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We consider relativistic U�1� gauge theories in 2+1 dimensions, with Nb species of complex bosons and Nf

species of Dirac fermions at finite temperature. The quantum phase transition between the Higgs and Coulomb
phases is described by a conformal field theory �CFT�. At large Nb and Nf, but for arbitrary values of the ratio
Nb /Nf, we present computations of various critical exponents and universal amplitudes for these CFTs. We
make contact with the different spin liquids, charge liquids, and deconfined critical points of quantum magnets
that these field theories describe. We compute physical observables that may be measured in experiments or
numerical simulations of insulating and doped quantum magnets.
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I. INTRODUCTION

A number of experimental observations in the past two
decades have begged for an understanding of interacting
quantum systems that goes beyond the simple weakly inter-
acting quasiparticle paradigm of solid-state physics. The
large number of such systems with anomalous properties in-
clude as examples cuprate superconductors, quantum critical
heavy-fermion metals,1 Mott-insulating organic materials,2

and insulating frustrated magnets.3 A paradigm that has been
invoked to describe these systems is quantum number frac-
tionalization, see, e.g., Ref. 4. Rewriting the original con-
stituents in terms of fractional particles interacting with a
gauge field and unconventional phases �or transitions� are
accessed by the deconfined phases of these gauge theories.
These deconfined phases cannot find a consistent description
in terms of quasiparticles that are compositionally related to
the particles of the microscopic description, and hence pro-
vide a paradigm that dramatically departs from the conven-
tional confines of solid-state physics.

An important issue that arises immediately is the detec-
tion of such exotic quantum phases or phase transition in
experiments or numerical simulations. In most cases, the ap-
pearance of these exotic field theories is also signaled by
dramatic qualitative physical effects, e.g., a direct continuous
transition between quantum states that break distinct
symmetries5 �such a transition would not be permitted in the
conventional Landau theory�. While these physical effects
themselves signal the appearance of the deconfined field
theory, it is desirable to have a direct understanding and nu-
merical estimate for universal quantities associated with the
continuum field theories. An estimate for the universal num-
bers and scaling functions allows for a quantitative compari-
son between experiment and/or simulations and theory, and
could be helpful, for instance, to distinguish between a non-
universal weak first-order transition and a universal continu-
ous one, in finite-size numerical computations.6–8

The starting point of our analysis will be a relativistic
continuum field theory of Nf flavors of charged fermions and
Nb flavors of charged bosons mutually interacting through a
gauge field in two spatial dimensions. This continuum de-
scription makes no reference to the variety of microscopic

lattice models that may realize the quantum field theory. Ex-
amples of the derivations of relativistic field theoretic de-
scriptions starting from lattice models of spins or electrons in
different contexts may be found in Refs. 9–11. We postpone
a discussion of the application of our results to these physical
realizations to Sec. V.

We shall be interested in the general case of interacting
field theories that involve bosons �z��, Dirac fermions ����,
and gauge fields �A��. Working in imaginary time, the parti-
tion function of these theories may be written as functional
integrals over the fields,

Z =� D��Dz�DA� exp�− Sbf� , �1�

where the action Sbf =Sb+Sf is specified below as the sum of
bosonic and fermionic contributions.

In the field theory, the bosons are described by the com-
plex fields, z�, where � takes one of Nb values. The Nb fields
couple through their mutual interaction with a “photon”
gauge field, A�, in the usual minimal coupling that preserves
gauge invariance.

Sb =
Nb

g
� d2rd��

�

���� − iA��z��2. �2�

The constraint ���z��2=1 must be satisfied at all points in
time and space. The action Sb by itself is the well-known
CPNb−1 model. We remind the reader that in this theory, two-
point correlation functions of z� itself are “gauge-dependent”
quantities, but correlation functions of the composite opera-
tor �a=z

�
*T��

a z� are not. Indeed, the “deconfined” theory of
the Néel-VBS �valence-bond solid� transition is described by
Sb at Nb=2, and �a plays the role of the Néel order param-
eter where T��

a are the generators of SU�2�, a physical quan-
tity that must be gauge independent. Some large-Nb compu-
tations on this model are available in the literature.12,13 See
Ref. 14 for a review. We will recover these results as special
cases of the more general field theory of interest here.

We now turn to the action that describes the Dirac fermi-
ons. The fermionic part is described by the usual Dirac fer-
mion action,
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Sf =� d2rd��̄��i����� − iA�����, �3�

where �� satisfy the Clifford algebra in 2+1 dimensions,
��� ,�		=2
�	. We use the isotropic version of Sf, since
anisotropies have been shown to be irrelevant at the critical
fixed point studied here.15 We shall consider the actions Sb
and Sf separately and also Sbf =Sb+Sf in the large-Nb ,Nf
limit. In general, a Maxwellian term for the A�: SA
=
d2rd�����	��A	�2 should also be included. We note, how-
ever, that this term will not play an important role in our
considerations: As we will show below, the contribution to
the A� propagator from the interaction with z� and �� at
large N decays with a slow power at long distances and
hence dominates the contribution from SA at large length
scales. As is usual in quantum field theory, we introduce a
finite T by restricting the imaginary time integrals in the
actions above to extend from 0 to 1 /T. The z� and A� must
then satisfy periodic and the �� antiperiodic boundary con-
ditions.

For large enough Nf, we note here that the action Sf, when
considered separately, is always quantum critical, i.e., there
are no relevant perturbations consistent with its symmetry.
This is in contrast to Sb which goes critical only at a single
value of the coupling g=gc, i.e., the boson mass is a relevant
perturbation at the phase transition between the Higgs �g
�gc� and the deconfined Coulomb phase �ggc�. The re-
sults in this paper include the results for Sf alone by simply
setting Nb=0. Results for the CPNb−1 model at criticality are
obtained by setting Nf =0 and the general result for finite Nb
and Nf applies for the Higgs to Coulomb phase transition in
the background of critical Dirac fermion excitations. We as-
sume that A� is noncompact throughout this paper so that the
2+1-dimensional Coulomb phase is unequivocally stable �by
definition� to monopole proliferation �see, e.g., Ref. 16�. The
stability of the fixed point of the combined boson-fermion
action, Sb+Sf, using an � expansion was studied in Ref. 17.

In principle, sign-problem free Monte Carlo simulations
can be carried out on lattice-discretized versions of the action
Sb+Sf. At Nf =0, Nb=2, the action has been simulated with a
noncompact gauge field in Ref. 18 �prior simulations of a
related model in the O�3� language may be found in Refs. 19
and 20�. With a compact gauge field at Nf =0, this field
theory has been simulated21 for a variety of Nb. At large
enough Nb, the compactness of the gauge field must be irrel-
evant so the criticality found in these simulations21 are ex-
pected to be in the same universality class as our study. Non-
compact and compact QED in 2+1 dimensions have been
studied in the lattice-gauge theory community �see, e.g., Ref.
22 and references therein� and are directly related to our
study at Nb=0; numerical results for universal quantities
were, however, not presented. To our knowledge, there have
been no simulations of the combined boson-fermion action,
Nb ,Nf �0.

