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We evaluate the doping dependence of the quasiparticle current and low-temperature superfluid density in
two slave-particle theories of the tt�t�J model—the slave-boson theory and doped-carrier theory. In the slave-
boson theory, the nodal quasiparticle current renormalization factor � proportionally vanishes to the zero
temperature superfluid density �S�0�; however, we find that away from the �S�0�→0 limit, � displays a much
weaker doping dependence than �S�0�. A similar conclusion applies to the doped-carrier theory, which differ-
entiates the nodal and antinodal regions of momentum space. Due to its momentum space anisotropy, the
doped-carrier theory enhances the value of � in the hole doped regime, bringing it to quantitative agreement
with experiments, and reproduces the asymmetry between hole and electron doped cuprate superconductors.
Finally, we use the doped-carrier theory to predict a specific experimental signature of local staggered spin
correlations in doped Mott insulator superconductors, which, we propose, should be observed in scanning
tunneling microscopy measurements of underdoped high-Tc compounds. This experimental signature distin-
guishes the doped-carrier theory from other candidate mean-field theories of high-Tc superconductors, such as
the slave-boson theory and the conventional BCS theory.
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I. INTRODUCTION

A. Motivation

The phenomenology of high-temperature superconducting
�SC� cuprates is most striking when the electron occupancy
per unit cell is close to unity.1 In this underdoped regime, the
SC critical temperature �Tc� vanishes as the interaction-
driven Mott insulator is approached despite the strong bind-
ing of electrons into Cooper pairs.2,3 This deviation from the
BCS theory is reflected in the anomalous metallic pseudogap
state, whose Fermi surface appears to be partially gapped.4,5

The physics that determines the value of Tc in underdoped
cuprates is a highly debated6–18 fundamental question that
lacks a fully satisfactory answer.

In this context, it is important to sort the specific roles
played by phase fluctuations of the order parameter and by
fermionic quasiparticle excitations in destroying supercon-
ductivity at finite temperatures. Since the zero temperature
superfluid phase stiffness �S�0� decreases together with
Tc,

19–24 phase fluctuations are certainly detrimental to long-
range phase coherence,6 as evidenced by the magnetic vorti-
ces observed in the normal state.25 Yet, to reconcile Tc with
the measured bare phase stiffness26 requires that thermally
excited nodal quasiparticles reduce �S, thus promoting vortex
proliferation at a temperature lower than expected from
phase-only arguments.7,10,12 The important role played by the
dx2−y2-wave quasiparticles receives further experimental sup-
port from penetration depth measurements in underdoped
yttrium barium copper oxide �YBCO� films that display a
characteristic quasiparticle behavior, namely, the linear T
suppression of �S, up to T�Tc /2 �see, for instance, Fig. 1 of
Ref. 20�. Remarkably, this T-linear regime extends all the
way to Tc in severely underdoped samples, which, in addi-
tion, violate the Tc��S�0� relation applicable in pure phase-
fluctuation models.21–24 The above strongly supports that the
Tc scale in underdoped cuprates is set by the effective pa-

rameters �S�0� and d�S /dT. Simultaneously describing the
above two parameters in consistency with experiments is the
main problem we address in this paper.

In the remaining of this introductory section, we illustrate
that the present theoretical understanding cannot easily rec-
oncile the experimentally observed behavior of �S�0� with
that of d�S /dT �Sec. I B�. The latter parameter reflects the
interaction induced renormalization of the quasiparticle cur-
rent, and, as such, in Sec. I C, we discuss how interactions
are expected to renormalize the quasiparticle current
throughout the entire Brillouin zone. We also note that these
renormalization effects can be probed by scanning tunneling
microscopy �STM� experiments, which can provide valuable
information to distinguish between different quasiparticle de-
scriptions of underdoped cuprates. Finally, in Sec. I D, we
present the layout of the full paper.

