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The single band, two-dimensional Hubbard Hamiltonian has been extensively studied as a model for high
temperature superconductivity. While quantum Monte Carlo simulations within the dynamic cluster approxi-
mation are now providing considerable evidence for a d-wave superconducting state at low temperature, such
a transition remains well out of reach of finite lattice simulations because of the “sign problem.” We show here
that a bilayer Hubbard model, in which one layer is electron doped and one layer is hole doped, can be studied
to lower temperatures and exhibits an interesting signal of d-wave pairing. The results of our simulations bear
resemblance to a recent report on the magnetic and superconducting properties of Ba2Ca3Cu4O8F2 which
contains both electron and hole doped CuO2 planes. We also explore the phase diagram of bilayer models in
which each sheet is at half-filling.
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I. INTRODUCTION

The single band, two-dimensional Hubbard Hamiltonian
provides one possible microscopic model for pairing, which
is driven by electronic correlations rather than the interac-
tions of electrons with the lattice. Many analytic and
numeric1 treatments suggest that there may indeed be a su-
perconducting phase at low temperature away from half-
filling in this model. The issue is a difficult one, however,
owing to the likely existence of a variety of different phases
which are close in energy on the one hand and the nature of
the approximations made in the solution on the other. Exact
diagonalization studies,2,3 while very useful, are typically on
lattices of only a few tens of sites, and hence finite size
effects are a considerable concern. Quantum Monte Carlo
�QMC�,4,5 which can, in principle, address the issue in an
unbiased way �on lattices, an order of magnitude or more
larger than diagonalization�, has been unable to sufficiently
access low temperatures due to the “minus sign problem.”6

Recently, progress has been made by using improved
numerical methods. The “density matrix renormalization
group” has pushed forward from one dimension to address
geometries of many coupled chains.7 The dynamic cluster
approximation has improved on dynamical mean field treat-
ments by showing the robustness of a finite temperature tran-
sition to a superconducting state as an increasingly fine
momentum grid is incorporated in the self-energy.8 Never-
theless, there is still numerical work which contests the con-
clusion that the two-dimensional Hubbard Hamiltonian has
long range d-wave pair correlations.9

In this paper, we present determinant quantum Monte
Carlo �DQMC� calculations of a bilayer Hubbard model for
which we are able to attain much lower temperatures than the
single layer case. Specifically, by symmetrically doping the
two layers about half-filling, �=1, we find that the sign prob-
lem is greatly reduced, allowing simulations at temperatures
that are roughly 2 orders of magnitude below the bandwidth,
T�W /100. In single layer simulations of the doped system,
the lowest attainable temperatures are T�W /40. Previous
DQMC studies of bilayer models have looked at the case

when both layers are half-filled and examined the magnetic
order-disorder transitions that occur as the interlayer hopping
is increased.10 A decreasing interlayer hopping monotoni-
cally reduces the pairing correlations in this situation.

Our work is partially motivated by studies of
Ba2Ca3Cu4O8F2 and Ba2Ca2Cu4O6F2 which are an experi-
mental realization of materials in which electron and hole
doped sheets coexist within the family of cuprate
superconductors.11 In the former, four-layered compound, the
two outer planes are electron doped with Ne�0.06–0.08,
while the two inner planes are hole doped roughly symmetri-
cally, which is Nh�0.06–0.08. The superconducting transi-
tion temperature is Tc=55 K, and pairing coexists with long
range antiferromagnetic �AF� order with Néel temperature
TN=100 K. The latter, three-layered compound has outer
plane doping Ne�0.06–0.08 but have larger inner plane
doping Nh�0.13. Its superconducting Tc=76 K, with only
short range antiferromagnetic correlations. This is attributed
to a decoupling of the magnetism of the electron doped outer
planes by the large doping of the inner plane.11

II. MODEL AND METHODOLOGY

In order to model such materials, we consider the two
layer Hubbard Hamiltonian,

H = − t �
�i,j�m�

�cjm�
† cim� + H.c.� − t��

i�
�ci1�

† ci2� + H.c.�

− �
im�

�mnim� + U�
im

�nim↑ − 1
2��nim↓ − 1

2� . �1�

The first term is the usual hopping of electrons between near
neighbor sites i and j of a two-dimensional square lattice.
The hopping parameter t sets the energy scale: we take t=1
in what follows. Unless otherwise stated, the results in this
paper are for two coupled 8�8 lattices. The electrons in the
kinetic energy term have a spin index �= ↑ ,↓ and also a
layer index m=1,2. The second term is an interlayer hop-
ping. The third term is a layer-dependent chemical potential.
We will choose �1=−�2 to produce layers that have opposite
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dopings. Finally, electrons of opposite spin on the same site
of the same layer feel a repulsion U.