The paper is organized in the following way: In Sec. II,
we first introduce the formal machinery of the large-N limit
of Sbf considered here �large N in this paper implies large
Nb ,Nf but an arbitrary finite value of the ratio�. In Sec. III,
we then turn to an evaluation of the critical exponents and

scaling dimensions of a number of quantities of physical
interest at the T=0 critical point that separates the Higgs
from the deconfined phase in the background of massless
Dirac fermions. At the critical point of Sbf, certain suscepti-
bilities �corresponding to rotations in the boson or fermion
flavor space� have simple linear or quadratic temperature de-
pendencies with universal amplitudes because of conserva-
tion laws. In Sec. IV, we evaluate the numerical value of
these amplitudes in the large-N limit. Finally, in Sec. V, we
provide a general discussion of the physical situations in
which the quantities computed in this publication may be
measured in experiments or simulations of insulating and
doped quantum antiferromagnets.

II. EFFECTIVE ACTION AND PROPAGATORS AT LARGE
Nb ,Nf

In this section, we provide the framework of the large-
Nb ,Nf method used here and compute the effective action at
large N. At Nb ,Nf =�, fluctuations of the gauge field are
completely suppressed and we have a theory of free bosons
and fermions. Gauge fluctuation at next-to-leading order is
conveniently computed by perturbation theory, since each
photon line brings a factor of 1 /N. We hence require a com-
putation of the photon propagator at order 1 /N, in the theory
Sbf introduced above at finite T. In this paper, we use two
different gauges, depending on whether we are computing at
T=0 or T�0. At T=0, when space and time are completely
interchangeable, it is convenient to use a gauge that reflects
this symmetry, we use k�A� fixed to a constant. At T�0, for
practical computation reasons, we prefer to use the gauge
kiAi=0 �with i restricted to the two space indices�. Through-
out this paper, we will use greek symbols � ,� ,� ,	, etc., to
take values x ,y and � �2+1-dimensional space time�, and
lowercase letters i, j, and k to take values x and y �two-
dimensional space�. Summation is implied on repeated indi-
ces.

A. Zero temperature

We begin with the resolution of the constraint on z�, by
introducing a real field �, which acts as a Lagrange multi-
plier at each point of space and time. Then rescaling
z→� g

Nb
z, we obtain

Sb =� d2rd������ − iA��z��2 − i��z��2 −
Nb

g
�� . �4�

Now, after a standard sequence of steps �see, e.g., Ref. 16� in
the limit Nb=�, the gauge field drops out and � takes on a
uniform saddle point value that extremizes the action �0= ir,

� d3p

8�3

1

p2 + r
=

1

g
. �5�

The propagator for the z particles is thus Gz
−1�k�=k2+r. At

Nb=�, it becomes critical when r=0, i.e., at g=gc where
1
gc

=
 d3p
8�3

1
p2 .

The effective action is obtained to leading order in Nb ,Nf
by integrating out the bosons and fermions perturbatively,
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i.e., by evaluating diagrams �according to the rules of Fig. 1�
that are shown in Fig. 2. At T=0, it is possible to obtain
simple closed-form expressions for the effective action,

SA−� = �
p

��

2
�2 +

�A

2

�	 −

p�p	

p2 �A�A	, �6�

where

���p,r� = Nb
1

4�p
tan−1 p

2�r
� ,

�A�p,r� = Nf
p

16
+ Nb� p2 + 4r

8�p
tan−1 p

2�r
� −

�r

4�
� . �7�

Details of this computation are provided in Appendix A. We
note that ���0,r�= �8��r�−1 and ���0,0�=
 1

p4 , which is for-
mally IR divergent in d=3, but this will cancel out of all
physical observables.

Using the gauge k�A�=1−� for this T=0 calculation, we
find the following form for the propagators:

D�	 = �A�A	� =
1

�A

�	 − �

q�q	

q2 � ,

D� = ���� =
1

��

,

Gz = �z*z� =
1

k2 + r
,

G� =
k”

k2 , �8�

where we have used the usual notation that k”=k���. The
parameter � is an arbitrary gauge-fixing parameter and it
should drop out of any expression for a physical observable.

B. Finite temperatures

At T�0, there is no particular advantage in using the
conventional relativistically invariant notation of Eq. �3�. So
we use the following equivalent form of the fermion action,
designed for transparent appearance of frequency sums:

Sf =� d2xd����
†��� − iA� − i�x��x − iAx� − i�y��y − iAy����	 .

�9�

Again, the index �=1¯Nf labels the fermion flavors, �� is
a two-component Dirac spinor �for each ��, and �x,y are
Pauli matrices acting on the Dirac space.

The general form of the effective action for the photon at
large Nb ,Nf can be simply written down by invoking a Ward
identity,

SA =
T

2 �
�n

� d2k

4�2��kiA� − �nAi�2D1�k,�n�
k2

+ AiAj
ij −
kikj

k2 �D2�k,�n�� , �10�

where D1 and D2 are functions that can be evaluated at large
N by perturbatively integrating out both the fermions and the
bosons. This process is illustrated in the Feynman graphs in
Fig. 2. A complete analytic evaluation at finite T of D1,2 is
not possible. However, after some analytic manipulations de-
tailed in Appendix A, we can bring the expressions into
forms which allow efficient numerical evaluation of these
functions; these evaluations will play an important role later
in our T�0 computations. In terms of D1,2, we can immedi-
ately write down the photon propagator in the Coulomb
gauge kiAi=0. After imposing the gauge condition, the non-
zero elements of the propagator are

D00�q,�n� =
1

D1�q,�n�
,

Dij�q,�n� = 
ij −
qiqj

q2 � 1

D2�q,�n� + ��n
2/q2�D1�q,�n�

.

�11�

The other propagators at finite T are

Gz =
1

	m
2 + k2 + r

,

i

(h)

γµ

(2k + p)µ

(a) Dµν (b) Dλ

(c) GΨ (d) Gz

(e) (f)

(g)

FIG. 1. Definition of diagrammatic symbols that arise from the
action Sb+Sf. �a�–�d� illustrate the four propagators that are used to
construct the various graphs used here. See Eq. �8� for the T=0
values and Eqs. �11� and �12� for the T�0. �e�–�h� show the four
vertices allowed by our theory and their corresponding amplitudes.

(c)

(b)(a)

(d)

FIG. 2. One-loop diagrams that determine the effective action at
large N. �a�–�c� contribute to the effective action for the A� and �d�
contributes to the action of the � field.
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G� =
1

− i�n + � · k
, �12�

where k is the vector �kx ,ky� and 	m=2�Tm and �n

=2�T�n+ 1
2 � are the usual bosonic and fermionic Matsubara

frequencies.

III. CRITICAL EXPONENTS AND SCALING DIMENSIONS
AT THE CRITICAL POINT OF Sbf

In this section, we will work at T=0 and hence use the
propagators derived in Sec. II A and work in the gauge in-
troduced there. As the coupling g is tuned, a critical point at
which the condensation of z� takes place is crossed, for small
g the system enters a phase with condensed z� and for large
g the system is described by a “liquidlike” state that breaks
no symmetries �here, the bosons z� acquire a mass and the
low-energy theory is a strongly coupled “algebraic” state of
Dirac fermions coupled to a gauge field�. In this section, we
first compute two independent critical exponents associated
with the singularities at this transition �	N and �N�, including
one-loop corrections about the Nf ,Nb=� saddle point. We
then turn to a calculation of the scaling dimension of the
physical electron operator at the critical point.

