The �site re-
solved� charge densities, the DOS, and the neat charges at
the ith site can be obtained by integrating the Green function
over the energy and/or the appropriate volumes and by tak-
ing the trace over the angular momentum indices as follows:
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1
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As is shown in Refs. 22, 32, and 36, the Hohenberg–Kohn
density functional �Eq. �1�� can be more conveniently rewrit-
ten within the MST formalism as the sum of a kinetic and a
potential energy functional as follows:

��T = 0,V,�� = T − �N + U , �8�

where the above two contributions are given by the follow-
ing expressions:
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The effective potential in Eq. �9�, vef f�r�, is specified by
the Kohn–Sham equation

vef f�r� = �
V

dr�
e2��r��
�r − r��

− �
j

e2Zj

�r − R j�
+ vXC�r,���� .

�11�

It consists of the Coulombian potential due to the electronic
and ionic charges and of the exchange-correlation potential
vXC�r , ����=�EXC��� /���r�, where EXC��� is the third term
on the right-hand side of Eq. �10�. In the LDA, vXC is as-
sumed to depend locally on the electronic density, i.e.,
vXC�r , ����=vXC���r�� and eXC�r , ����=eXC���r��.

We wish to highlight a useful consequence of the above
partitioning of the system volume. The density functional
defined by Eq. �8�, which is, of course, variational with re-
spect to the global charge density ��r�, turns out to be varia-
tional also with respect to the charge densities in each scat-
tering volume vi as follows:

��

��i�r�
= 0. �12�

Furthermore, it is possible to show32 that

�U

��i�r�
= vi

ef f�r;�� �13�

and that

��T − �N�
��i�r�

= − vi
ef f�r;�� . �14�

It is interesting to observe that the expression for the site
resolved DOS �Eq. �7�� allows us to recast the integrated
DOS and the electronic grand potential as sums of site re-
solved contributions. These contributions, however, involve
the site-diagonal part of the system Green function or scat-
tering matrix, G� ii or �� ii, and then are nontrivially coupled
together through the boundary conditions. If this coupling
was neglected, as it is done, for instance, in the case of the
Harris–Foulkes density functional,12 O�N� scaling could be
obtained. Fortunately, similar numerical performances can be
achieved with less dramatic approximations. A sensible alter-
native is to impose random boundary conditions at the frag-
ment surfaces.11 In this paper, we shall follow a different
approach and use averaged boundary conditions. As we shall
see in the following section, this allows us to have a tractable
form for the coupling in the kinetic part of the density func-
tional and permit to obtain O�N� algorithms. Although it was
proposed with a different aim, one of the oldest method ap-
plying such mean boundary conditions is the CPA, a gener-
alized version of which shall be offered in the next section.
Before, however, we need to discuss a different source of
coupling that is present in the potential energy part of the
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functional, namely, the electrostatic interactions between
fragments. In the past, this subject has received little consid-
eration and it has been ruled out by invoking the screening
properties of metals. However, nowadays, there is a general
consensus that careful estimates of these interactions are nec-
essary in order to obtain accurate total energies for metallic
alloys.

B. Multipole expansions for the effective potentials
and the potential energy

We have shown in Sec. II A that the DF-MST theory is
variational with respect to the local charge densities �i�r� of
each fragment or scattering volume. In this subsection, we
shall see how the multipole expansion used by most numeri-
cal implementations of the theory has the conceptual advan-
tage of giving expressions for the effective Kohn–Sham po-
tentials and the potential energy in which different scattering
volumes are coupled together only through simple functions
of the multipole moments.

The relevant formulas can be obtained by splitting the
volume integrals in Eqs. �10� and �11� in sums of integrals
extending over the scattering volumes vi and by expanding
the denominators in spherical harmonics. Although they re-
quire some labor, the derivations are very straightforward
and need not be reported here. The resulting expressions for
the potential energy and the effective potentials are listed
below,

U = �
i
�ui��i�r�� +

e2

2 �
L

qi,LVi,L
Mad	 �15�

and

vi
ef f�r� = e2�

vi

dr�
�i�r��
�r − r��

−
e2Zi

r
+ vXC��i�r�� + e2Vi

Mad�r� .

�16�

In Eqs. �15� and �16�, we have introduced the local mul-
tipole moments,

qi,L = �
vi

drpL�r��i�r� − Zi�L,�0,0�, �17�

and the Madelung potentials,

Vi
Mad�r� = �

L

Vi,L
MadpL�r� , �18�

where

Vi,L
Mad = �

j�i
�
L�

Mij,LL�qj,L�. �19�

The coefficients Mij,LL�=MLL��R ji� are given by

MLL��R� = 4� �
L����=�+���

CLL�
L� �2�� + 1�!!

�2�� + 1�

YL��R̂�

R��+1
, �20�

where CLL�
L� are the Gaunt numbers,37 and the functions pL�r�

in Eq. �16� are defined as

pL�r� =

4�

�2� + 1�!!
r�Y

L
*�r� . �21�

The only values that are relevant for spherical approxima-
tions are p00�r�=1 and M00,00�R�=1 /R.

In Eq. �15�, the contribution from the ith lattice site to the
potential energy is denoted as ui���i�r��� and given by

ui���i�r��� =
e2

2
�

vi

dr�
vi

dr�
�i�r��i�r��

�r − r��
− �

vi

dr
e2Zi�i�r�

r

+ �
vi

dr�i�r�eXC��i�r�� . �22�

Within the LDA, ui depends on the electronic density at the
ith fragment only, while for nonlocal approximations to the
DFT, there could be some dependence on the density at sites
j� i.

Much published work has been done within spherical ap-
proximations �SAs�, namely, the muffin-tin �MT� or the
atomic sphere approximation �ASA�. In that case, only the
first terms, �=0, of the multipole expansions are included.
Thus, Eqs. �15� and �16� must be replaced by the following
expressions:

U = �
i
�ui���i�r�� +

e2

2
qiVi

Mad� �23�

and

vi
ef f�r� = �

vi

dr�
e2�i�r��
�r − r��

−
e2Zi

r
+ vXC��i�r�� + e2Vi

Mad.

�24�

Thus, for SAs, the only relevant multipole moments are
the local charge excesses,

qi � qi,00 = �
vi

dr�i�r� − Zi, �25�

and the Madelung potentials are constant within each scat-
tering volume to the values

Vi
Mad � Vi,00

Mad = �
j�i

qj

Rij
. �26�

Remarkably, in Eqs. �15� and �16� or in their SA counter-
parts �Eqs. �23� and �24��, the charge densities at different
sites, �i�r�, are coupled only with the Madelung potentials at
the same sites, Vi

Mad�r�. Of course, the last quantities contain
information about the charge densities at all crystal sites.

We wish to highlight that the multipole expansion does
not converge for arbitrary partitions of the system. Actually,
convergence requires that for any pair of scattering centers,
Ri and R j, and for any point r belonging to the scattering
volume vi, the triangular inequality illustrated in Fig. 1 must
be satisfied. It is easy to realize that partitioning of the sys-
tem in Voronoi polyhedra accordingly with the Wigner–Seitz
construction guarantees the above condition to be fulfilled
everywhere except but for the zero measure set of points
constituted by the surfaces of the polyhedra, thus ensuring
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the convergence of the theory. The Wigner–Seitz construc-
tion therefore constitutes a natural choice for the partitioning.

III. GENERALIZED COHERENT-POTENTIAL
APPROXIMATIONS AND CHARGE-EXCESS

FUNCTIONAL THEORY

A. Generalized coherent-potential approximations
for the scattering matrices

In this section, we shall discuss a whole class of approxi-
mations for systems with atoms lying on a regular lattice,
where, however, substitutional disorder is allowed for. Me-
tallic alloys, both ordered intermetallic compounds and ran-
dom alloys, constitute the most relevant example of such
systems. Other examples are crystals with empty, or “va-
cancy,” sites. Although, in general, these systems do not have
translational invariance, nevertheless, the underlying “geo-
metrical lattice” does. Forty years ago, this consideration led
Soven to formulate the CPA.20 Since then, the CPA had an
appreciable fortune. Its crucial virtue was that by introducing
a “mean field” fashion effective crystal, it allows us to use
many techniques designed for ordered systems that were al-
ready well developed at the time at which the theory was
proposed.

For many years, the DFT implementations of the CPA22,38

have been based on the assumption �in the following referred
to as the isomorphous approximation or I� that sites occupied
by atoms of the same chemical species are characterized by
the same effective Kohn–Sham potentials. Although the
DFT-I-CPA has been proved able to carefully determine the
electronic structure and the spectral properties of many alloy
systems,25,39,40 nevertheless, it leads to an incorrect descrip-
tion of the electrostatics and of the total energies in metallic
alloys.41 Due to its mean field nature, in fact, the isomor-
phous approximation neglects the fluctuations of the charge
transfers and the energetic electrostatic contributions associ-
ated with them. This failure has stimulated many authors that
envisaged CPA generalizations aimed to include the effects
of different chemical environments.42–46

In this paper, we define a class of approximations for
DFT-based electronic theories in which most of the above
CPA generalizations can be included. We shall refer to the
approximations belonging to such a class as GCPA. A theory
belonging to the GCPA class shall be identified by �a� a
theory specific external model, i.e., a rule for determining the
effective Kohn–Sham “site” potentials and the statistical

weights wi to be assigned to each site, and �b� an approxi-
mate form for the kinetic part of the density functional speci-
fied by Eqs. �27�–�30� below. The last feature is common to
all the theories belonging to the GCPA class.