B. Effective parameters �S(0) and d�S ÕdT

The effective parameter �S�0� quantifies the coupling be-
tween an applied gauge field and a superconducting conden-
sate, as evidenced in the Meissner effect. The depletion of
�S�0� as the Mott insulator is approached19–24 is in stark con-
trast with the prediction from the BCS theory, namely,
�S�0��1−x, where x is the density of carriers doped away
from half-filling. This sharp deviation follows from the large
Coulomb repulsion that suppresses �enhances� charge
�phase� fluctuations and, indeed, the observed �S�0��x be-
havior is captured by the slave-boson �SB� theory of the tJ
model,12,27,28 which is a microscopic approach that explicitly
implements the suppression of charge fluctuations. The same
behavior is encountered in theories of phase fluctuating
d-wave superconductors,11,14,15,29,30 whose effective theory is
similar to that of the SB approach.11,14 However, the above
success in reproducing �S�0��x is not accompanied by a
similar fate when it comes to addressing d�S /dT’s experi-
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mental results. In fact, the microscopic SB approach predicts
too small values of d�S /dT in the limit x→0.

The parameter d�S /dT is often characterized in terms of
the nodal current renormalization factor �
���2�v� /vF ln 2�d�S /dT�1/2, where vF and v� are the Fermi
and gap velocities, respectively. In the BCS theory, �=1. In
the SB theory, however, the effect of Coulomb repulsion
leads to ���S�0� in the limit x→0.7,9,11,12 This is commonly
regarded as a major setback since experiments show that �
sublinearly vanishes in �S�0�.22–24 In addition, it casts doubt
on the applicability of the SB formalism to simultaneously
describe how SC quasiparticles and the SC condensate
couple to an applied electromagnetic field.

We remark that the above mismatch between the SB
theory and experiments occurs in the limit x→0, in which
case the SB theory ignores the emergence of an antiferro-
magnetic �AF� phase. Therefore, in this paper, we extend the
previous works in literature that used the slave-particle
framework to address the superfluid density �S in the limit
x→0 �Refs. 7–9� and calculate the low energy and long
wavelength electromagnetic response function of a doped
Mott insulator superconductor away from the above limit. We
specifically consider two slave-particle theories of the tt�t�J
model, namely, the SB and the doped-carrier �DC�
theories,27,28,31,32 for which we calculate the nodal current
renormalization factor � as a function of x. �A diagrammatic
approach of the tt�J model can be found in Ref. 33.� We
argue that in this respect, slave-particle theories may com-
pare to experiments better than often thought. In fact, we find
that both the SB and the DC slave-particle approaches pre-
dict that for x�0.05 and in the considered parameter range
2J� t�5J, the doping dependence of � is much weaker than
that of �S�0�, which is in agreement with the underdoped
cuprates’ data.20

C. Renormalized quasiparticle current distribution

As we stated above, superfluid density measurements
probe the quasiparticle current renormalization at the nodal
points of dx2−y2-wave superconductors. Interactions, how-
ever, also renormalize the current of quasiparticles away
from the nodes, an effect that should manifest itself in ex-
periments, as we overview in what follows.

We know that a finite supercurrent Js shifts the supercon-
ducting quasiparticle dispersion Ek and to linear order in Js,
we have

Ek�A� = Ek�0� − jk · A , �1�

where we introduce the vector potential A to represent the
supercurrent Js=�SA. �Note that in Eq. �1�, we set the speed
of light to c=1; in what follows, we also take the electric
charge to be e=1, as well as 	=1.� The �hole� quasiparticle
current jk characterizes how excited quasiparticles affect the
superfluid density �S and in the BCS theory, it is given by the
expression

jk = −
�
k

N

�k
, �2�

where 
k
N is the normal state �hole� energy dispersion, which,

in the present discussion, we approximate by 
k
N

=2t�cos�kx�+cos�ky��. �Up to a constant scale factor, Fig.
1�a� resembles this quasiparticle current distribution.�

We note that according to the BCS theory, the quasiparti-
cle current jk is completely determined by the normal state
dispersion �this applies all the way deep into the supercon-
ducting state�. Since at many levels, the phenomenology of
overdoped cuprates is compatible with the BCS theory, we
still expect Eq. �2� to hold in these samples, with 
k