A. Computation of �N in Sbf

We begin with the correlation length exponent, 	N,

�N � �g − gc�−	N �defines 	N� , �13�

where �N is the correlation length associated with the Néel
order parameter. We note that in a given gauge, one may
calculate well-defined critical exponents using z� as the order
parameter. The critical indices so calculated are in general
gauge dependent. We note, however, that since the correla-
tion length is gauge invariant so is the exponent 	z. Hence,
	N may be calculated without worrying about composite op-
erators, i.e., 	N=	z. Other exponents must, however, be cal-
culated using the composite Néel field; we will present cal-
culations for �N in the following subsection.

We calculate the exponent of interest, 	z, by calculating
two gauge-dependent indices �z and �z and then using the
scaling relation �z=	z�2−�z�. Since 	z should be gauge in-
dependent, any dependence on the arbitrary gauge parameter
� should drop out of the result. This is an important check on
our results. We begin by defining the anomalous dimension
of the z� field as follows:

dim�z�� =
D − 2 + �z

2
�in a given gauge, defines �z� .

�14�

We will make the gauge dependence of �z explicit by calcu-
lating its value for arbitrary �. The calculation of �z is
straightforward and is obtained by picking up the coefficient
of the p2 log p pieces in a perturbative expansion of Gz, and
then reexponentiating. Diagrams in Figs. 3�a� and 3�c� con-
tribute, giving

�z =
4

3�2Nb
−

4

�Nf + Nb��2�10

3
+ 2�� . �15�

For �=1 and Nf =0, this reproduces the result of Ref. 12.
The critical index �z determines how the mass of z� �in a

given gauge� goes to zero at the critical point,

Gz
−1�k = 0� = �g − gc��z �defines �z� . �16�

To leading order, we may just use rc=��0,0� and 1
g =
 1

p2+r
;

we find

1

gc
=� 1

p2 + rc
=� 1

p2 −� 1

p4��0,0� . �17�

We introduce a new parameter rg as follows:

1

gc
−

1

g
= �

p

1

p2 −
1

p2 + rg
=

�rg

4�
, �18�

which can be related to r by

�rg

4�
=

�r

4�
−� 1

p4��0,0� , �19�

r = rg +
���0,0�
���0,r�

��0,0� . �20�

Beyond the Nb=� approximation, the critical point is no
more at rc=0. In general,

G−1�p� = �p2 + r� − ��p,r� �21�

and so, rc=��0,rc�.
Now, writing the boson mass in terms of the new param-

eter rg,

G−1�0� = rg − ���0,rg� −
���0,0�
���0,r�

��0,0�� , �22�

we have eliminated the quantity r completely. The goal now
is to compute the term in brackets by evaluating the self-
energy diagrams and pick up the terms with rg log�rg� diver-

(a)

(f)
(e)

(b)

(c) (d)

FIG. 3. Self-energy diagrams that enter the two-point z�-boson
correlation function at order 1 /N. These diagrams are evaluated in a
specific gauge to extract the gauge-dependent indices �z and �z. A
gauge independent index 	 can then be extracted from these quan-
tities by using the exponent relation �z=	z�2−�z�.
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gences. Then, these logs must be reexponentiated yielding
the exponent �z as follows:

G−1�0� = rg1 + � log��2

rg
�� � �g − gc�2�1−��, �23�

where in the last equality we have used the fact that rg� �g
−gc�2, as derived above and that � vanishes in the N→�
limit.

In order to demonstrate the usefulness of these formal
manipulations, we calculate the index �� for the O�N
=2Nb�� model. This index is of course completely gauge
invariant and follows by including only the � contributions
to the self-energy, i.e., the diagrams in Figs. 3�c� and 3�e�.

��c� =
2i2

2!
� d3q

8�3

1

���q,r�
1

�p + q�2 + r
, �24�

��e� =
4!i4

4!

1

���0,r� � d3q

8�3

1

�q2 + r�2

�� d3p

8�3

1

���p,r�
1

�p + q�2 + r
. �25�

Now, putting these expressions back into Eq. �22�, we find
that

���0,0�
���0,r� ��0,0�=0. Note, however, that this term cannot be

ignored in general. Indeed, when we include gauge fluctua-
tions below, we find that it does not evaluate to zero. In the
current case, because of the vanishing of this term, we find
that the quantity in brackets in Eq. �22� is simply
��c�+�e��0,r�,

=−� d3p

8�3

1

���p,r�� 1

p2 + r
+

����p,r�
2���0,r�� , �26�

where ���=
���

�r . Now, expanding the integrand for large p,
we can extract the coefficient ��= 6

�2Nb
. Thus, �=2− 12

�2Nb
,

reproducing the standard result for the O�N� model.23

We now turn to the inclusion of the gauge field: There are
four diagrams �Figs. 3�a�, 3�b�, 3�d�, and 3�f�� that contribute
to �A=��a�+��b�+��d�+��f�. Including all factors of i2, con-
tractions and factorials, they are

��a� =
2

2!
� d3q

8�3

1

�A�q,r�
N�p,q�

�p + q�2 + r
,

��b� = �− 3 + �� � d3q

8�3

1

�A�q,r�
,

��d� =
4i2

2!2!

1

���0,r� � d3q

8�3

1

�A�q,r�

�� d3p

8�3

N�p,q�
�p2 + r�2��p + q�2 + r�

,

��f� =
�− 3 + ��2i2

2!1!

1

���0,r� � d3p

8�3

1

�p2 + r�2 � d3q

8�3

1

�A�q,r�
,

�27�

where N�p ,q�=4p2− 4�

q2 �p ·q�2+ �4p ·q+q2��1−��, for a gen-
eral gauge. Note that generally, ��b�+��f�=0, so they never
make an appearance.

Our task is now to compute Eq. �22� with �=��a�+��d�.
This expression seems to be plagued with both IR and UV
divergences; we will see below that both divergences exactly
cancel as they must.

��0,r� = �
q

1

�A�q,0�
q2

q2 + r
�1 − ��

−
1

���0,r��p,q

N�p,q�
�p2 + r�2��p + q�2 + r�

1

�A�q,r�
,

��0,0� = �
q

1

�A�q,0�
�1 − ��

−
1

���0,0��p,q

N�p,q�
p4�p + q�2

1

�A�q,0�
. �28�

Using these in Eq. �22�, we find for the term in brackets,
T�¯�=��0,rg�−

���0,0�
���0,rg���0,0�,

T�¯� = �1 − ���
q

1

�A�q,rg�
q2

q2 + rg

−
1

���0,rg��p,q

N�p,q�
�p2 + rg�2��p + q�2 + rg�

1

�A�q,rg�

+
1

���0,rg� � � N�p,q�
�p + q�2 − �1 − ��� 1

p4

1

�A�q,0�
.