Before discussing the ansatz for the kinetic functional, we
wish to illustrate what a GCPA “external model” can be on
the basis of a few examples. The first example of a GCPA
theory is, of course, the DFT implementation of the I-CPA in
Refs. 22 and 32. Its external model is the isomorphous as-
sumption �identical effective potentials for atoms of the same
atomic species and weights proportional to the respective
atomic concentrations�. Another example is the polymor-
phous CPA �PCPA� of Ujfalussy et al.43,47,48 The external
model is constructed by using an auxiliary supercell contain-
ing N atoms, usually hundreds or thousands, each to be
weighted with the same weight. The effective site potentials
are reconstructed on the same supercell via Eq. �11�; thus,
atoms of the same chemical species are allowed to have dif-
ferent potentials depending on their environments. This spe-
cific choice for the external model appears to be the reason
why the PCPA theory substantially improves the alloy elec-
trostatics while maintaining all the advantages of the stan-
dard I-CPA about the spectral properties.49 Other existing
CPA-based approaches, e.g., the nonlocal CPA50,51 or the
SIM-CPA,44,45 can also be considered as particular cases of
GCPAs.

We shall now introduce the kinetic ansatz that is common
to all GCPA theories. For this purpose, we prefer not to start
from the definition of the functional. Rather, we shall follow
a path closer to physical intuition and to the spirit of Soven’s
original CPA formulation.20 At the similarity of I-CPA calcu-
lations, the GCPA defines an effective periodic crystal whose
sites are occupied by effective “coherent” scatterers charac-
terized by the single-site scattering matrix t�c���; the corre-
sponding Green function shall be G� c�t�c�. Then, if we con-
sider the Green function of a single substitutional impurity
with a single-site scattering matrix t�i embedded in the above
effective crystal, G� ii�t�i , t�

c�, the GCPA consists in requiring
that

�
i

wi

N
G� ii�t�i,t�

c� = G� c�t�c� . �27�

In other words, the weighted average of the impurity Green
functions must be equal to the coherent Green function
G� c�t�c�. In Eq. �27�, the energy dependences have been
dropped for the sake of simplicity and N stands for the num-
ber of different scatterers in the model.

Equation �27� is illustrated in Fig. 2. In terms of the co-
herent scattering-path matrix of the effective lattice ��c and of
the CPA projectors D� i, it can be rearranged as follows:

�
i

wi

N
D� i = 1� , �28�

D� i = �1� + ��t�i�−1 − �t�c�−1���c−1. �29�

A GCPA theory is then an approximation for the �= matrix,
whose diagonal elements are given by

r

R
21
=R

2
-R

1

R
21
-r

R
1

R
2

FIG. 1. Triangular inequalities that must be satisfied in order to
have a convergent multipole expansion: r� �r− �R2−R1��,
r� �R2−R1�. The partition of the system volume in Voronoi poly-
hedra marked by the lines guarantees that the inequalities hold.
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�� ii = D� i��
c, �30�

while the diagonal matrix elements of the Green function are
given by Eq. �5� with i= j.

Within the approximation defined by Eqs. �27�–�30�
above, the MST reviewed in the previous section allows us
to calculate the charge densities and the integrated DOS,
N�� ,��, and, through Eq. �9�, the kinetic part of the
Hohenberg–Kohn functional. Here, we need not to trace all
the intermediate steps that can be reproduced following the
scheme of Ref. 32. The GCPA approximate version of the
Lloyd formula �Eq. �4�� is given by

N��;��
N

=
N0���

N
+

1

�
Im �

i

wi Tr log ��c���

+
1

�
Im �

i

wi Tr log D� i��� . �31�

It has the very remarkable property that the integrated DOS
N�� ;�� and, hence, the kinetic functional are variational32

with respect to both t�c and ��c.
In Sec. II A, we have mentioned that in the exact MST,

the contributions to the integrated DOS associated with each
lattice site and proportional to �log ���ii are coupled together
because each element of the �= matrix depends on the scatter-
ing properties of all the lattice sites. Within the GCPA, the
only source of coupling is ��c. Each local contribution de-
pends on ��c and on the local potential. However, within the
GCPA, the Lloyd formula does not depend on ��c nor on the
local potentials. As a consequence, the integrated DOS re-
sults in a sum of local contributions, coupled together only
through ��c,

N��;�� = �
i

wiNi��;�� . �32�

We shall call this very controlled and tractable kind of cou-
pling as the marginal coupling.

In view of further developments, it is convenient to isolate
in Eq. �32� two distinct terms. The first arises from the first
two addends in Eq. �31�; it is identical for all sites and re-
lated to the effective background defined by the GCPA me-
dium. The second depends on the local CPA projectors and,

through them, on the local potentials. In formula,

Ni��;�� = Ni
back��;�� +

1

�
Im Tr log D� i��� . �33�

Implementing the GCPA within the DFT gives for the
kinetic functional of Eq. �9� the following marginally
coupled form:

T − �N = Tback��� + �
i

wiTi���i�,�� , �34�

where

Tback��� = − �
−�

�

d�Nback��;�� �35�

and

Ti���i�,�� =
1

�
Im Tr�

−�

�

d� log D� i���

− �
vi

dr�i�r;��vi
ef f�r;�� . �36�

As mentioned in Sec. II, in MST-based DFT calculations,
the only source for O�N3� scaling is the inversion of the
multiple scattering matrix �Eq. �4�� required to obtain the
scattering-path matrix �= . This step is bypassed in a GCPA
theory by approximating the relevant matrix elements �� ii via
Eq. �28� in terms of the local scattering properties and the
coherent scattering matrix ��c, the last of which is, in turn,
obtained by an averaging process. For this reason, GCPA
theories are O�N�, allowing for very substantial savings of
computing time. Of course, the price for these savings is paid
by the approximation implied by Eq. �30�. A diagrammatic
analysis of these errors can be found in Ref. 6.

It is necessary to make a couple of remarks about the
physical meaning of the GCPA in the present context and to
highlight the differences with respect to the traditional way
in which CPA-based theories have been introduced in the
past. In the first place, the GCPA has been introduced here as
an approximation for the Hohenberg–Kohn density func-
tional. As an approximation, it may well be used to describe
an ordered alloy. Its range of applicability is by no means
confined to the realm of random alloys. In the second place,
the introduction of the weights wi that are assigned to each
scatterer makes GCPA theories suitable for dealing with so-
phisticated pictures of the order �or the disorder� in metallic
alloys. This, of course, requires what we have called an “ex-
ternal model.” In a foregoing paper, we shall discuss a �to
some extent� self-consistent way to define an external model
that is able to provide a picture of ordering phenomena in
metallic alloys as a function of the temperature.

B. Density functional theory–multiple scattering
theory–generalized coherent potential approximation

functional: The marginal coupling property

In the present subsection, we shall analyze certain formal
properties of the GCPA approximations introduced in the

=Bc+
tC tC tC

tC tA tC

tC tC tC

tC tC tC

tC tB tC

tC tC tC

tC tC tC

tC tC tC

tC tC tC
Ac

tC tC tC

tC ti tC

tC tC tC

tC tC tC

tC tC tC

tC tC tC
∑
i

iwN
1 =

FIG. 2. A pictorial illustration of the isomorphous CPA for a
binary, AcA

BcB
, alloy �top� and of the GCPA �bottom�. The rectan-

gular frames have the meaning “the Green function of what is
inside.”
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previous subsection. All the above discussions can be sum-
marized in the following GCPA density functional:

�GCPA = Tback��� + �
i

wi�i
GCPA���i�,�� +

e2

2 �
L

qi,LVi,L
Mad� ,

�37�

which results from the application of the GCPA to the exact
DFT-MST density functional.

In Eq. �37�, the qi,L are defined by Eq. �17�, and the local
part of the GCPA functional by

i
GCPA���i�,�� = Ti���i�,�� + ui���i�,�� , �38�

where the terms Ti���i� ,�� and ui���i� ,�� are given by Eqs.
�36� and �22� above. We note that the local GCPA functional
i

GCPA also depends on the atomic number of the atom at Ri,
Zi, and on the volume and the shape of the ith Voronoi poly-
hedron through the local potential energy term, ui. In the
following, we shall make the simplifying assumption of hav-
ing identical Voronoi polyhedra for all the sites considered
that is equivalent to neglect local lattice deformations.