N given by
the appropriate free electron dispersion. However, the free
electron dispersion should not be used to calculate the qua-
siparticle current of superconducting underdoped cuprates.
This then raises the question of what normal state dispersion
we should use to calculate the quasiparticle current distribu-
tion jk in underdoped cuprates. The answer to this question
may come from angle-resolved photoemission spectroscopy
�ARPES� experiments on half-filled cuprate compounds,
which showed that the single hole dispersion is roughly
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FIG. 1. Quasiparticle current for �a� x=0.1 hole doped SC re-
gime in the SB approach, �b� x=0.1 electron doped SC regime in
the SB approach, �c� x=0.1 hole doped SC regime in the DC ap-
proach, �d� x=0.1 electron doped SC regime in the DC approach,
�e� x=0.1, t=3J, and t�= t�=0 in the DC approach, and �f� x=0 AF
state. The current vectors in �a�–�e� �but not in �f�� are plotted with
same vector scale.
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given by 
k
AF� �cos�2kx�+cos�2ky��,34 in which case the qua-

siparticle current jk=−
�
k

AF

�k �see Fig. 1�f�� considerably differs
from the BCS-like result in Fig. 1�a�. This suggests that,
perhaps, in the cuprates’ underdoped regime, we should use a
quasiparticle current derived from a dispersion that interpo-
lates between 
k

N and 
k
AF.

From the above discussion, we see that the quasiparticle
current distribution jk is an important quantity that can reveal
new characteristics of underdoped high-Tc superconductors,
which lie beyond the BCS paradigm. Hence, it is relevant to
calculate and predict jk by using different approaches to the
high-Tc problem. It is also significant to experimentally mea-
sure jk, as such a measurement could prove to be instrumen-
tal in either ruling out or validating candidate theories to the
high-Tc problem.

As a step in this direction, below, we calculate the quasi-
particle current distribution by using two different ap-
proaches, namely, the aforementioned SB and DC ap-
proaches. We find that these yield quite distinct distributions
of the quasiparticle current throughout the Brillouin zone
�see Figs. 1�a� and 1�c��. The mean-field SB approach gives
rise to a quasiparticle current distribution, which, in the ab-
sence of intrasublattice hopping processes, is essentially the
BCS result multiplied by the current renormalization factor
�. The DC approach results in a quasiparticle current distri-
bution, which, instead, interpolates between the BCS and AF

current distributions jk=−
�
k

N

�k and jk=−
�
k

AF

�k , respectively.
In this paper, we propose that measuring the tunneling

differential conductance from a metal tip into the supercon-
ducting CuO plane in the presence of a supercurrent provides
a way to distinguish the above quasiparticle current distribu-
tions. Specifically, we calculate how the tunneling differen-
tial conductance is affected by an applied supercurrent on the
CuO plane and find that the different quasiparticle current
distributions lead to different supercurrent dependences of
the tunneling differential conductance �see Fig. 4�. We fur-
ther argue that this effect may be probed by STM experi-
ments, which thus could distinguish the DC theory descrip-
tion of high-Tc superconductors from alternative theories
�particularly those that ignore the momentum space differen-
tiation of the nodal and antinodal regions, such as the SB
theory and the conventional BCS theory�.

D. Paper layout

The paper is organized as follows: In Sec. II, we introduce
the formalism used to calculate the low energy and long
wavelength electromagnetic response function within the SB
and DC frameworks. In order to obtain the nonzero tempera-
ture electromagnetic response function in the static and uni-
form limit, we follow Ioffe and Larkin35 and resort to the
random-phase approximation �RPA�, which accounts for the
effect of fluctuations around the mean-field saddle point up
to the Gaussian level. This calculation yields the doping de-
pendent quasiparticle current and �S�T� low-temperature be-
havior in the SB and DC theories, whose results we discuss
and compare in Sec. III. In this section, we also study the
parametric dependence of �S�T� on t /J values. In the DC
framework we used in this paper, the momentum space an-

isotropy follows from the role of high-energy AF correlations
between local moments in superconducting doped Mott in-
sulators. Hence, the aforementioned comparison between the
SB and the DC theories results identifies the effect of short-
range AF correlations in the electromagnetic response of a
d-wave superconductor close to a Mott insulator transition.
We conclude that AF correlations enhance �suppress� the
nodal quasiparticle current in the hole �electron� doped re-
gime of cuprate superconductors. In the hole doped case, and
for t /J=3, this enhancement leads to 0.5���0.6 when
0.1�x�0.2, which is in quantitative agreement with
experiments.36–38 In this doping range, the DC theory
quasiparticle-driven Tc scale, Tc