�29�

Note that the last term was formed by combining two terms,
both of which were IR divergent; this term, however, has no
IR divergence. No other term has an IR divergence. We now
proceed to show that all the UV divergences also exactly
cancel. In order to do so, let us rewrite

T�¯� = �1 − ���
q

1

�A�q,rg�
+ �1 − ���

q

1

�A�q,rg�
− rg

q2 + rg

−
1

���0,rg��q

1

�A�q,rg�
IA�q,rg�

+
1

���0,rg� � 1

4q

1

�A�q,0�
. �30�

The following integral was used on the last line: 
p� N�p,q�
�p+q�2

− �1−��� 1
p4 = 1

4q .
Now, we can rewrite this integral as
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T�¯� =� q2dq

2�2 � 1 − �

�A�q,rg�
q2

q2 + rg
−

1

���0,rg�
IA�q,rg�
�A�q,rg�

+
1

���0,rg�
1

4q

1

�A�q,0�� . �31�

All we have to do is to expand the term in �¯� for large q to
extract the log divergence �evaluation of IA is detailed in
Appendix B�. There should be a O�1 /q3� power but all lower
powers must cancel. This is indeed found to be the case

T�¯� =� q2dq

2�2 �16rg
7Nf − 9Nb

�Nb + Nf�2 +
�

Nf + Nb
� 1

q3

= − �Arg log��2

rg
� , �32�

where �A=− 4
�2 �

7Nf−9Nb

�Nb+Nf�2 + �
Nf+Nb

�.
Using �=��+�A and �=2�1−��, we have the final ex-

pression for � as follows:

� = 2 −
12

�2Nb
+

8

�2� 7Nf − 9Nb

�Nb + Nf�2 +
�

Nf + Nb
� . �33�

We note that when �=1, Nf =0, this reduces to the result of
Ref. 12 �they only present results in the Landau gauge, �
=1�. Using their quoted values of � and 	 and �=	�2−��,
we find that their result gives �one has to also adjust N by a
factor of 2, because they have a theory with N /2 complex
fields� �=2−76 / ��2Nb�, in agreement with us.

We can now calculate the coefficient 	 by using a scaling
relation

	z =
�z

2 − �z

�
�

2
1 +

�

2
�

� �1 −
6

�2Nb
+

4

�2� 7Nf − 9Nb

�Nb + Nf�2 +
�

Nf + Nb
��

��1 +
2

3�2Nb
−

2

�Nf + Nb��2�10

3
+ 2���

� 1 −
16

3�2Nb
+

4

�2

7Nf − 9Nb

�Nb + Nf�2 −
20

�Nf + Nb�3�2 . �34�

Reassuringly, the gauge parameter � drops out as expected.
Also, for Nf =0, 	=1− 48

�2Nb
, consistent with Ref. 12.

B. Evaluation of �N in Sbf

We now turn to an evaluation of the scaling dimension of
the Néel field. We first define the anomalous dimension �N
through the equation

dim��N
a � =

D − 2 + �N

2
, �35�

where �N
a =z

�
*T��

a z� is the Néel field and Ta are the generators
of SU�N�. Note that at Nf ,Nb=�, the index �N=1, i.e., it is

already nonzero. This is unlike, e.g., the O�N� model, which
at N=� has no anomalous dimension. Since the Néel field is
a composite of two z� fields, its scaling dimension may be
written as

dim��N
a � = 2 dim�z�� + �vrtx, �36�

where �vrtx gets contributions exclusively from vertex con-
tributions illustrated in Figs. 4�a� and 4�b�. This contribution
is conveniently calculated by including a source ha�N

a in the
action and studying its renormalization, by momentum shell
renormalization group. There are two contributions coming
from the photon and � propagators �integrals are from � /s to
��. They give


ha = −
1

2
2i2� d3q

�2��3

1

��

1

q4 −
1

2
2� d3q

�2��3

q2�1 − ��
�A

1

q4

=
4

�2Nb
log�s� −

8

�2�Nf + Nb�
�1 − ��log�s� . �37�

This gives �vrtx= 4
�2Nb

− 8
�2�Nf+Nb� �1−��. We thus have the re-

sult

�N = D − 2 + 2�z + 2�vrtx �38�

=1 +
32

3�2Nb
−

128

3�2�Nf + Nb�
. �39�

Again, � drops out as expected, since �N should be gauge
invariant.

C. Scaling dimension of the electron operator at criticality

The scaling dimension of the physical electron operator is
calculated at large N by identifying its scaling dimension

with the bilinear c=�̄z. The scaling dimension of c must
clearly be gauge invariant.

The scaling dimension of � is defined by

dim��� =
D − 1 + ��

2
. �40�

We can evaluate �� by evaluating the lowest self-energy
graph ��k� due to the gauge field and then picking up the
k” log�k� part as follows:

(d)

(a)

(c)

(b)

FIG. 4. Vertex corrections to the scaling dimensions for the
composite operators: ��a� and �b�� Néel vector, �N

a =z
�
*T��

a z�; �c�
electron operator, c=z*�; and �d� fermion bilinear �†�.
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��k� =
2

2!
� d3q

�2��3

1

�A
��

q” + k”

�k + q�2�	
�	 − �
q�q	

q2 �
= � 8

3�2�Nf + Nb�
−

8�

�2�Nf + Nb��k” log�k� . �41�

This gives the gauge-dependent result ��= 8
3�2�Nb+Nf�

− 8�

�2�Nb+Nf�
.

Now, we can get the gauge invariant quantity, dim�c�, by
including the vertex contribution in Fig. 4�c�.

dim�c� = dim�z� + dim��� + �vrtx. �42�

The parameter � drops out as expected. Evaluating the vertex
contribution by the momentum shell method, we find

�vrtx log�s� =
− 1

1!1!
�

�/s

� d3q

�2��3

1

�A
q�

q”

q4�	
�	 − �
q�q	

q2 �
= −

8

�2�Nf + Nb�
�1 − ��log�s� , �43�

giving the final answer

dim�c� =
3

2
+

2

3�2Nb
−

40

3�2�Nb + Nf�
. �44�

Finally, we note that it is possible to construct yet another
gauge invariant bilinear, �†�. Its scaling dimension,
dim��†��, can again be calculated for arbitrary �; we find

dim��†�� = 2 −
64

3�2�Nb + Nf�
. �45�

This quantity too gets a vertex contribution, Fig. 4�d�, in
addition to the 2 dim��� part. Again, the full result is reas-
suringly gauge invariant and for Nb=0 reproduces the results
of Ref. 24 who calculated this number in the context of the
“algebraic spin liquid.”