In Eq. �37� the coupling potentials, Vi,L
Mad, are provided by

the specific external model. In the following, we shall as-
sume

Vi,L
Mad = �

j�i
�
L�

�L�L�wjMij,LL�,qj,L�. �39�

Appropriate choices of the coefficients �L and of the weights
wi give then the I-CPA or the PCPA. Furthermore, Eq. �39�
can also be used for spherical or for full-potential charge
reconstructions.

As mentioned in Sec. II A �Eq. �12��, the density func-
tional is variational not only with respect to the global charge
density ��r� and the chemical potential � but also with re-
spect to the charge densities in each scattering volume, �i�r�.
Moreover, as discussed in Sec. III A and in Ref. 32, the
GCPA density functional is variational with respect to the
effective medium scattering matrix ��c. Furthermore, in a
GCPA theory, the background kinetic term Tback��� in Eq.
�37� depends on the electronic density only through ��c and �.
Thus, the functional derivation of Eq. �37� with respect to the
local densities �i�r� gives the following set of coupled equa-
tions:

�i
GCPA

��i�r�
+ Vi

Mad�r� = 0, �40�

where we have used Eqs. �17�–�19� and �21�.
Within a GCPA theory, solving the set of the Euler–

Lagrange equations �Eq. �40��, one for each scattering center
together with the equations that determine the chemical po-
tential and the coherent scattering matrix ��c, is completely
equivalent to the minimization of the density functional. As
it is apparent, these Euler–Lagrange equations are coupled to
each other only through the Madelung potentials, ��c and �.
Moreover, the functionals i

GCPA��i�r�� are identical for sites
occupied by the same chemical species.

In order to understand the consequences of the above re-
sult, let us consider, for instance, an alloy sample constituted

by a large supercell. One may wish to calculate, in the given
sample, the properties of different atoms, in the first place the
charge densities �i�r�. Inside the sample, ��c, �, and the cell
geometry are fixed; thus, the set of the �i�r� is completely
determined by the values of the Madelung potentials Vi

Mad�r�
and by the atomic number Zi of the ion at the position Ri.
More generally, inside the given sample, any site-diagonal
property �i shall be completely determined by Zi and by the
set of Madelung potentials. We can establish this result as
follows:

�i = ��Zi,Vi
Mad�r�� . �41�

Examples of such site-diagonal properties are the local con-
tributions to the grand potential, the multipole moments, and
the local DOS. The functional forms, one for each alloying
species, given by Eq. �41� sometimes can be easily numeri-
cally fitted and then constitute a useful tool for the evaluation
of the site quantities in the given sample. They are the source
of the simple laws as, e.g., the qV laws, empirically found
from extended metallic system calculations. This notwith-
standing, GCPA theories are able to predict complex trends
for certain site-diagonal properties as, e.g., the site resolved
DOSs.49,52

Since Eq. �41� allows us to evaluate, among other prop-
erties, also the charge density of each fragment and, hence,
the full charge density ��r�, then, in virtue of the Hohenberg
and Kohn theorem, it follows that any ground state observ-
able in the sample given is a functional of the set of the
Madelung potentials at all the crystal sites, Vi

Mad�r�, and of
the set of the atomic numbers only. Since the last is, again,
specified by the sample, it follows the theorem any ground
state observable in the sample given is a functional of the
Madelung potentials only or, equivalently, a function of the
set of coefficients, �VMad, that completely determine the
Madelung potentials.73

Since, in virtue of Eq. �39�, the coefficients in the set
�VMad are linear functions of the set of the multipole mo-
ments, �q, then the above theorem implies the corollary that
any ground state property of the sample is a function of the
same moments. Within the GCPA and for the specific sample
given, it is then possible to reformulate the DFT in terms of
the charge multipole moments. By neglecting a constant term
with the physical meaning of the grand potential contribution
due to the mean GCPA “atom,” Eq. �37� can be written as

�̃GCPA��q,�� = �
i

wĩi
GCPA��qi,Zi�

+
e2

2 �
i,j,L,L�

wiwj�L�L�Mij,LL�qi,Lqj,L�

− ��
i

wiqi,00. �42�

In deriving Eq. �42�, we have used Eq. �39� and the fact
that since i

GCPA is completely determined by the local den-
sity �i�r�, it cannot depend on the multipole moments at
other sites. Moreover, we have isolated the contribution pro-
portional to the chemical potential �. Having introduced an
explicit dependence on �, the last term in Eq. �42� can be
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thought as a way of enforcing the global electroneutrality.
This is unnecessary if we consider a specified sample in
which, of course, � has a precise fixed value. However, since
the term proportional to � has precisely the form it must
have, its introduction is equivalent to extend the validity of
Eq. �42� to all samples specified by the same mean atomic
concentrations and by the same value for ��c.

To summarize, we have established the following exact
results. Within the GCPA class of approximations, the Ho-
henberg and Kohn density functional can be recast in the
form of Eq. �42�. It consists of �a� local terms, ̃i

GCPA for the
ith scattering site, consisting in functions of the charge mul-
tipole moments that are identical for sites with the same
chemical occupation; �b� a bilinear form coupling the charge
multipole moments at different sites, with coupling coeffi-
cients Mij,LL� defined by the crystal geometry; �c� and a term
proportional to the chemical potential that ensures the global
electroneutrality. The functional defined by Eq. �42� is iden-
tical for all the alloy samples characterized by the same mean
atomic concentrations and the same value for the coherent
scattering-path matrix ��c. Evidently, it constitutes a coarse-
grained version of the DFT because the mathematical defini-
tion of the multipole moments �Eq. �17�� does not com-
pletely determine the charge density. The last is determined
by the multipole moments only within the GCPA theory. This
reduction of the relevant information has been obtained at
the price �a� of the GCPA approximation and �b� of having
restricted the consideration to a specific sample. Neverthe-
less, no restriction has been made about the size of the
sample that, therefore, can be chosen in such a way to guar-
antee an appropriate description for a fixed concentration en-
semble, as we shall discuss at the end of the present section.

Having recast the GCPA functional as a sum of functions
of the charge multipole moments has obvious mathematical
advantages. However, we have not yet completely deter-
mined the functional form of the local energetic contribu-
tions ̃i

GCPA��qi ,Zi�. In order to do this, we need to make the
hypothesis that in the sample considered, the distribution of
the Madelung potential coefficients �VMad is continuous in
the range of the values that the same potentials assume in the
sample. This is consistent with the observations in Refs.
23,24,26. Let us consider two scattering sites, say, i and j, oc-
cupied by the same chemical species �, at which the
Madelung coefficients take very close numerical values,
Vi,L

Mad=VL
Mad and Vj

Mad�r�=VMad�r�+�VMad�r�. The local en-
ergetic contributions, the charge densities, and the local mul-
tipole moments shall be ̃i

GCPA= ̃�
GCPA, �i�r�=��r�, and

qi,L=qL for the ith site and ̃ j
GCPA= ̃�

GCPA+�̃�
GCPA,

� j�r�=��r�+���r�, and qj,L=qL+�qL for the jth site. To the
first order in ���r�, we have

�̃�
GCPA = �

vi=vj

dr��̃�
GCPA

���r� �
�i�r�=��r�

���r�

= − �
vi=vj

drVMad�r����r� ,

where Eq. �40� has been used. The substitutions of the ex-
pansion for the Madelung potential �Eq. �18�� and of the

expressions for the charge multipole moments �Eq. �17��
then give

�̃�
GCPA = − �

L

VL
Mad�qL. �43�

Once integrated over qL, Eq. �43� gives

̃�
GCPA��q� = ̃�

GCPA��q0� − �
L
�

�q0

�q

VL,�
Mad��q��dqL� .

�44�

Equation �44� can be easily numerically evaluated from the
qV data, VL,�

Mad=VL,�
Mad��q�, obtained as an output from GCPA

calculations. Unless constant with the meaning of the local
energy contribution at �q= �q0, it determines the local ener-
gies for each chemical species �. Equations �43� and �44�
have been obtained under very broad conditions: the differ-
entiability of the kinetic functional53,54 and the monotonicity
of the qV laws. The first is the usual requirement for the
convergence of the Kohn–Sham scheme of the DFT, while
the second condition is certainly verified by all GCPA calcu-
lations reported in the literature, including those executed at
extremely high values for the Madelung potential �see Fig. 7
in the next subsection and the related discussion�.

In the remainder of the present section, we shall make a
few general comments about the validity of the framework
defined by the GCPA theory in comparison with the exact
density functional.

�i� The fact that the effective potential and the potential
energy functional can be decomposed in site contributions
coupled together only through the Madelung potentials is an
exact consequence of the LDA and it has nothing to do with
the GCPA. This kind of coupling is marginal in the sense
that, although not necessarily small, it has the simple and
tractable functional form, which arises from the bilinear
terms involving the multipole moments in Eq. �42�. Although
this is beyond the purpose of the present paper, we notice
that most nonlocal density functionals offered in the
literature3,5 are actually local with respect to the density gra-
dients; thus, most nonlocal schemes will remain marginally
coupled in the above sense.