Our simulations employ the DQMC algorithm5,12 in
which a path integral is written for the partition function, the
fermion interactions are replaced by a coupling to an auxil-
iary Hubbard–Stratonovich field, and then the fermion de-
grees of freedom are analytically integrated out. The method
produces exact results on the lattice sizes considered, apart
from the “Trotter” errors associated with the imaginary time
discretization, which we have verified are smaller than our
statistical error bars.

The magnetic properties are determined from the spin-
spin correlations,

c�l� = �Mj+l,m
z Mj,m

z � ,

Mj,m
z = njm↑ − njm↓, �2�

which are independent of layer index m because of our
choice of symmetric doping and the particle-hole symmetry
of the Hubbard Hamiltonian. The Fourier transform gives the
structure factor,

S�q� = �
l

eiq·lc�l� . �3�

At half-filling, S�q� is largest at the antiferromagnetic wave
vector q= �� ,� ,��.

A first insight into the metal-insulator transition can be
obtained from the zero momentum spectral function �density
of states� A��� which is determined from the Green’s func-
tion,

Gi-j,m���� = �cim����cjm�
† �0�� ,

Gkm���� = �
l

eik·lGlm���� ,

A��� = �
0

	

d�
e−��

e	� + 1�
m�

Gk=0,m���� , �4�

using the maximum entropy method.13

The dc conductivity �dc also characterizes the metal-
insulator transition and is measured from the current-current
correlation function,

jx�l,�� = eH�jx�l,0�e−H�,

jx�l,0� = it�
m�

�cl+xm�
† clm� − clm�

† cl+xm�� ,


xx�q;�� = �
l

eiq·l�jx�l,��jx�0,0�� . �5�

This imaginary time quantity, which directly comes out of
the determinant QMC simulations, is related to the real fre-
quency response by the fluctuation-dissipation theorem,


xx�q;�� = �
−�

+� d�

�

e−��

1 − e−	� Im 
xx�q,�� . �6�

As discussed in Ref. 14, at sufficiently low temperatures, we
can replace Im 
 by its low frequency behavior Im 

��dc�, leading to the relation,


xx�q = 0;� =
	

2
	 =

��dc

	2 . �7�

This enables us to directly obtain the conductivity from the
imaginary time response without the necessity for analytic
continuation, which is more difficult for two particle re-
sponse functions, such as the current-current correlator, than
for the single particle Green’s function, owing to their larger
fluctuations.

To describe superconductivity, we compute the correlated
pair field susceptibility P� in different symmetry channels,

P� = �
0

	

d��
����
�
†�0�� ,


�
† =

1

N
�
k

f��k�ck↑
† c−k↓

† ,

fs�k� = 1,

fs*�k� = cos kx + cos ky ,

fd�k� = cos kx − cos ky . �8�

The correlated susceptibility P� takes the expectation
value of the product of the four fermion operators entering
Eq. �8�. We also define the uncorrelated pair field suscepti-

bility P̄� that instead computes the expectation values of
pairs of operators prior to taking the product. Thus, for ex-
ample, in the s-wave channel,

Ps =
1

N2�
i,j
�

0

	

d��ci↓���ci↑���cj↑
† �0�cj↓

† �0�� ,

P̄s =
1

N2�
i,j
�

0

	

d��ci↓���cj↓
† �0���ci↑���cj↑

† �0�� . �9�

Here, P� includes both the renormalization of the propaga-
tion of the individual fermions as well as the interaction

vertex between them, whereas P̄� includes only the former

effect. Indeed, by evaluating both P and P̄, we are able to
extract15 the interaction vertex �,

�� =
1

P�

−
1

P̄�

. �10�

If ��P̄��0, the associated pairing interaction is attractive. In
fact, rewriting Eq. �10� as

BOUADIM et al. PHYSICAL REVIEW B 77, 144527 �2008�

144527-2



P� =
P̄�

1 + ��P̄�

�11�

suggests that ��P̄�→−1 signals a superconducting instabil-
ity. We will discuss this criterion in more detail in Secs. IV
and V.