IV. UNIVERSAL AMPLITUDES OF SUSCEPTIBILITIES
AND SPECIFIC HEAT AT FINITE-T FROM FREE

ENERGY

In the previous section, we studied the action Sbf at T=0,
which corresponded to an infinite three-dimensional system.
We now turn to a study of some properties at T�0, which
corresponds to studying the field theory in a slab geometry in
which two dimensions are infinite, but the third direction has
a finite extent of 1 /T. This naturally complicates the compu-
tations, since the relativistic invariance of T=0 is destroyed
and frequency integrals are replaced by discrete sums on
Matsubara modes. In this section, we evaluate the tempera-
ture dependence of the specific heat and certain susceptibili-
ties that correspond to rotations among the fermionic and
bosonic fields, respectively. All quantities discussed in this
section may be computed exactly from the low-temperature,
low-magnetic field �to be defined below� expansion of the
free energy. We compute such an expansion in the large-Nb,
Nf limit, allowing for an arbitrary value of the ratio Nb /Nf.
Since the computations are done at finite T, we will work in

the gauge introduced in Sec. II B and use the form of the
propagators derived there.

We shall consider two imaginary “magnetic fields,” Hb
and Hf, that are applied in the “direction” parallel to the
SU�N� generator, diag�1 1 1¯−1−1−1¯ �. The chief ad-
vantage of using this generator is that it modifies the action
in a very simple way. For the bosons, it shifts �n→�n
−�Hb /2, where �=1 for the first half of the components of
z� and �=−1 for the others. For the fermions, it does the
same, with �n→�n−�Hf.

Once we have the free energy as a function of Hb ,Hf and
T, we can extract the specific heat and susceptibilities by
differentiating

�b =
�2F
�Hb

2 , �46�

� f =
�2F
�Hf

2 , �47�

CV = −
�

�T
�T2 �

�T

F
T
� = − T

�2F
�T2 . �48�

From the analysis of Ref. 25, it is known that �b ,� f �T
and CV�T2. These simple integer scaling powers are due to
energy conservation and bosonic and fermionic rotational
symmetries. The proportionality constants of CV ,�b, and � f
are universal amplitudes �ACV

, A�b
, and A�f

�, divided by the
square of a nonuniversal velocity, c. Since c is nonuniversal,
it must be determined separately for each model. In the field
theoretic analysis of this section, we will set c=1, though its
presence must be kept in mind for comparisons to simula-
tions and/or experiments.

At large Nb and Nf, we can expand the free energy,
F=−T ln Z,

F = Nbf0b + Nf f
0f + f1� + f1ANb

Nf
� . �49�

Note that in the N=� limit, the gauge field disappears and
the bosons and fermions decouple so they contribute sepa-
rately; in next to leading order, this is not true. Hence, f0b

and f0f are independent of the ratio Nb /Nf, whereas f1A is a
function of the ratio �f1� can only depend on Nb and hence is
also independent of the ratio Nb /Nf�. In order to calculate the
universal amplitudes associated with the specific heat and the
susceptibilities, we compute f0b, f0f, f1� and f1A for arbitrary
T ,Hb ,Hf and Nb /Nf. We first outline the computation of f0b,
f0f and f1, then we present the numerical results for each of
�b ,� f and CV, as the ratio Nb /Nf is varied.

When Nb ,Nf =�, we only need to consider a simple
Gaussian theory of bosons and fermions and the computation
of the free energy is straightforward. Including the shift in �n
as discussed above, we obtain for f0b and f0f
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f0b =
T

2 �
�n

� d2k

4�2 �ln�k2 + ��n + Hb/2�2 + m2�

+ ln�k2 + ��n − Hb/2�2 + m2�	 −
m2

g
,

f0f = − T� d2k

4�2 �ln�1 + e−�k+iHf�/T� + ln�1 + e−�k−iHf�/T�	 ,

�50�

where the mass m of the bosons at the critical coupling de-
pends only on T and the applied field Hb. It can be computed
by minimizing the free energy at Nb=�. This leads to the
following nonlinear equation:

T�
�n

� d2k

4�2�1

2

1

k2 + ��n + �Hb/2�2 + m2� =� d3p

8�3

1

p2 ,

�51�

where � should be summed over �1. Applying the Poisson
summation formula and evaluating the integrals and sums,
we have the equation for m as follows:

� d2k

4�2

1

2�k2 + m2� 1

e��k2+m2+i�Hb/2�/T − 1
� =

m

4�
, �52�

which has the solution

m = T ln�2 cos�Hb/2T� + 1 + ��2 cos�Hb/2T� + 1�2 − 4

2
� .

�53�

Computation of the various quantities of interest at N=�
follows simply by differentiating the free energy.

Turning now to the 1 /N correction to the free energy, f1
receives two contributions: one from the Gaussian fluctua-
tions of the � field and the other from the Gaussian fluctua-
tions of A�. The result is

f1� =
T

2 �
n
� d2k

4�2 ln���� , �54�

f1A =
T

2 �
n
� d2k

4�2 lnD1�D2 +
�n

2

k2D1�� , �55�

where ��, D1, and D2 are evaluated at �k ,�n�, and it must be
kept in mind that they depend on Hb ,Hf through the shift of
all internal boson and fermion frequencies �as detailed
above� in the evaluation of the one-loop graphs for the � and
A� propagators. We note that the value of gc gets a correction
from its N=� value, 1

gc
=
 d3p

8�3
1
p2 �see Sec. II A�, which can be

evaluated from Eq. �21� to be 
 1
gc

= 4
Nf+Nb


 d3q
8�3

1
q2 ; this shift,

which is cutoff dependent, must be included in the free en-
ergy to properly cancel all the UV divergences at O�1 /N�
and produce the universal cutoff-independent results de-
scribed below.

We now turn to a presentation of our results for CV ,�b,
and � f, obtained by numerically differentiating computations
of the free energy formulas outlined above.

A. Specific heat

The quantum critical specific heat at low T is of the form
CV=ACV

T2, where we can organize the large-N expansion of
the universal amplitude ACV

as

ACV
= NbACV

0b + NfACV

0f + ACV

1� + ACV

1A�Nb/Nf� . �56�

Differentiating Eq. �50�, we obtain the estimates ACV

0b

=6 8��3�
10� �1.836 61 and ACV

0f =6 3��3�
4� �1.721 82. Note that the

proportionality of ACV

0b to ��3� with a rational coefficient is
nontrivial.26

Turning to the 1 /N corrections, the computations of ACV

1�

and ACV

1A are far more complicated and involve some tedious
numerical calculations. Basically, numerical computations of
the finite temperature propagators �as detailed in Appendix
A� have to be inserted into Eq. �54�, which is then itself
evaluated numerically. From our numerical analysis, we ob-
tain T

2 �n
 d2k
4�2 ln�8�k2+�n

2��k ,�n��=−0.031 71T3, allowing
us to estimate ACV

1� =−0.383 68. We can get ACV

1A from a simi-
lar analysis; we plot it as a function of Nb /Nf in Fig. 5.

B. Susceptibility to applied Hb

The susceptibility to Hb is obtained by differentiating the
free energy twice with respect to Hb �keeping Hf =0 through-
out�. The large-N expansion of the amplitude A�b

defined
from �b=A�b

T can be organized as

A�b
= NbA�b

0b + A�b

1� + A�b

1A�Nf/Nb� . �57�

We obtain the estimate A�b

0b=
�5
4� ln�

�5+1
2 ��0.085 627 1. From

our numerical analysis described briefly above, we find
T
2 �n
 d2k

4�2 ln�8�k2+�n
2��k ,�n��=−0.031 71T3−0.013 25Hb

2T.
This allows us to estimate A�b

1��−0.026 50. Finally, from the
numerical evaluation of the gauge field, we plot the function
A�f

1A�Nf /Nb� in Fig. 6.