�ii� Splitting the kinetic functional into local contributions
marginally coupled through the coherent scattering matrix ��c

is a simplification due to the GCPA. In fact, it has been
obtained by assuming averaged boundary conditions at the
surfaces of the Voronoi polyhedra through Eq. �27�. An esti-
mate of the so induced errors can be obtained by the com-
parison of PCPA vs locally self-consistent Green function
�LSGF� calculations17 executed on the same supercell. As it
is sketched in Fig. 3, both calculations evaluate the kinetic
contribution from the ith site to the functional by solving the
problem of a single impurity, in the case of the PCPA, or of
an impurity cluster, the LIZ, for the LSGF. In both cases, the
scattering matrices outside the LIZ are set to the coherent
scattering matrix t�c. PCPA calculations can then be viewed as
LSGF calculations with only one atom in the LIZ. This ar-
gument also suggest that with respect to GCPA calculations,
exact DFT results include, for each site, corrections depend-
ing on its chemical environment.
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�iii� We have already seen that the coarse-grained version
of the GCPA functional �Eq. �42�� holds for all the alloy
configurations characterized by a specified value for ��c in a
fixed concentration ensemble. This could appear as a serious
limitation since it looks unlikely that, e.g., ��c could have the
same functional energy dependence for two different sys-
tems. In general, in a GCPA theory, ��c is a ground state
property determined not only by the mean concentrations but
also by the distributions of the Madelung potentials for each
alloying species. As opposite to the isomorphous model
where these distributions are trivial, more sophisticated ex-
ternal models as, e.g., the PCPA, give complicated charge
and Madelung potential distributions. How could then the
GCPA functional be useful in such cases? As argued by
Faulkner et al.,55 the PCPA theory applied to ideal random
alloys gives well-defined values for all physical properties.
This is because in perfect random alloys, the distribution of
the chemical environments is easily obtained by statistical
considerations and it is given by the appropriate multinomial
distributions. Therefore, the PCPA random alloy constitutes a
privileged reference system whose physical properties, in-
cluding ��c, can be approximated up to an arbitrary accuracy
by letting the number of atoms in the PCPA supercell, N,
approach infinity �see Fig. 4�a��. We believe that the same ��c

obtained for a random alloy at a given concentration can be
used for building a physically clean, though approximate,

theory also for ordered alloys at the same concentration. In
the next section, we shall provide numerical evidences for
that; here, we present a more formal argument. Imagine that
an ordered array containing n atoms �Fig. 4�b�� is able to
account for the properties of same ordered alloy configura-
tion, up to a length scale l, that can be made large at will in
the n→� limit. In Fig. 4�c�, we draw a supercell, a part of
which is constituted by the supercell of Fig. 4�b�, while the
remaining N−n sites are occupied as in the random alloy
supercell of Fig. 4�a�. We can think that the supercell in Fig.
4�c� represents a fluctuation of an ordered phase in a random
alloy matrix and that it describes the physical properties of
such fluctuation up to the same length scale l as in Fig. 4�b�.
We are implicitly using the common idea of “locality” in
physics or, in a more specific context, of “nearsightedness”
of the DFT.56 However, as Eq. �28� implies, the difference
between the coherent scattering-path matrices corresponding
to Figs. 4�a� and 4�c�, ��a

c −��c
c, is proportional to the ratio n /N

and then it can be made small at will in the N→� limit, for
any value of n. We conclude that the coherent scattering-path
matrices of a random alloy, ��a

c, is able to account for the
physical properties of ordered configuration considered. The
limitation n /N�1 that comes from the above argument does
not impose any upper bound on the maximum length scale at
which chemical fluctuations can be studied and it is of no
practical importance provided that N is large enough to
ensure a good approximation ��a

c. As reported in the
literature,47,49 it seems that N of about 100 is already enough.

�iv� Although we have suggested that the coherent scat-
tering matrix from random alloy GCPA calculations can be
used for ordered alloys too, we are aware of the limitations
of such a physical picture. For instance, a GCPA theory al-
ways implies finite quasiparticle lifetimes57 and, hence, a
smearing of the peaks of the Bloch spectral function.

C. Generalized version of the charge-excess functional theory

As a matter of fact, the analysis of DFT supercell calcu-
lations for metallic alloys suggests the existence of simple
relationships between the charge excesses at the lattice sites,
qi,00, and the Madelung potentials at the same sites, Vi,00

Mad.
Namely, simple linear laws, one for each alloying species,
have been found to hold, say,

aiqi,00 + Vi,00
Mad = ki, �45�

where ai and ki have the same numerical values for atoms of
the same chemical species in the given supercell. Examples
of the linear qV laws obtained from PCPA calculations for a
binary and a quaternary alloy are reported in Figs. 5 and 6.

It is interesting to observe that similar linear qV laws can
be derived starting from the GCPA functional �Eq. �42�� for
random alloys by a second order series expansion about the
zero Madelung field multipole moments, �q0, that can be
obtained by solving the following set of equations:

�̃i
GCPA

�qi,L
= 0. �46�

This procedure leads to a Ginzburg–Landau configurational
“Hamiltonian” in which the relevant fields are constituted by

t0

tC tC tC tC tC

tC tC tC tC tC

tC tC tC tC tC

tC tC tC tC tC

tC tC tC tC t0

tC tC tC tC tC

tC tC

tC tC

tC tC tC tC tC

tC tC

t1 t2

t8t7t6

t5t4

t3

FIG. 3. The LIZs used in PCPA �left frame� and LSGF �right
frame� calculations are marked by the dark areas. For each scatter-
ing site, the kinetic functional is evaluated by using the appropriate
single-site scattering matrices ti inside the LIZ and the effective
CPA scattering matrix tc outside.

(a) (b) (c)

FIG. 4. The PCPA supercells shown in frames �a� and �b� con-
tains, respectively, N→� atoms in a random alloy configuration
and n atoms in an ordered configuration, both at the same mean
atomic concentrations. N is large enough to guarantee an appropri-
ate description of a random alloy within a GCPA theory. Similarly,
n has been chosen to permit the description of an ordered alloy up
to some length scale l. The supercell in the frame �c� is identical to
that in �a� except but for the dashed region, which contains n atoms
in the same ordered configuration as in �b�. The cell �c� is therefore
able to describe an ordering fluctuation up to the scale set by l.
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the values of the multipole moments of each lattice site. In
formula,

�̃CEF��q,�� =
1

2 �
i,L,L�

wiai,LL��qi,L − qi,L
0 ��qi,L� − qi,L�

0 �

+
1

2 �
i,j,L,L�

wiwj�L�L�Mij,LL�qi,Lqj,L�

− ��
i

qi,00, �47�

where we have omitted the term �̃CEF��q0 ,�=0� that rep-
resent the GCPA energy at zero Madelung field and chemical
potential and that is constant in a fixed concentration en-

semble. The coefficients ai,LL� are given by the second de-
rivatives of the GCPA functional

ai,LL� = � �2̃i
GCPA��qi�

�qi,L�qi,L�
�

�qi=�qi
0

. �48�

The functional of Eq. �47� constitutes a generalization of
the CEF proposed in Ref. 26 for discussing the charge trans-
fers in metallic alloys and shall then be referred to in the
following as the CEF. With respect to our previous work,
here Eq. �47� includes not only the charge excesses qi,00, but
also the charge multipole moments with ��0.

The minimization of the CEF functional �̃CEF with re-
spect to its variables, the set of the multipole moments �q,
and the chemical potential � gives

�
L�

�ai,LL��qi,L� − qi,L�
0 � + MLL�,ijqj,L�� = ��i,00 �49�

and

�
i

qi,00 = 0. �50�

By using the definition of the Madelung potentials �Eq. �39��
and setting

ki,L = �
L�

ai,LL�qi,L�
0 + ��i,00, �51�

it is easy to show that Eq. �49� for L= �0,0� coincides with
the linear laws given by Eq. �45�. Versions of Eqs. �49�–�51�
with the angular momentum summations truncated at �=0
can be found in Ref. 26.

We wish to highlight that the CEF derivation from the
GCPA functional is based on the assumption, common to all
Ginzburg–Landau theories,58,59 that the homogeneously dis-
ordered phase, in the present case the random alloy phase,
can be the starting point for a perturbative treatment of or-
dering or segregation phenomena. As discussed in the previ-
ous subsection, in the GCPA context, this amounts to conjec-
ture that the coherent scattering-path matrix ��c of a random
alloy can be used for obtaining a physical picture of concen-
tration fluctuations or, in other words, that it is able to rep-
resent such fluctuations.