III. BILAYER PHASE DIAGRAM AT HALF-FILLING

We begin with the phase diagram at half-filling, which is
when �1=�2=0 and both layers have equal occupation �1
=�2=1. �Note that there is no sign problem in this case be-
cause of particle-hole symmetry.� Here, we do not expect
superconductivity. Nevertheless, there is an interesting com-
petition between Mott insulating behavior when U is the
dominant energy scale and band insulating behavior for large
t�. Indeed, increased interlayer coupling suppresses the an-
tiferromagnetic correlations that are present in the Mott
phase, since t� promotes the formation of interlayer singlets
between the two spatial sites immediately above and below
each other. These spin-0 singlets are magnetically decoupled,
destroying long range spin order. Earlier determinant QMC
studies determined the critical value of t��1.6 for this AF-
paramagnetic transition.10

The strong coupling region of Fig. 1 exhibits this phe-
nomena and yields a t�c consistent with the earlier study.10

At weak coupling, however, this insulator-insulator transition
is replaced by a metallic phase. Previous cluster dynamical
mean field theory �DMFT�16 studies of the bilayer model
show a phase diagram that is in qualitative agreement with
Fig. 1. We will compare the results of the two methods in
more detail at the end of Sec. III. First, we will describe in
detail how this phase diagram is obtained.

In Fig. 2, the density of states at the Fermi surface, A��
=0�, is shown for four temperatures along a horizontal cut
through the phase diagram at fixed t�=2. At weak coupling,
the low temperature limit is nonzero, which indicates a me-

tallic phase, while at strong coupling, A��=0� decreases as T
is lowered. We conclude that at the crossing point U�2.8, a
metal-insulator transition occurs.

In Fig. 3, we see that the conductivity �dc similarly can
determine the location of the metal-insulator phase boundary.
Here, a change in the temperature behavior of the conductiv-
ity, from increasing as T is lowered �metallic� to decreasing
when T is lowered �insulating�, occurs at U�2.6 when the
interlayer hopping is t�=3.4.

Multiple horizontal �constant t�� cuts through the phase
diagram similar to those of Figs. 2 and 3 were used to gen-
erate the metal-insulator phase boundary of Fig. 1. Note the
consistency of the locations of the critical interaction
strengths between those obtained from the density of states
A��=0� �red squares in Fig. 1� and the conductivity �dc
�green diamonds in Fig. 1�.

In this bilayer model, at half-filling �1=�2=0, the sup-
pression of the zero frequency spectral weight can come

0 2 4 6
U

0

1

2

3

4
t ⊥

SDW
A(ω=0)
σdc

Metal

BI

AF-MI

Paramagnetic

FIG. 1. �Color online� Phase diagram for the half-filled bilayer
Hubbard model. A paramagnetic metallic phase is present at weak
coupling. At large coupling, there is a transition from an antiferro-
magnetic Mott-insulating phase to a paramagnetic band-insulating
phase. The phase boundaries obtained by the conductivity � and
density of states at the Fermi level, A�0�, are consistent.
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FIG. 2. �Color online� Density of states at the Fermi surface
A�0� for t�=2. At weak U, A�0� rises as T=1 /	 is lowered, indi-
cating a metallic phase with nonzero Fermi level density of states.
In contrast, at large U, A�0� falls with decreasing T, indicating
insulating behavior. Uc�2.8.
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FIG. 3. �Color online� The conductivity �dc for a horizontal cut
�fixed t�=3.4� and varying U through the phase diagram. Values at
four inverse temperatures are given. As with the density of states at
the Fermi energy, A��=0�, as shown in Fig. 2, the conductivity
exhibits a crossing pattern that gives the location of the metal-
insulator phase boundary: �dc increases as 	 increases �metallic
behavior� below U�2.6 and falls as 	 increases above this value.
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from any of three mechanisms: the opening of a band gap at
sufficiently large t�, a “Slater gap” created by antiferromag-
netic fluctuations which can form on a scale set by the ex-
change constant J� t2 /U, and a “Mott gap” between the up-
per and lower Hubbard bands when U exceeds the bandwidth
W. �The bandwidth W=8t at t�=0.� In general, these differ-
ent insulating phases cross over to each other more or less
smoothly, although the Slater insulator can be distinguished
by the presence of long range spin correlations. Figure 4
shows the full frequency dependence of the density of states
at U=3 and three values of t�, all of which exhibit a gap in
A���. 
The nonzero residual values of A��� for t�=1.4 and
4.0 will be driven to zero if 	 is increased; see Fig. 2.� From
Fig. 4, we infer that the phase diagram is insulating all along
the vertical line U=3 in Fig. 1.