0.01 0.1 1 10 100
1

1.5

2

2.5

3

Nb/Nf

A1A
CV

FIG. 5. �Color online� Gauge field fluctuation contribution to the
specific heat amplitude, ACV

1A plotted as a function Nb /Nf. The val-
ues at Nb /Nf =0,� are shown for reference as dashed lines.
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C. Susceptibility to applied Hf

Finally, we turn to an evaluation of the susceptibility to Hf
which also has a linear-T dependence. The universal ampli-
tude appearing �just as in the case of �b above� can be ex-
panded as

A�f
= NfA�f

0f + A�f

1A�Nb/Nf� . �58�

In this case, we obtain A�f

0f =2 ln�2�
2� �0.220 636. A computa-

tion of the function A�f

1A�Nb /Nf� along the lines described
above is plotted in Fig. 7.

V. CONCLUSIONS

All the computations carried out in this paper have been
for the continuum field theory, Sbf, and are hence of interest
to any problem which realizes this field theoretic description.
We now list three different physical problems of interest to
which these results are applicable, and provide a brief sum-
mary of the connections between physical quantities and the
universal numbers we have computed. Another context in
which the thermodynamics of the Sbf theory appears is the
QED3 theory of underdoped cuprates.27 We note that the
“magnetic” susceptibility considered in Ref. 27 is not a cor-
relation function of generators of the flavor symmetry �as we
have calculated here�. Hence, while our results for the spe-
cific heat apply to their model, their magnetic susceptibility
is distinct from our � f.

Deconfined Néel-VBS transition. The deconfined Néel-

VBS transition has been shown to be described by the field
theory Sbf with Nf =0. The results of Sec. III apply directly to
the critical exponents of this transition �which has Nf
=0,Nb=2�. In particular, Eqs. �34� and �38� characterize the
two-point Néel correlation function. At the Néel-VBS quan-
tum critical point, the uniform magnetic susceptibility, �u,
should depend linearly on temperature. This quantity is ex-
actly the �b, Eq. �57� computed in Sec. IV with Nf =0. The
result for CV, Eq. �56� with Nf =0 also applies to the decon-
fined Néel-VBS transition.

Algebraic charge liquids. In a recent publication,11 a new
class of states of matter, dubbed “algebraic charge liquids”
�ACLs�, were shown to arise naturally in doped quantum
antiferromagnets, which are close to the deconfined Néel-
VBS quantum critical point. In the language of this study, z�

are bosons that carry spin and � are the superconducting
quasiparticles. In this study, the transition from a supercon-
ducting Néel state to the superconducting ACL state is de-
scribed precisely by the field theory under study here with
Nb=2 and Nf =4, whereas the criticality of the ACL state is
described simply by Nb=0,Nf =4. The critical exponents of
Sec. III apply directly to the transition from the supercon-
ducting Néel state to the s-ACL state. It has been shown11

that the susceptibility � f discussed in Sec. IV is related to the
finite-T contribution to the superfluid density of the s-ACL
state �the result for � f at Nb=0 was published in Ref. 11�.
Just like the Néel-VBS case, the susceptibility �b is the uni-
form magnetic susceptibility, and in Sec. IV, we have the
results for the universal amplitude both at the critical point
and in the s-ACL phase.

Algebraic spin liquids. Finally, the result for � f with Nb
=0 applies to the fermionic spinon theories of algebraic spin
liquids of square,28 kagome,29 and other lattices. In this case,
� f is related to the uniform magnetic spin susceptibility be-
cause the fermions carry spin.
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APPENDIX A: EFFECTIVE ACTION AT LARGE N:
EVALUATION OF D1, D2, �A, AND ��

In this section, we provide the details on the evaluation of
the functions D1 and D2 that determine the effective action
for the photons at large N. We evaluate the general form of
these functions at large Nb ,Nf and at finite T, as defined in
Eq. �10�. From these results, we can get �A relevant to Sec.
II A, by setting T=0 and completing all integral analytically.
Finally, we provide a computation of the � propagator.

The evaluation of D1 and D2 corresponds to evaluating
the diagrams in Fig. 2 at finite T. Each function gets a con-
tribution from the bosonic as well as fermionic loops. We
evaluated these separately, writing D1=D1b+D1f and D2
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FIG. 6. �Color online� Gauge field contribution to the amplitude
of the susceptibility to applied Hb as a function of Nf /Nb.
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FIG. 7. �Color online� Gauge field contribution to the amplitude
of the susceptibility to applied Hf as a function of Nb /Nf.
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=D2b+D2f. We first present an evaluation of the fermionic
loops and then turn to a computation of the bosonic contri-
butions.

1. D1f ,D2f: Fermionic loops

The only diagram that needs to be evaluated for the fer-
mions is the one appearing in Fig. 2�c�. Starting with the
function D1f�k ,�n� we have

D1f�k,�n� = − Nf�
q,�n

Tr�G��q,�n�G��k + q,�n + �n��

= 2Nf�
q,�n

�n��n + �n� − q · �q + k�
��n

2 + q2����n + �n�2 + �q + k�2�

= Nf�
q,�n

� − 2

q2 + �n
2

+
�2�n + �n�2 + k2

��n
2 + q2����n + �n�2 + �q + k�2�� . �A1�

We will use the shorthand 
q,�n
=T��n


 d2q
4�2 to signify a sum-

mation on the internal frequencies and momenta in this pa-
per. Evaluating the first term by �-function regularization,
and performing the momentum integration in the second
term using the usual Feynman trick, we find

D1f�k,�n� =
NfT ln 2

�
+

NfT

4�

��
�n

�
0

1

dx
�2�n + �n�2 + k2

�1 − x��n
2 + x��n + �n�2 + k2x�1 − x�

=
NfT ln 2

�
+

NfT

4�
�
�n

2
�2�n + �n�2 + k2

A

�ln
A + k2 + �n

2 + ��n + �n�2

2��n��n + �n��
,

where

A2 = �k2 + ���n� − ��n + �n��2��k2 + ���n� + ��n + �n��2� .

�A2�

The frequency summation is formally divergent, but we can
subtract the divergent piece by �-function regularization to
yield

D1f�k,�n� =
NfT ln 2

�
+

NfT

4�
�
�n

�2
�2�n + �n�2 + k2

A

�ln
A + k2 + �n

2 + ��n + �n�2

2��n��n + �n��
− 4� . �A3�

This frequency summation is now evaluated numerically. For
this, it is useful to know the large �n behavior of the term in
the curly brackets. After symmetrizing the positive and nega-
tive frequencies, we obtain

�k2 + �n
2�� 1

3�n
2 +

9�n
2 − k2

30�n
4 +

50�n
4 − 19�n

2k2 + k4

210�n
6 + ¯ � .