We wish to close this section with a few comments. The
principal result of this paragraph, the CEF functional of Eq.
�47�, has been obtained by a series expansion of the GCPA
functional about the values that the multipole moments
would have in the absence of coupling. The series has been
terminated at the lowest order at which differences with re-
spect to isomorphous approximations are expected for. This,
not surprisingly, is enough to obtain a physical picture of the
charge transfers in metallic alloys. For a given alloy configu-
ration, the linear Euler–Lagrange equations obtained by
minimizing the CEF can be easily solved for the charge mul-
tipole moments. The procedure requires the inversion of the
matrix F�� of elements

Fij,LL� = ai,LL��ij + Mij,LL�. �52�
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FIG. 5. qV relationships for a bcc random Cu0.50Zn0.50 alloy.
The excesses of electrons, qi=qi,00, are plotted vs the Madelung
potentials Vi

Mad. The results have been obtained from �max=0 PCPA
calculations for a supercell containing 432 atoms at lattice constant
a=5.50 a.u. Circles represent Cu atoms and triangles represent Zn
atoms. Note that positive values for qi correspond to negative net
charges and vice versa.
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FIG. 6. qV relationships for an fcc random
Al0.25Cu0.25Ni0.25Zn0.25 alloy. The excesses of electrons, qi=qi,00,
are plotted vs the Madelung potentials Vi

Mad. The results have been
obtained from �max=0 PCPA calculations for a bcc supercell con-
taining 108 atoms at lattice constant a=6.88 a.u. Circles, squares,
triangles, and crosses stand for Cu, Ni, Zn, and Al atoms.
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As we have shown elsewere,26,60 for a given alloy con-
figuration, the value of the CEF functional at its minimum
has the physical meaning of the total energy of the same
configuration. The ambiguity due to the presence of the
above mentioned concentration dependent constant can be
resolved by comparing CEF and GCPA calculations for a
single configuration in a fixed concentration ensemble.

In the previous subsection, we have described a general
procedure based on the numerical integration of the qV laws
for evaluating the functional form of ̃i

GCPA��qi�. Of course,
if the random alloy ��c was able to represent concentration
fluctuations and the qV laws were linear, the GCPA and the
CEF functionals would be coincident. We do not think that
the qV laws can be truly linear. The argument is as follows.
The local excesses of electrons, qi,00, accordingly with the
physical intuition and with the results plotted in Figs. 5 and 6
are nonincreasing functions of the Madelung potential Vi,00

Mad.
If the qV laws were really linear, qi,00 would indefinitively
decrease and eventually reach unphysical values, qi,00�Zi
corresponding to negative charge densities. Actually, we ex-
pect that the linear laws cannot be any longer valid when all
valence electrons are expelled from the site. This circum-
stance would correspond to some critical value for the charge
excess, say, qi,00

crit . Before this critical value is reached, the qV
laws should exhibit a crossover to an asymptotic behavior,
say, qi,00→qi,00

crit as Vi,00
Mad→�. We have tested this conjecture

by executing CPA+LF calculations25 for single impurities
�vacancies, H or Li atoms� embedded in Al. The results are
shown in Fig. 7, where we plot Q=qi,00−qi,00

crit for the impu-
rity site as a function of the relevant Madelung fields. In all
the cases considered, a linear regime is clearly visible at low

fields. At very high fields, a crossover to a power law depen-
dence is observed, with the number of electrons tending to
the critical value from above. The crossover field is compa-
rable to the host bandwidth. We recall that in CPA+LF cal-
culations, ��c is that of the host, while the Madelung potential
is just an adjustable parameter. While this is a sensible way
for studying the response of the impurity to the perturbing
field, this does not imply that all the range of the perturba-
tions considered is physically meaningful. We do not think
that such high fields, corresponding to the tunneling regime
in the impurity site, could occur in real systems as this would
require a too large defect of electrons at the impurity nearest
neighbors. Hence, Fig. 7, while supporting the view that the
linearity of the qV laws and the CEF are just approximations,
does not support the possibility that, at least for metallic
systems, appreciable deviations from linearity or failures of
the CEF are likely to occur.

Another point we wish to address is concerned with the
value of the chemical potential � in Eq. �47�. In a recent
paper, Drchal et al.61 argued that � should be always zero
since the Fourier transform of the Madelung coefficients
with L=L�= �0,0� diverges as k→�, implying that the sum
of the charge excesses �qi,00 must vanish, automatically sat-
isfying the electroneutrality constraint. The observation of
Drchal et al. is correct for infinite systems, while for finite
supercells, even with periodic boundary condition, the same
Fourier transform always remains finite. k, in fact, can take
only the values of the reciprocal space vectors that constitute
the tiling of the supercell considered.51 The set of the al-
lowed values for k includes 0 only for infinitely large super-
cells. In most practical calculations, � is necessary, although
it usually takes small nonzero values.

IV. NUMERICAL RESULTS

In this section, we present a series of numerical tests de-
signed to study the limits of validity of the GCPA and CEF
theoretical frameworks. The central issues here shall be in
investigating the realm of validity of the linear qV laws �Eq.
�45� or �49�� and of the energetics implied by the CEF func-
tional �Eq. �47��. Furthermore, we shall try to answer two
questions: �i� to what extent the CEF is able to approximate
GCPA calculations and �ii� how do the predictions from the
CEF and the GCPA compare vs exact DFT calculations for
ordered systems. The GCPA theory chosen for these tests is
the PCPA43 that, being based on a supercell approach, allows
for easy comparison vs exact DFT calculations.

Several kinds of ab initio parameter-free calculations shall
be presented in this section. The “exact” DFT results used for
comparison shall be the LDA full-potential LAPW calcula-
tions produced by using the WIEN2 ab initio package.29,62

They are referred below as LAPW. In all the cases, about 104

k points in the full Brillouin zone have been used, the spheri-
cal harmonics expansion of the potentials in the muffin-tin
spheres has been truncated at �=6, and the parameter
RMTKMax has been set to 7. The PCPA calculations have been
performed by a conveniently modified version of our KKR-

CPA code.63 They are based on the ASA approximation for
the site potentials and, accordingly with the discussion in
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FIG. 7. qV relationships for light substitutional impurities �va-
cancies, H and Li atoms� dissolved in bcc Al from CPA+LF calcu-
lations. The quantity Q is the number of valence electrons at the
impurity site, therefore, Q=0 corresponds to zero electrons for va-
cancies and H atoms and two electrons for Li. The linear behaviors
observed for small fields �VMad�1 a.u.� are superseded by power
law trends �see the log-log plot in the inset� for very high fields.
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Sec. II B, equal atomic volumes are used for all lattice sites.
Our calculations use several thousand k points in the full
Brillouin zone and 31 energies over a complex Gaussian in-
tegration contour. For both LAPW and PCPA calculations,
the core electron treatment is fully relativistic, while a non-
relativistic approximation is used for valence states. Finally,
we present CEF calculations26,64 with the charge multipolar
expansion truncated at �=0. The concentration dependent
parameters required by the CEF have been obtained from the
linear regressions of the qV data generated from supercells
with random occupancies and the required mean atomic con-
centrations and are reported in Tables I and II. Depending on
which was the source of the parameters, the CEF calculations
shall be referred to as CEF-PCPA or CEF-LAPW. By using
the formalism of the previous section, for both PCPA and
CEF calculations, we set wi=1 for all lattice sites, �00=1,
and ��m=0 for ��0.

A. qV laws

In Sec. III, we have presented the CEF functional as an
approximation for the GCPA functional and have shown how
this is equivalent to assume the linearity of the qV laws. In
Figs. 5 and 6, we plot the qV curves from our PCPA calcu-
lations for the binary bcc Cu0.50Zn0.50 and the quaternary
Al0.25Cu0.25Ni0.25Zn0.25 fcc random alloys. It is surprising to
observe how accurately the PCPA data can be fitted by
straight lines. The correlation coefficients obtained from the
linear regression of the same data differ from unit by about
10−6. Similar very high correlations are always obtained

from the analysis of PCPA qV data, as it is evident by look-
ing at Table I. As shown in Table II, also LAPW data present
high correlations, although the corresponding linear fits are
not perfect and their correlations deviate from unit by 10−2 or
10−3. This notwithstanding, as argued in Sec. III C, we be-
lieve that the linearity of the qV relationships within the
PCPA is just an approximation. In order to check out how
accurate it is, we have studied one of the most difficult real-
istic cases, that of a high charge transfer ordered alloy,
namely, the CuZn system. This system has been studied with
many different theoretical approaches.65–70 It is also relevant,
for our present concerns, that the total energy differences
between fcc and bcc geometrical alloy arrangements are rela-
tively small. We have executed calculations for all the set of
62 bcc- and fcc-based structures reported in Refs. 30 and 31.
These structures include several ordered crystals for each of
the following Cu atomic concentrations: 0.20, 0.25, 0.33,
0.50, 0.66, 0.75, and 0.80. In order to facilitate the compari-
son, the lattice constants have been kept fixed to the values
5.5 and 6.9 a.u., respectively, for bcc- and fcc-based lattices.
The results for bcc- and fcc-based alloys are reported in
Tables III and IV, respectively.

The charges from the CEF-PCPA are, in practice, identical
to those obtained from the PCPA theory for the ordered sys-
tems. In order to represent the size of these tiny differences,
we report in Tables III and IV the mean square displacement
between the two sets of calculated charges, ���q�2�. In the
worst case, the bcc-based DO2 structure, identified in Table
IV by 86, we find ���q�2�=6�10−8. Such an excellent
agreement has been obtained for all the set of ordered struc-
tures considered, in spite of the fact that the CEF input has
been obtained from random supercells.