In contrast, Fig. 5, which shows the same three values of
t� except at weaker coupling, U=2, clearly exhibits metallic
behavior for the intermediate value of the interlayer hopping.
This is one indication of the outward extent of the metallic
region from U=0 in the phase diagram of Fig. 1.

We turn now to the spin correlations. Figure 6 shows the
real space spin correlations for U=5 and different interlayer
hoppings. t� drives the formation of interlayer singlets which
interfere with the magnetic order. A finite size scaling analy-
sis is shown in Fig. 7 where the structure factor is plotted as
a function of the inverse linear system size. Spin wave theory
predicts17 that the finite size corrections to S�� ,� ,�� should
be linear in 1 /Nx, with the Nx→� intercept proportional to
the square of the order parameter. We see that the order pa-
rameter is nonzero for t�=0.6 and 1.4 and is zero for t�

=2.8 and 3.4. Somewhere in the vicinity of t��2, the long
range magnetic order is destroyed. Figure 8 shows a similar
finite size scaling analysis for weaker coupling, U=2. There
is no long range magnetic order for any value of t�.

The finite size scaling analysis in these figures is identical
to that used by Hirsch and Tang18 in their seminal study
which numerically established the existence of long range
antiferromagnetic order in the ground state of the half-filled
single band Hubbard model.
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U=3 β=14

FIG. 4. �Color online� Density of states A��� at U=3 and in-
verse temperature 	=14, showing insulating behavior at all values
of interlayer coupling. t�=0 and t�=1.4 are Mott/Slater insulating
phases with a gap produced by a combination of the on-site repul-
sion and antiferromagnetic spin correlations. t�=4.0 has a gap
which is primarily band insulator in character.
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FIG. 5. �Color online� The same as Fig. 4, except U=2. Al-
though t�=0.0 and 4.0 are still insulating, the density of states for
t�=1.4 has a peak at �=0 and is metallic in character.
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FIG. 6. �Color online� Real space spin correlations at U=5. As
t� increases, the antiferromagnetism is suppressed. The inverse
temperature 	=14.
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FIG. 7. �Color online� Scaling of the antiferromagnetic structure
factor at U=5. If there are long range correlations, S�� ,� ,��
should linearly grow with lattice size N, so that S�� ,� ,�� /N ap-
proaches a constant for large N. Spin wave theory predicts a 1 /Nx

correction, where Nx is the linear lattice size �Nx
2=N�. Here, we see

long range order for the three smallest values t�=0.6, 1.4, and 2.0,
but not for the two largest values t�=2.8, and 3.4.
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Multiple vertical �constant U� cuts through the phase dia-
gram similar to those of Figs. 6–8 were used to generate the
limit of the antiferromagnetically ordered regions of the
phase diagram �Fig. 1�. This value is consistent with previ-
ous DQMC studies10 and cluster DMFT.16

We conclude Sec. III with a more quantitative comparison
of Fig. 1 with the results obtained in cluster DMFT.16 At
strong coupling, the AF insulator to paramagnetic �bond� in-
sulator transition is found by both methods to have the same
value t�=2. Likewise, in both approaches, the base of the
metallic phase at U=0 extends from t�=0 to t�=4, as in-
deed it must analytically from the noninteracting dispersion
that has bonding and antibonding bands,

�1�k� = − t� + 2t�cos kx + cos ky� ,

�2�k� = + t� + 2t�cos kx + cos ky� . �12�

The extent of the metallic phase as U increases from the
noninteracting limit quantitatively differs in the two meth-
ods. The DQMC results reported here indicate an upper limit
of U�3, while within cluster DMFT, the metallic region
extends out to U�8. The precise origin of this disagreement
is not clear. The peak of the cluster DMFT metallic lobe
follows the emerging AF-band insulator line rather narrowly,
and it is possible that DQMC cannot resolve this small re-
gion adequately. While the results of Figs. 2 and 4 seem
unambiguously to rule out metallic behavior much beyond
U�3, they are on lattices of finite extent �N=8�8�. Cluster
DMFT works in the thermodynamic limit and hence typi-
cally produces sharper transitions that can distinguish narrow
regions of phase space. On the other hand, DQMC incorpo-
rates the full momentum dependence of the self-energy, in
contrast to the 2�2 momentum grid used in cluster DMFT.