QP��S�0� / �d�S /dT��J /10,
is an order of magnitude lower than that in the SB theory
and, in addition, it agrees with the cuprates’ Tc scale. Our
results also show that the intriguing weak temperature de-
pendence of �S�T� in electron doped compounds39,40 is con-
sistent with the observed momentum space anisotropy,41

which we consider to follow from the strong local AF corre-
lations. Since the formalism introduced in Sec. II also allows
one to study the coupling between the SC quasiparticles and
an applied supercurrent, in Sec. IV, we use this fact to predict
a specific experimental signature of a traversing supercurrent
in the tunneling differential conductance that, we propose,
should be detected in STM measurements.

II. FORMALISM

We set to calculate the low energy and long wavelength
electromagnetic response function of a doped Mott insulator
superconductor. In particular, we consider two different
families of slave-particle wave functions: one described by
the SB d-wave SC ansatz27,28 and the other by the DC
d-wave SC ansatz.31,32 In addition, we choose the energetics
to be given by the tt�t�J model Hamiltonian,

HtJ = �
�ij	

JijSi . S j − �
�ij	,�

tij�c̃i,�
† c̃j,� + H.c.� , �3�

where c̃i,�
† =ci,�

† �1−ci,−�
† ci,−�� are the Gutzwiller projected

electron operators, Si= c̃i
†�c̃i are the electron spin operators,

and � are the Pauli matrices. Also, Jij =J for nearest neigh-
bor �NN� sites, and tij = t , t� , t� for first, second, and third NN
sites, respectively. Since the SC nodal quasiparticles are the
sole gapless excitations, below, we resort to the SB �Sec.
II A� and DC �Sec. II B� mean-field theories. In both cases,
we include the effect of gapped collective modes at the RPA
level.

A. Slave-boson framework

We first determine how the well studied7,8,12,27,28,42 SB
d-wave superconductor couples to an applied electromag-
netic field. In the SU�2� SB framework, the projected
electron operators are decoupled as c̃i,↑

† = 1

2

i
†hi and c̃i,↓

†

= 1

2

i
T�−i�2�hi, where i are the chargeless and spin-1/2

spinon fermionic operators in the Nambu representation and
hi are the spinless and charge-e holon bosonic operators.27 If
one rewrites Eq. �3� in terms of i and hi and further applies
the Hartree–Fock–Bogoliubov decoupling scheme, one ob-
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tains the quadratic SB mean-field Hamiltonian, HMF
SB =H

SB

+Hh
SB, where43

H
SB = �

�ij	

3Jij

16
Tr�UijUji� + a0 · ��

i

i
†�i�

− �
�ij	

i
†�3Jij

8
Uij +

tij

2
Vij� j + H.c.� , �4�

Hh
SB = �

�ij	

tij

2
Tr�UijVji� + a0 · ��

i

hi
†�hi�

− �h�
i

hi
†hi − �

�ij	

tij

2
�hi

†Uijhj + H.c.� . �5�

The holon chemical potential �h controls the density �hi
†hi	

=x and the Lagrange multiplier a0=a0�3 implements the
SU�2� projection constraint at the mean-field level, �i

†�i
+hi

†�hi	=0. In the d-wave SC ansatz, hi
†= �h0�, where h is

the holon condensate magnitude, Vij =x�3, Uii+x̂=��3+��1,
and Uii+ŷ =��3−��1.