In a previous Letter,26 we have shown that the CEF is able
to carefully reproduce the charges from locally self-
consistent multiple scattering �LSMS� calculations. More-
over, the parameters extracted from ordered structure calcu-
lations can be used to predict the charges for random

TABLE I. CEF parameters obtained by the linear regression of
the qV data from PCPA calculations for random CucZn1−c alloys in
bcc or fcc lattices. CCu and CZn are defined as the difference
between 1 and the correlations obtained from the regressions
for the Cu and Zn site charges; r is given by the ratio
�kCu−kZn��aCuaZn�−1/2. All the quantities are expressed in a.u. CEF
calculations using the coefficients presented in this table are re-
ferred to as CEF-PCPA.

c aCu aZn kCu−kZn CCu CZn r

0.20 1.223 1.211 0.146 3�10−7 1�10−6 0.120

0.25 1.225 1.214 0.147 4�10−7 1�10−6 0.121

0.33 1.223 1.215 0.148 5�10−7 2�10−6 0.121

bcc 0.50 1.219 1.214 0.146 5�10−7 2�10−6 0.120

0.67 1.215 1.214 0.144 3�10−7 2�10−6 0.119

0.75 1.214 1.214 0.144 3�10−7 2�10−6 0.119

0.80 1.213 1.214 0.144 3�10−7 9�10−7 0.119

0.20 1.220 1.212 0.138 3�10−7 1�10−6 0.113

0.25 1.221 1.214 0.140 3�10−7 9�10−7 0.115

0.33 1.222 1.216 0.142 3�10−7 1�10−6 0.116

fcc 0.50 1.222 1.217 0.143 5�10−7 2�10−6 0.117

0.67 1.223 1.222 0.145 5�10−7 1�10−6 0.119

0.75 1.222 1.223 0.145 3�10−7 1�10−6 0.119

0.80 1.222 1.222 0.145 3�10−7 2�10−6 0.119

TABLE II. CEF parameters obtained by the linear regression of
the qV data from LAPW calculations for random CucZn1−c alloys in
bcc or fcc lattices. CCu and CZn are defined as the difference
between 1 and the correlations obtained from the regressions
for the Cu and Zn site charges; r is given by the ratio
�kCu−kZn��aCuaZn�−1/2. All the quantities are expressed in a.u. CEF
calculations using the coefficients presented in this table are re-
ferred to as CEF-LAPW.

c aCu aZn kCu−kZn CCu CZn r

0.25 2.968 2.181 0.456 3�10−2 2�10−2 0.179

0.33 2.704 2.327 0.445 4�10−3 8�10−3 0.177

bcc 0.50 2.811 2.307 0.413 9�10−3 5�10−2 0.162

0.67 3.388 3.351 0.590 3�10−3 7�10−3 0.175

0.75 2.586 2.652 0.432 3�10−2 1�10−2 0.165

0.25 2.457 1.949 0.360 5�10−3 9�10−4 0.165

fcc 0.50 2.287 2.130 0.350 9�10−3 3�10−3 0.159

0.75 2.646 2.317 0.399 4�10−3 2�10−4 0.161
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structures and vice versa. The quality of the CEF predictions
was very good too, with ���q�2� of the order of 10−6, i.e.,
about 3 orders of magnitude less than what we have found by

the comparison of CEF and PCPA. Since the LSMS calcula-
tions presented in Ref. 26 were based on the ASA, we sur-
mise that the modest lost of accuracy of CEF predictions for

TABLE III. Charge excesses and total energies per atom for bcc-based CucZn1−c alloys. The first two columns on the left give, for each
system, the mean Cu atomic concentration �c� and, when available, the supercell identifier in the database of Ref. 31 �conf�. “R” followed
by a number, e.g., R16, stands for a quasirandom supercell containing the corresponding number of atoms not included in the database. In
the third column, nunl indicates the mean number of unlike nearest neighbors of Zn sites. Columns 4–7 report the MSD of the charge
excesses, ���q�2�, obtained by the comparison of different theories: �a� PCPA vs CEF-PCPA, �b� LAPW vs CEF-PCPA, �c� LAPW vs
CEF-LAPW, and �d� LAPW vs the model of Ref. 41. Columns 8–11: total energies per atom from PCPA, CEF-PCPA, LAPW, and
CEF-LAPW calculations. The energy zero is given, for each concentration, by the PCPA prediction for the ground state.

c conf nunl

���q�2� �E �mRy�

�a� �b� �c� �d� PCPA CEF-PCPA LAPW CEF-LAPW

92 1.5 5�10−11 1�10−4 0.038 0.040 −0.015

0.20 98 2.0 2�10−9 4�10−4 0.000 0.000 0.000

69 2.0 3�10−9 4�10−5 2�10−6 0.741 0.742 0.991 0.556

72 1.3 9�10−9 4�10−4 2�10−5 1.966 1.971 3.951 2.437

75 2.0 1�10−9 1�10−5 1�10−6 0.824 0.823 1.089 0.631

0.25 78 2.7 1�10−9 4�10−4 5�10−7 0.865 0.864 0.980 0.838

81 2.7 3�10−8 2�10−4 4�10−7 0.353 0.353 0.050 0.246

83 2.7 2�10−8 3�10−4 1�10−6 0.327 0.327 0.194 0.260

86 2.7 6�10−8 4�10−4 2�10−5 0.000 0.000 0.000 0.000

R16 2.2 1�10−8 1�10−4 3�10−6 0.797 0.799 1.117 0.669

63 3.0 3�10−8 2�10−4 2�10−5 0.000 0.000 0.000 0.000

0.33 65 2.0 2�10−9 3�10−4 2�10−5 1.741 1.747 2.950 2.129

67 4.0 2�10−8 2�10−4 3�10−5 0.078 0.078 −0.519 0.068

R18 3.3 6�10−9 3�10−4 4�10−5 0.558 0.562 0.729 0.838

60 4.0 4�10−9 4�10−5 5�10−6 3�10−4 1.661 1.662 3.457 1.188

61 8.0 3�10−9 1�10−3 6�10−6 3�10−3 0.000 0.000 0.000 0.000

71 2.0 2�10−9 1�10−3 4�10−5 9�10−4 4.107 4.115 8.657 5.089

0.50 74 4.0 3�10−9 5�10−7 4�10−7 3�10−4 1.823 1.824 3.666 1.342

77 4.0 4�10−11 2�10−4 1�10−6 7�10−5 2.736 2.739 4.804 2.404

80 6.0 7�10−9 4�10−4 8�10−7 3�10−4 0.885 0.883 1.666 0.557

85 4.0 7�10−9 2�10−4 1�10−5 7�10−4 1.007 1.006 2.757 0.646

R16 4.3 3�10−9 2�10−4 3�10−6 4�10−4 1.989 1.989 3.806 1.613

62 6.0 7�10−10 2�10−4 6�10−7 0.000 0.000 0.000 0.000

0.67 64 4.0 8�10−12 3�10−4 2�10−5 1.698 1.703 2.671 2.021

66 8.0 2�10−10 1�10−4 2�10−7 0.076 0.077 −0.650 0.061

R18 6.7 3�10−9 3�10−4 1�10−6 0.545 0.549 0.508 0.870

68 6.0 2�10−11 2�10−5 1�10−6 0.726 0.732 1.364 0.566

70 4.0 3�10−9 6�10−4 3�10−5 1.927 1.935 3.395 2.505

73 6.0 2�10−10 9�10−6 2�10−6 0.806 0.812 1.390 0.642

0.75 76 8.0 1�10−9 5�10−4 4�10−6 0.850 0.852 1.022 0.873

79 8.0 3�10−9 2�10−4 1�10−6 0.345 0.349 0.464 0.251

82 8.0 4�10−9 3�10−4 2�10−6 0.322 0.323 0.462 0.269

84 8.0 3�10−8 4�10−4 4�10−6 0.000 0.000 0.000 0.000

R16 6.8 1�10−9 2�10−4 3�10−6 0.782 0.788 1.278 0.685

87 6.0 5�10−10 1�10−4 0.033 0.038 0.327

0.80 93 8.0 4�10−10 6�10−4 0.000 0.000 0.000
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LSMS with respect to PCPA calculations constitutes a mea-
sure of the importance of the scattering effects from nearest
neighbors. These effects, in fact, can be accounted for only in
a mean field fashion by the PCPA.