IV. SUPERCONDUCTIVITY IN THE DOPED SYSTEM

Figure 9 shows a central result of our paper. The product
of the d-wave pairing vertex and the uncorrelated suscepti-

bility, �dP̄d, is seen to turn sharply negative �attractive� as
the temperature T is lowered. As described in Eq. �11�,
�dP̄d→−1, in principle, would signal a superconducting in-

stability. For ��0.87, �dP̄d�−0.9. In comparison, the most

negative �dP̄d reported15 for the single band model is �dP̄d

=−0.45 at half-filling, �=1.000, and �dP̄d=−0.25 for doping
to �=0.875. It should be kept in mind, however, that the
lowest accessible temperature in the latter case is 	=6. At
the same 	=6 and doping �=0.875, as seen in Fig. 9, the

bilayer system has a somewhat more negative �dP̄d=−0.31.

Thus, the approach of �dP̄d to −1 seen in the bilayer system
is not only due both to a more attractive pairing vertex but
also due to the ability of the simulation to reach much colder
temperatures.

Although we find the vertex �dP̄d approaches −1, this
criterion for an instability is incomplete. One also needs to

require that the uncorrelated susceptibility P̄ remains finite at
the transition point. Especially in the situation where there is
competing order �e.g., antiferromagnetism and pairing�, it is
possible for the uncorrelated susceptibility of one type of
order to be driven to small values by the other order, so that
even though the vertex approaches −1, order in this channel
is usurped. Figure 10 addresses this issue for the bilayer

model. Despite the fact that �dP̄d is getting close to −1, the
correlated vertex Pd grows relatively slowly as T is de-
creased. The reason is clear from Fig. 10 in which it is seen
that the uncorrelated susceptibility is rapidly dropping as T is
lowered. This is rather different from the doped single layer

model, where P̄d grows as T is lowered. �At half-filling in the

single layer model, P̄d slightly declines as T is decreased, as
found here also in the bilayer model.�

An interesting feature of Figs. 9 and 10 is that the d-wave
attraction is maximal at ��0.87, whether measured via the
vertex or the correlated susceptibility. This point is more
concretely made in Fig. 11. The behavior of the d-wave su-
perconducting vertex bears an interesting resemblance to the
superconducting “domes” of the cuprate materials in which
the transition temperatures are maximized in a finite distance
away from “half-filling” �one hole per Cu�. Indeed, even the
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FIG. 8. �Color online� Same as Fig. 7 except U=2.
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FIG. 9. �Color online� d-wave pairing vertex as a function of
temperature for two 8�8 bilayers with interlayer hopping t�=0.6.
The on-site interaction U=3. Three fillings are shown. Note the

close approach to �P̄=−1, the onset point of a pairing instability,
and the nonmonotonic dependence on filling. The greatest tendency
to pairing is at ��0.87.
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values of the doping which maximize Tc and the width of the
base of the dome are in reasonable quantitative agreement. It
is to be emphasized that, within the same DQMC methodol-
ogy, the single layer Hubbard model has a maximum pairing
vertex at half-filling. Figure 11 also indicates that, within the
parameter range accessible, the degree of enhancement in-
creases as t� decreases. Eventually, we expect this trend to
reverse, since at t�=0, the single layer model, there is a
lesser tendency for pairing. �We cannot accumulate data for
smaller values of t� because the sign problem prevents simu-
lations at as low a temperature as for the data shown.�

We turn now to the magnetic properties of the doped sys-
tem and, in particular, their connection to those observed in
the cuprate superconductors. Figure 12 shows the real space
spin-spin correlations for �=1.00, 0.96, 0.92, 0.87, and 0.82
at 	=8, U=3, and t�=0.6. These results have a quantitative
similarity to the Ba2Ca3Cu4O8F2 and Ba2Ca2Cu4O6F2 mate-
rials in that the robust magnetic correlations present for �

=1.00 and �=0.96 are dramatically suppressed for �=0.87.
A finite Neel temperature TN is present for the four layer
compound Ba2Ca2Cu4O6F2 which has electron and hole dop-
ings Ne, Nh�0.06 and absent for the three layer compound
Ba2Ca2Cu4O6F2 which has hole doping Nh�0.14 in the cen-
tral layer.