�A4�

The asymptotic behavior is then summed by using the iden-
tities

�
n=N+1

�
1

�2n − 1�2 =
1

4N
−

1

48N3 +
7

960N5 + ¯ ,

�
n=N+1

�
1

�2n − 1�4 =
1

48N3 −
1

96N5 + ¯ ,

�
n=N+1

�
1

�2n − 1�6 =
1

320N5 + ¯ . �A5�

We now turn to a similar evaluation as above for D2f,

D2f�k,�n� = −
k2

kxky
NT�

�n

� d2q

4�2Tr��xG��q,�n��yG��k + q,�n + �n��

= −
k2

kxky
2NT�

�n

� d2q

4�2

2qxqy + qxky + qykx

��n
2 + q2����n + �n�2 + �q + k�2�

=
NfT

�
�

0

1

dx�
�n

x�1 − x�k2

��1 − x��n
2 + x��n + �n�2 + k2x�1 − x��

=
NfT

�
�
�n

�1 +
��n + �n�2 − �n

2

2k2 ln
��n + �n�2

�n
2 −

���n + �n�2 − �n
2�2 + k2���n + �n�2 + �n

2�
Ak2 ln

�A + k2 + �n
2 + ��n + �n�2�

2��n��n + �n�� � .

�A6�
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The large �n behavior of the term in the curly brackets, after
symmetrizing the positive and negative frequencies, is

k2� 1

6�n
2 +

7�n
2 − 2k2

60�n
4 +

13�n
4 − 34�n

2k2 + 3k4

420�n
6 + ¯ � .

�A7�

At T=0, the exact values of D1,2f can be computed ana-
lytically,

D1f�k,�� = D2f�k,�� =
Nfk

2

16�k2 + �2
. �A8�

2. D1b ,D2b: Bosonic loops

We now present the evaluation of D1b and D2b that arise
from the diagrams in Figs. 2�a� and 2�b�. The function D1b is

D1b�k,�n� = NbT�
�n

� d2q

4�2� 2

q2 + �n
2 + r

−
�2�n + �n�2

�q2 + �n
2 + r���q + k�2 + ��n + �n�2 + r�� .

�A9�

The first term we evaluate by dimensional regularization

=T�
�n

� ddq

4�2

2

q2 + �n
2 + r

�A10�

=
��1 − d/2�

�4��d/2 T�
n

1

��n
2 + r�1−d/2

=
��1 − d/2�

�4��d/2 Td−1� T
�r
�2−d

+ �d − 2��
n=1

�

ln1 +
r

�n
2�

+
2

�2��2−d��2 − d�� �A11�

=−
1

2�
�ln�r

T
� + �

n=1

�

ln1 +
r

�n
2�� = 0, �A12�

where we have used the large-N value for the mass parameter
�r=2 ln���5+1� /2� in the last line �see Chap. 5 of Ref. 30
for more details�.

D1b�k,�n� =
NbT

4�
�
�n

�
0

1

dx�4

−
�2�n + �n�2

�1 − x��n
2 + x��n + �n�2 + r + k2x�1 − x�� .

�A13�

The frequency summand has the following expansion at
large �n:

2k2 + 12r − �n
2

3�n
2 +

− 4k4 + k2�− 40r + 17�n
2� − 3�40r2 − 50r�n

2 + 3�n
4�

30�n
4

+
6k6 + �84r − 73�n

2�k4 + �420r2 − 826�n
2r + 81�n

4�k2 + 10�84r3 − 315�n
2r2 + 147�n

4r − 5�n
6�

210�n
6 .

For D2b we have

D2b�k,�n� =
NbT

4�
�
�n

�
0

1

dx
k2�2x − 1�2

�1 − x��n
2 + x��n + �n�2 + r + k2x�1 − x�

, �A14�

and the following expansion at large �n:

k2� 1

3�n
2 −

k2 + 10r − 11�n
2

30�n
4

+
k4 + 70r2 − 266r�n

2 + 86�n
4 + 14k2r − 23k2�n

2

210�n
6 � .

�A15�

3. �A and ��: Action at T=0

The above expressions for D1 and D2 at finite T were
brought into a form from which efficient numerical evalua-
tion was possible. At T=0, a full analytic evaluation of the
integrals entering the effective action is possible. We will
outline the steps of these calculations now. We begin with a
computation of �A. Just as in the finite-T case, �A=�A

b

+�A
f receives contribution from both bosonic and fermionic

loops, which follow from the T→0 limit of the above
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expressions for the finite-T action. Using the form in Eq. �6�,
we can deduce by looking, for example, at the qxqy term as
follows:

− �A
b qxqy

q2 = − Nb� d3q

8�3

�2k + q�x�2k + q�y

�k2 + r���k + q�2 + r�
. �A16�

Now, the evaluation of this integral follows the standard
steps �outlined, for example, in Appendix B� and we find

�A
b�p,r� = Nb� p2 + 4r

8�p
tan−1 p

2�r
� −

�r

4�
� . �A17�

The fermionic contribution can be evaluated in a similar way
or by noting the simple relationship, �A= p2+�2

p2 D2�p ,��, giv-
ing from Eq. �A8� that

�A
f �p� =

Nfp

16
. �A18�

Putting these results together we get the expression for �A
quoted in Eq. �7�. It is curious to note that when r=0 the
bosonic contribution becomes �A

b�p ,0�=
Nbp
16 , exactly the

same as for the fermions.
The evaluation of �� follows the same steps as for �A

b

except with different contributions at the vertices, Fig. 2�d�.

���q� = Nb� d3k

8�3

1

�k2 + r���k + q�2 + r�
, �A19�

which can be evaluated using the usual Feynman parameter
and integration shift of Appendix B, resulting in the form
quoted in Eq. �7�.

APPENDIX B: EVALUATION OF IA

Here, we explicitly show how to calculate IA that appears
in computations of Sec. III A. We note that we have used the
standard sequence of steps illustrated in this example below
many times in the course of the computations presented in
this paper.

IA =� d3p

8�3

4p2 −
4�

q2 �p · q�2 + �4p · q + q2��1 − ��

�p2 + rg�2��p + q�2 + rg�
.

�B1�

The integral is evaluated by executing the following steps in
sequence: Introduce a Feynman parameter x, shift to l= p
+xq, integrate over l, and then integrate over x.

IA = �
0

1

dx2�1 − x�

�� d3p

8�3

4p2 −
4�

q2 �p · q�2 + �4p · q + q2��1 − ��

��1 − x��p2 + rg� + x��p + q�2 + rg�	3

= �
0

1

dx2�1 − x�

�� d3l

8�3

4l21 −
�

3
� + q2�1 − ���4x�x − 1� + 1�

�l2 + r + q2x�1 − x��3

= �
0

1

dx2�1 − x�� 3

8�

1 − �/3
�q2�1 − x�x + r

+
�4x�x − 1� + 1��1 − ��q2

32�

1

��q2�1 − x�x + r�3�
� �1 − �����0,rg� +

1

4q
−

�rg

�q2 + O 1

q3� . �B2�

The neglected terms produce UV convergent diagrams when
the integrals over q are evaluated and hence can be ne-
glected.