We have also investigated the effects of the spherical ap-
proximation for the atomic potentials by executing full-
potential LAPW calculations. In Fig. 8, we plot the site
charge excesses obtained from LAPW vs the number of un-

TABLE IV. Charge excesses and total energies per atom for fcc-based CucZn1−c alloys. The first two columns on the left give, for each
system, the mean Cu atomic concentration �c� and, when available, the supercell identifier in the database of Ref. 31 �conf�. “R” followed
by a number, e.g., R16, stands for a quasirandom supercell containing the corresponding number of atoms not included in the database. In
the third column, nunl indicates the mean number of unlike nearest neighbors of Zn sites. Columns 4–7 report the MSD of the charge
excesses, ���q�2�, obtained by the comparison of different theories: �a� PCPA vs CEF-PCPA, �b� LAPW vs CEF-PCPA, �c� LAPW vs
CEF-LAPW, and �d� LAPW vs the model of Ref. 41. Columns 8–11: total energies per atom from PCPA, CEF-PCPA, LAPW, and
CEF-LAPW calculations. The energy zero is given, for each concentration, by the PCPA prediction for the ground state.

c conf nunl

���q�2�
�E

�mRy�

�a� �b� �c� �d� PCPA CEF-PCPA LAPW CEF-LAPW

35 2.5 3�10−10 2�10−5 0.500 0.503 0.926

0.20 39 3.0 7�10−9 7�10−5 0.000 0.000 0.000

12 3.3 2�10−9 7�10−5 4�10−6 0.515 0.516 1.078 0.438

15 2.7 1�10−8 2�10−4 4�10−7 1.379 1.386 2.151 1.658

18 3.3 2�10−9 2�10−5 2�10−6 0.566 0.568 1.054 0.471

0.25 21 3.3 2�10−9 1�10−4 8�10−6 0.680 0.685 1.510 0.616

24 4.0 2�10−8 2�10−4 5�10−6 0.000 0.000 0.000 0.000

26 4.0 2�10−8 2�10−4 3�10−7 0.068 0.069 0.073 0.051

29 2.0 5�10−9 4�10−4 2�10−5 1.817 1.824 4.202 2.349

R16 3.0 1�10−8 2�10−4 1�10−6 1.015 1.020 1.705 1.169

6 4.0 1�10−10 5�10−5 1.179 1.185 1.016

0.33 8 5.0 1�10−8 1�10−4 0.000 0.000 0.000

10 3.0 6�10−11 3�10−4 1.800 1.807 3.300

3 8.0 7�10−9 3�10−4 5�10−6 1�10−4 0.139 0.144 −0.075 0.111

4 6.0 2�10−9 5�10−6 2�10−5 6�10−5 1.075 1.081 2.141 0.961

14 4.0 1�10−9 6�10−4 5�10−6 2�10−4 2.895 2.905 4.803 3.657

0.50 17 7.0 3�10−9 3�10−5 2�10−6 1�10−6 0.717 0.720 1.121 0.605

20 6.0 5�10−10 5�10−5 1�10−7 5�10−5 1.429 1.434 2.464 1.353

23 8.0 7�10−9 2�10−4 1�10−6 4�10−5 0.000 0.000 0.000 0.000

28 3.0 2�10−9 9�10−4 6�10−5 5�10−4 3.339 3.350 6.745 4.694

R16 6.8 3�10−9 2�10−4 2�10−6 6�10−5 0.913 0.918 1.519 0.972

5 8.0 3�10−10 9�10−5 1.102 1.224 1.283

0.67 7 10.0 1�10−8 1�10−4 0.000 0.000 0.000

9 6.0 3�10−9 3�10−4 1.743 1.866 3.224

11 10.0 3�10−10 9�10−5 2�10−5 0.549 0.550 1.009 0.501

13 8.0 5�10−9 5�10−4 3�10−6 1.479 1.482 2.230 1.986

16 10.0 3�10−10 2�10−5 1�10−5 0.604 0.605 1.054 0.535

0.75 19 10.0 5�10−10 1�10−4 5�10−6 0.729 0.731 1.083 0.709

22 12.0 3�10−9 2�10−4 5�10−6 0.000 0.000 0.000 0.000

25 12.0 2�10−9 2�10−4 5�10−6 0.073 0.073 −0.193 0.057

27 6.0 1�10−8 5�10−4 1�10−5 1.944 1.949 3.654 2.799

R16 3.0 2�10−9 3�10−4 2�10−6 1.088 1.091 1.790 1.409

30 10.0 1�10−9 6�10−5 0.544 0.550 −4.023

0.80 36 12.0 2�10−8 7�10−5 0.000 0.000 0.000
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like nearest neighbors of the same sites, for all the structures
corresponding to equimolar concentrations. In Tables III and
IV, we report the results for ���q�2� at all the concentrations.
As apparent from Fig. 8, the trends of qi are not easily ac-
counted for by the nearest neighbor environment only,41 es-
pecially for bcc-based structures. This notwithstanding, CEF-
PCPA calculations reasonably account for the LAPW
charges. As can be seen in the columns marked as �b� in
Tables III and IV, ���q�2� is usually of the order of 10−4,
sometimes less, and about 10−3 in the worst case. In order to
understand how much these results can be affected by the
PCPA input coefficients, we have repeated CEF calculations
by fitting the coefficients from the LAPW qV data for the
random alloy configurations corresponding to the relevant
stoichiometries and reported in Tables III and IV. As shown
in column �c� of Tables III and IV, this reduces ���q�2� of
about 1 order of magnitude.

Interestingly, the present CEF-LAPW calculations con-
firm the observations about the transferability of CEF param-
eters in Ref. 26, where the CEF charges have been compared
to the LSMS results. As a typical example, let us consider the
results for c=0.50 reported in Table III. The ��q2� obtained
are alway small: 4�10−5 in the worst case and 4�10−7 in
the best, corresponding, respectively, to structures 71 and 74,
while an intermediate value 3�10−6 is found for structure
R16, from which the CEF-LAPW coefficients have been ob-
tained. The same holds for all the concentrations, both for
bcc and fcc structures. A look to column �c� in the Tables III
and IV, in fact, shows that excellent results have been ob-
tained for all the supercells, and that, very often, the agree-
ment obtained for the random structure from which the CEF
coefficients have been extracted is not necessarily the best.

The above arguments about the charges should not lead to
the conclusion that, for this purpose, any fit is comparable to
any other. This is clearly shown in Fig. 9, where the perfor-
mances of PCPA, CEF-PCPA, CEF-LAPW, and by the

model of Magri et al.41 are compared for the equiatomic
concentration alloys. In the same figure, the distances from
the diagonal lines measure the differences between the
LAPW charges and those by various approximations for all
the Cu sites in the supercells with c=0.5. It is there evident
that the results by CEF-LAPW, marked by open triangles, are
much better than those by other approximations.

A comment is due about the sets of CEF coefficients, the
a’s and the k’s, obtained by the best fit of the qV laws from
PCPA and LAPW and reported in Tables I and II. At first
sight, it seems that the large discrepancies between the two
sets could not be explained by the different approximations
used by the two methods. It should be noticed, however, that
for the systems considered, the F= matrix of Eq. �52� is domi-
nated by its diagonal elements, the a’s. Under these circum-
stances, as it can be argued along the lines of Ref. 60 by
taking the appropriate limit, the charge transfers are almost
completely determined by the ratios r= �kA−kb� /a, where a
is the geometrical mean of aA and aB. As seen in Tables I and
II, the differences between rPCPA and rLAPW are much
smaller.

B. Total energies

In Tables III and IV, we compare the total energies ob-
tained for CuZn alloys by CEF, PCPA, and LAPW calcula-
tions. We have used the same extended set of bcc- and fcc-
based structures listed in Ref. 31. Since the CEF energies
contain a concentration dependent constant, we report the
quantity �E defined as the energy difference between the
structure at hand and the structure that, at the same concen-
tration, has the lowest energy, according to PCPA calcula-
tions. The same �E is plotted in Figs. 10 and 11 for the Cu
concentrations c=0.25, 0.50, and 0.75, for which the data-
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neighbors of the corresponding site, ni

unl, from LAPW calculations
for many, bcc- and fcc-based, ordered and disordered, configura-
tions of Cu0.50Zn0.50 alloys. Circles and triangles represent charges
on Cu and Zn sites, respectively. Left frame: bcc-based alloys; right
frame: fcc-based alloys. The straight lines in each panel indicate the
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straight lines q=qLAPW. The deviations from these lines measure the
accuracy of the various calculations.
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base of Ref. 31 contains a number of structure sufficient to
individuate trends.

Our first observation is that the total energies obtained by
PCPA and CEF-PCPA calculations perfectly overlap on the
scale of Figs. 10 and 11, where they are represented as filled
triangles and open squares, respectively. As reported in
Tables III and IV, in fact, the values obtained by the two
methods are different by a few �Ry per atom, which is com-

parable to the accuracy of the calculations. Thus, PCPA and
CEF-PCPA give indistinguishable results both for the
charges �as discussed in the previous subsection� and the
total energies. Therefore, it is compelling to conclude that the
CEF theory is a numerically excellent and powerful tool to
reproduce with much less efforts GCPA electronic structure
calculations. Moreover, since CEF-PCPA calculations use as
an input the qV data obtained from random supercells, the
perfect agreement obtained for the properties of so many
different ordered structures that have not been used to fit the
CEF coefficients has only one possible explanation. Accord-
ingly, with the discussion in Secs. III B and III C, both the
following conditions must be fulfilled. �i� The coherent
scattering-path matrix ��c of the random alloy configuration
used as an input must be representative of the whole set of
ordered structures considered; �ii� the linearity of the qV
laws is almost perfectly observed in all the range of values
that the charge excesses and the Madelung potentials take for
the structures considered. In Sec. III, we have offered several
arguments supporting the validity of both points above, but
we have not been able to provide an analytical demonstra-
tion. We think that the numerical evidence found is very
strong and compelling.