Why is the sign problem ameliorated in these bilayer
simulations? In DQMC for the single layer Hamiltonian, the
operator ni↑ couples to the Hubbard–Stratonovich field hi
�Ref. 20� shifted by the chemical potential hi−�. Meanwhile,
ni↓ couples to −hi−�. At half-filling, �=0, particle-hole
symmetry is reflected in the fact that the up and down spe-
cies couple to the quantities �hi which are symmetric about
zero. The up and down determinants can be shown to have
the same sign, and hence their product is positive. For �
�0, this symmetry and the associated connection between
the signs of the two determinants are broken, and a sign
problem results. �Note that for the attractive Hubbard Hamil-
tonian, ni↑ and ni↓ both couple to hi−� and the two determi-
nants are equal at all fillings.�

Consider now the bilayer system. We have a Hubbard–
Stratonovich field for each layer. The operators ni1↑ couple to
hi1−�, while ni1↓ couple to −hi1−� and ni2↑ couple to hi2
+�, and finally ni2↓ couple to −hi2+�, where we have ex-
plicitly set �1=−�2=−�. What we observe is that to the
extent that the Hubbard–Stratonovich variables on the two
layers are equal, ni1↑ and ni2↓ are symmetrically coupled
about zero. It is possible that this tends to lead to a positive
determinant product similar to the single layer case at half-
filling. Of course, there is no constraint that hi1=hi2, but we
suspect that they are nevertheless sufficiently correlated to
reduce the sign problem.

V. CONCLUSIONS

In this paper, we have used DQMC simulations to deter-
mine the phase diagram, in the �t� ,U� plane, of the half-
filled bilayer Hubbard model. Our phase diagram exhibits
metallic, band insulating and Mott insulating phases in quali-
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FIG. 10. �Color online� Correlated �closed symbols� and uncor-
related �open symbols� d-wave pairing susceptibility as a function
of temperature for two 8�8 bilayers with interlayer hopping t�

=0.6. The on-site interaction U=3. Five fillings are shown. In all

cases, the vertex is attractive, i.e., Pd� P̄d. The degree of attraction
is nonmonotonic, first increasing with doping, but then declining.
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FIG. 11. �Color online� d-wave pairing vertex as a function of
filling for two 8�8 bilayers with interlayer hopping t�=0.6, 0.7,
and 0.8. The on-site interaction U=3 and inverse temperature 	
=14. The greatest tendency to pairing is at ��0.87.
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FIG. 12. �Color online� Real space spin correlations. At half
filling, �=1.00, and for small dopings, �=0.96, there is a strong
oscillatory pattern that is indicative of long range magnetic order
�Ref. 19�. For larger dopings, the spin correlations are sharply
curtailed.
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tative agreement with CDMFT results.16 However, the entire
metallic phase we find is paramagnetic with no antiferromag-
netic metallic regions.

In addition, we have shown that the doped bilayer Hub-
bard Hamiltonian has an attractive d-wave pairing vertex that
approaches close to �dP̄d=−1, signaling a superconducting
transition. This value is much more singular than that ob-
served in the single layer model partly because it is more
attractive when compared to the same inverse temperature
and partly because it is possible to simulate to values of 	
which are two to three times larger than for a single plane.
However, the uncorrelated P̄d gets small, so that the en-
hancement of the correlated Pd is not very dramatic. On the
other hand, and unlike what happens in the single layer d
=2 Hubbard model, the enhancement here is maximum when
the system is doped, in agreement with the phenomenology
of cuprate superconductors.

Pairing in systems with separate electron and hole doped
sheets has a long history in the context of exciton
condensation,21 but our primary motivation here has been the
recent report of cuprate-based systems Ba2Ca3Cu4O8F2 and
Ba2Ca2Cu4O6F2 which have both types of dopings.11 Our

results for the magnetic and pairing correlations bear inter-
esting connections to those materials. While the bilayer
simulations reported here contain the essential feature of
coupled electron and hole doped layers, it is natural to con-
sider direct numerics of three and four layer compounds.
Such studies will require an order of magnitude greater simu-
lation time and also have an at present unknown sign prob-
lem. In general, the sign problem becomes worse with lattice
size �and hence with number of layers�, but as we have
shown here, the correlated determinant signs in the layers
help keep the average sign larger than for a single doped
layer.
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