APPENDIX C: DIAGRAMMATIC EVALUATION OF
FERMION SUSCEPTIBILITY

In this appendix, we calculate one of the universal ampli-
tudes of Sec. IV, A�f

, by an entirely different diagrammatic
method. The perfect agreement between the two methods
provides a nontrivial check on our rather involved computa-
tions.

Consider the susceptibility, � f, of the SU�Nf� charge, Qa

=��
†T��

a ��, where Ta is a generator of the symmetry. Since
the SU�Nf� charge is a conserved density, it acquires no
anomalous dimension. Indeed, a simple scaling analysis25 es-
tablishes that for z=1 criticality, in d=2 spatial dimensions,
it must have a linear-T dependence with a coefficient that is
a universal amplitude A�f

divided by the square of a nonuni-
versal velocity.

� f =
A�f

c2 T . �C1�

We will set c=1 in the following. In general, we can think of
the universal amplitude as a universal function A�f
=A�f

�Nf ,Nb� for arbitrary Nf ,Nb. In the following, we will
calculate this functional dependence at large Nf ,Nb but for
arbitrary values of the ratio Nb /Nf.

A�f
at N=�. At N=�, we have a free theory of Dirac

fermions and � f can be computed by simply evaluating the
diagram in Fig. 8�a�.

� f = − �Tr�Ta�2�T�
�n

� d2k

4�2Tr�− i�n + �� · k�−2

= 2�Tr�Ta�2��
�n

� d2k

4�2

�n
2 − k2

�k2 + �n
2�2 . �C2�

We will evaluate the momentum integration first, using di-
mensional regularization, and then the frequency summation,
using �-function regularization. It is easy to obtain the final
answer by evaluating the frequency summation before the
momentum integration, in which case no cutoff or regular-
ization is needed. However, on including gauge fluctuations,
it appears more convenient to perform the momentum inte-
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gration first; this N=� calculation then provides an opportu-
nity to illustrate the method by which we regulate the fre-
quency sums later on. Performing the momentum integration
in d spatial dimensions, we obtain

� f = �Tr�Ta�2�
2�1 − d���1 − d/2�

�4��d/2 T�
�n

���d−2. �C3�

We evaluate the frequency summation using

g�s� = T�
�n

1

��n�s
= 2T1−s�−s�1 − 2−s���s� . �C4�

From this, note that

T�
�n

1 = g�0� = 0,

T�
�n

ln��n� = −�dg

ds
�

s=0
= T ln 2. �C5�

Using these results in Eq. �C3� in taking the limit d→2, we
obtain

� f = �Tr�Ta�2�
T ln 2

�
. �C6�

A�f
at next to leading order in 1 /N. We now turn to a

computation of the diagrams of Figs. 8�b� and 8�c�; these are
the only contributions to � f at next to leading order. As will
be clear below, a full evaluation of these diagrams is not
possible analytically. However, we will be able to achieve
our main goal, which is to extract the numerical value of the
1 /N corrections to the N=� value of A�f

computed above.
A direct evaluation of the two diagrams, Figs. 8�b� and

8�c� can be written in the form �including the N=� result
above�

� f = �Tr�Ta�2��D1�0,0� +
1

N
T�

�n

� d2k

4�2�D3�k,�n�
D1�k,�n�

−
D4�k,�n�

D2�k,�n� + ��n
2/k2�D1�k,�n��� ,

D3�k,�n� � NfT�
�n

� d2q

4�2Tr�2G�
3 �q,�n�G��q + k,�n + �n�

+ G�
2 �q,�n�G�

2 �q + k,�n + �n�� ,

D4�k,�n� � NfT�
�n

� d2q

4�2Tr�2G�
3 �q,�n��iG��q + k,�n

+ �n�� j + G�
2 �q,�n��iG�

2 �q + k,�n + �n�� j�

�
ij −
kikj

k2 � , �C7�

where the functions D1,2 have been introduced �Sec. II B�
and computed �Appendix A� before. Computations of D3,4
are presented in Appendix D. We note here that the depen-
dence of A�f

on Nb enters through the Nb dependence of
D1,2. A full numerical evaluation of A�f

was carried out and
was found to reproduce the results of Sec. IV up to three
significant digits.

APPENDIX D: EVALUATION OF D3 and D4

In this appendix, we summarize our strategy to evaluate
the functions D3 and D4 defined in Eq. �C7�. The techniques
are similar to those used to evaluate D1,2 and we will simply
quote the final answers,

D3�k,�n� = NT�
�n

� d2q

4�2Tr�2�− i�n + �� · q�−3�− i��n + �n� + �� · �q + k��−1 + �− i�n + �� · q�−2�− i��n + �n� + �� · �q + k��−2	

=
NT

2�
�

0

1

dx�
�n

�− 2�x − 1��n
4 − �x − 1��5x�n + �n��n

3 − �x − 1��2x2k2 − xk2 − 2x2�n
2 + 7x�2��n

2

− �x − 1��7k2�nx3 − 3�n
3x2 − 8k2�nx2 + 3�n

3x + 3k2�nx��n − �x − 1���x − 1�x2k4 + 3x3�n
2k2 − 2x2�n

2k2 − x2�n
4�	

�
�− 1�

��1 − x��n
2 + x��n + �n�2 + k2x�1 − x��3 . �D1�

This last lengthy expression was generated in LATEX by MATHEMATICA, and also translated to FORTRAN by MATHEMATICA. The
integral over x was evaluated numerically, and the frequency summation was performed using the following expansion at large
�n:

(a)

(b) (c)

FIG. 8. Diagrammatic contributions to the susceptibility, � f,
arising �a� at N=� ��b� and �c�� at order 1 /N. All the diagrams give
a linear-T dependence as expected for the susceptibility of a con-
served charge for z=1 criticality in d=2 �Ref. 25�.
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−
1

�n
2 −

k2 − �n
2

2�n
4 +

− k4 + 7k2�n
2 − 2�n

4

6�n
6 . �D2�

Similarly for D4, we have

D4�k,�n� = 
ij −
kikj

k2 �NT�
�n

� d2q

4�2Tr�2�− i�n + �� · q�−3�i�− i��n + �n� + �� · �q + k��−1� j

+ �− i�n + �� · q�−2�i�− i��n + �n� + �� · �q + k��−2� j	

=
NT

2�
�

0

1

dx�
�n

�− �1 − 3x��x − 1��n
4 − �x − 1��− 10�nx2 + 3�nx + �n��n

3

− �x − 1��− 6k2x3 − 8�n
2x3 − k2x2 − 7�n

2x2 + 8k2x + 8�n
2x��n

2

− �x − 1��− 6k2�nx4 − 8�n
3x3 + k2�nx3 + �n

3x2 + 4k2�nx2 + 3�n
3x + 3k2�nx��n

− �x − 1��x2�x3 − 4x2 + 6x − 3�k4 − 3x4�n
2k2 + 6x3�n

2k2 − 2x2�n
2k2 − 2x3�n

4 + x2�n
4�	

�
�− 1�

��1 − x��n
2 + x��n + �n�2 + k2x�1 − x��3 . �D3�

The frequency summand has the following expansion at large �n:

− 2k2 + �n
2

2�n
4 +

4k4 − 17k2�n
2 − �n

4

6�n
6 . �D4�
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