Accordingly with the discussion in Sec. III, the success of
the CEF theory in reproducing the charges or, equivalently,
the Madelung potentials guarantees the reproducibility of
any ground state property within the GCPA theory through
Eq. �41�. Hence, even spectral properties as the DOS or the
Bloch spectral functions, although buried, are contained in
the CEF functional that, if the input parameters are extracted
from a GCPA theory, inherits all the good and the bad things
of same GCPA theory.

The comparison with LAPW calculations is more difficult
for two different reasons. In the first place, these calculations
do not assume mean boundary conditions for the wave func-
tions and use a procedure equivalent to the full calculation of
the ��� matrix. In the second place, within LAPW calculations,
the charge multipole summation is truncated at some high �
value. With these clarifications, the agreement between
LAPW and PCPA or CEF-PCPA calculations �there is no
reason for discussing the last two models separately� is quite
good. As a general rule, the two sets of calculations find the
same ground states at the concentrations considered. In the
few exceptions �that correspond to the negative figures in the
LAPW columns of Tables III and IV�, the disagreement can
be explained by the fact that the structures indicated as the
ground state by the two theories are almost degenerate in
energy. Also, the general trends for the total energies are well
reproduced, as seen in Figs. 10 and 11, though the PCPA
generally underestimates the energy differences.

Fitting the CEF parameters from the LAPW qV laws gen-
erally improves the agreement. At variance of what is found
for the charges, however, the improvement is quite modest.

In summary, the CEF appears able to perfectly reproduce
GCPA calculations for both ordered and disordered metallic
systems. The reasons why the agreement is so excellent are
not yet completely understood. Although CEF and GCPA
theories are both coarse-grained versions of the DFT, oppo-
site to what numerical results suggest, they are not the same
theory. In fact, as discussed in Sec. III, in order to be coin-
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FIG. 10. Total energy differences with respect to the PCPA pre-
dicted ground state, �E, for bcc-based CucZn1−c alloys. The labels
indicated in the abscissa identify the various configurations in the
database of Ref. 31; R stands for structures with randomly gener-
ated chemical occupations containing 16 atoms with mean Cu con-
tents c=0.25, 0.5, and 0.75. Open triangles, open circles, open
squares, and filled triangles indicate LAPW, CEF-LAPW, CEF-
PCPA, and PCPA calculations, respectively. Lines are a guide for
the eyes.
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FIG. 11. Total energy differences with respect to the PCPA pre-
dicted ground state, �E, for fcc-based CucZn1−c alloys. The labels
indicated in the abscissa identify the various configurations in the
database of Ref. 31; R stands for structures with randomly gener-
ated chemical occupations containing 16 atoms with mean Cu con-
tents c=0.25, 0.5, and 0.75. Open triangles, open circles, open
squares, and filled triangles indicate LAPW, CEF-LAPW, CEF-
PCPA, and PCPA calculations, respectively. Lines are a guide for
the eyes.
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cident to the CEF, GCPA theories should �i� exactly observe
linear qV laws and �ii� lead to coherent scattering matrices
independent of the configuration in a fixed concentration en-
semble. For metallic alloys, these conditions appear plausible
and the numerical evidence strongly supports the view that
both are nearly satisfied. However, we must highlight that
condition �i� is not verified for pathologically high values of
the Madelung field. The comparison vs LAPW calculations
suggest that both coarse-grained theories, GCPA and CEF,
are able to semiquantitatively reproduce the total energies of
the alloy configurations considered. In particular, the results
by the coarse grained theories are strongly correlated with
those by LAPW. This fact is better elucidated in Figs. 10 and
11, where configurations belonging to the same fixed concen-
tration ensemble are ordered in such a way to have increas-
ing PCPA total energies. If the same ordering was not ob-
served by some other method for some configuration, this
would show up as a local minimum in the corresponding
curve. The most visible of such events occurs in Fig. 11 for
c=0.75, where the curve corresponding to LAPW calcula-
tions presents a very weak local minimum at configuration
25. The examination of Figs. 10 and 11 suggests that the
coarse-grained theories are able to qualitatively give correct
predictions about ordering for the alloys considered, while
the fact that they generally underestimate the corresponding
energies could imply incorrect estimates of the correspond-
ing transition temperatures.

V. CONCLUSIONS

We wish to conclude this paper with a summary and a few
comments. We have introduced the class of the GCPA theo-
ries that are characterized by �i� a specific ansatz for the
kinetic part of the density functional, which is common to all
CPA-based theories, and �ii� an external model that deter-
mines the way in which the atomic effective potentials
should be reconstructed and the statistical weights to be as-
signed each. The GCPA class of approximations includes
most existing CPA-based density functional theories, to men-
tion a few, the CPA prototype, i.e., the isomorphous CPA,22,32

SIM-CPA,44,45 the PCPA,43 the CPA+LF,25 and the nonlocal
CPA.50 The ansatz �i� consists in applying averaged bound-
ary conditions at the surfaces of each scattering volume and
naturally leads to algorithms requiring a number of operation
that scales as N. As discussed by Abrikosov and Johansson,40

CPA-based approximations allow for a careful picture of the
spectral properties of metallic alloys. The so much criticized
results of the isomorphous CPA about the total alloy energies
can be healed by external models that consider the charge
distribution in the system. We have shown how this can be
systematically done by writing the relevant energetic contri-
butions as a series involving the charge multipole moments
in each scattering volume. The truncation errors of the same
series are probably already quite small when only the first
term is included, as in the case of spherical approximations.

We have derived an expression of the GCPA density func-
tional that, together with the above multipole sums, includes

local atomic terms completely determined by the atomic
number of the ion in the volume and by the geometry of the
same volume. The local term at the ith site is coupled to the
others only through the coherent scattering matrix ��c and the
Madelung potential at the same site. Although this kind of
coupling, which we have called marginal coupling, is not
necessarily weak, nevertheless, it is analytically tractable and
it is the source of the O�N� scaling in GCPA theories. We
have demonstrated that in a GCPA theory, all ground state
properties within a specific sample are functions of the ap-
propriate coupling Madelung potential only or, equivalently,
of the charge multipole moments at each lattice site. To put it
into other words, we have demonstrated that the GCPA ap-
proximations realize a coarse graining of the Hohenberg–
Kohn density functional since only a part of the information
conveyed by the electronic density field, namely, the charge
multipole moments, actually enters in the GCPA approximate
functional. Moreover, we have suggested that the explicit
form of the GCPA functional dependence on the multipole
moments can be obtained in a fixed concentration ensemble
by the numerical integration of the qV relationships for a
random alloy configuration belonging to the same ensemble.
The above procedure does not rely on the linearity of the qV
laws.

We have rederived the CEF26 as a sensible approximation
of the GCPA theories, with which it would coincide provided
that the qV were exactly linear as claimed by many groups.
The present derivation allows for the inclusion of higher or-
der multipole moments. A very remarkable feature of the
CEF theory is that it shares the same structure of the MST. In
fact, the minimization of the CEF requires the solution of a
set of Euler–Lagrange equation that has the same structure of
the Korringa–Kohn–Rostoker �KKR� matrix at zero energy
and wave vector.60,61 More specifically, as can be seen by
comparing Eqs. �4� and �5�, the site-diagonal response func-
tions ai,LL� and the Madelung coefficients Mij,LL� in the CEF
theory play the role of the site-diagonal scattering matrices
and the KKR structure constants in the MST theory. The
correspondence is not only formal since the ai,LL� are single-
site quantities in the same sense of the single-site scattering
matrices60 and, in plain analogy with them, are related to the
single-site response to the appropriate perturbing field.25

In the present paper, we have provided several formal
arguments and strong numerical evidences that CEF and
GCPA theories lead to very similar results, the discrepancies
being of the order of the numerical errors. We have also
shown that CEF and GCPA theories are able to reproduce the
charges and the total energies for many ordered alloy con-
figurations. In our view, the coarse-grained theories, GCPA
and CEF, constitute a valuable alternative to full DFT calcu-
lations.

Although the CPA theory was proposed many years ago
with the purpose of dealing with substitutionally disordered
alloys, we think that we have shown that, today, GCPA theo-
ries are able to deal with ordered intermetallic compounds
too. Therefore, the fact that CPA-based theories are able to
cope with sophisticated model of disorder is not an original
sin but rather an added value.
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The computational performances of the CEF have been
discussed in more detail elsewhere.26 Here, we like to men-
tion that the possibility of evaluating total energies for thou-
sand atoms in a few second CPU time could constitute a
substantial enlargement of the domain of the applications of
the DFT.
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