Since only holons carry an electric charge, minimally cou-
pling an electromagnetic gauge field Aij to HMF

SB amounts to
replacing hi

†Uijhj in Eq. �5� by hi
†Uij exp�iAij�hj. In order to

account for the effect of fluctuations around the mean field,
we also must replace Uij and Vij in Eqs. �4� and �5� by
� 1

2Uij exp�iaij .��+ 1
2exp�iaij .��Uij� and � 1

2Vij exp�iaij .��
+ 1

2exp�iaij .��Vij�, respectively, where aij is the SU�2� gauge
field that describes collective modes in the SB
framework.12,28,42 In what follows, we consider the resulting
minimally coupled Hamiltonian HMF

SB �Aij ,aij� in the static and
uniform limit and thus recast Ai+u�i�Ax̂u� . x̂+Aŷu� . ŷ and ai+u�i

�ax̂u� . x̂+aŷu� . ŷ.
If we ignore the contribution from collective modes,

the electromagnetic current and response function are JA,û
SB =

− 1
N � �FSB�A,a�

�Aû
�A,a=0 and �AA,ûv̂

SB = 1
N � �2FSB�A,a�

�Aû�Av̂
�A,a=0, where

FSB�A ,a� is the free-energy obtained from HMF
SB �Aij ,aij�.

However, as shown by Ioffe and Larkin,35 the above modes
are important to correctly determine how strongly correlated
superconductors couple to the electromagnetic field. In the
SC state, these modes are gapped and we keep only the free-
energy terms up to quadratic order in aû. Integrating out aû,
we obtain the electromagnetic current and response functions
within RPA, namely,

JSB = JA
SB − �Aa

SB · ��aa
SB�−1 · Ja

SB, �6�

�SB = �AA
SB − �Aa

SB · ��aa
SB�−1 · �aA

SB, �7�

where Ja,û
SB =− 1

N � �FSB�A,a�
�aû

�A,a=0, ��aA,v̂û
SB �†=�Aa,ûv̂

SB

= 1
N � �2FSB�A,a�

�Aû�av̂
�A,a=0, and �aa,ûv̂

SB = 1
N � �2FSB�A,a�

�aû�av̂
�A,a=0. We note that

JA,û
SB and Ja,û

SB correspond to the sums over momentum space,

JA,û
SB = 1

N�b,knb,kjb,k,û
A,SB and Ja,û

SB = 1
N�b,knb,kjb,k,û

a,SB, where nb,k is the
occupation number of the mean-field single particle state in
band b and with momentum k, whose energy dispersion

b,k

SB�A ,a� implies the quasiparticle current components,

jb,k,û
A,SB=−

�
b,k
SB�A,a�
�Aû

and jb,k,û
a,SB =−

�
b,k
SB�A,a�
�aû

. Following the above

formula, we introduce the SB theory quasiparticle current
�within RPA� as follows:

jb,k,û
SB �

�Jû
SB

�nb,k
= jb,k,û

A,SB − �Aa
SB · ��aa

SB�−1 · jb,k,û
a,SB , �8�

where we use Ja,û
SB =0, which applies in thermal equilibrium

and in the absence of external fields. Equation �8� is

equivalent to jb,k,û
SB =−

dEb,k
SB�A�
dAû

, where Eb,k
SB�A�

= �
b,k
SB�A ,a��a=−��aa

SB�−1.�aA
SBA is the single particle dispersion

obtained in the presence of an applied gauge field Aû after
integrating out aû. We additionally obtain the SB theory su-
perfluid density �within RPA� �S

SB from �ûv̂
SB=�S

SB�ûv̂.44

B. Doped-carrier framework

We now determine how an applied electromagnetic field
couples to the DC d-wave SC state in the static and uniform
limit. The only difference when compared to the SB ap-
proach sketched in Sec. II A has to do with the specific de-
coupling of the Gutzwiller projected electron operators,
which, in the DC framework, read32 c̃i,�

† =s�
1

2 �� 1

2

+s�S̃i
z�d̃i,−�− S̃i

s�d̃i,��. Here, s�= �+1� , �−1� for �= ↑ ,↓. d̃i,�
=di,��1−di,−�

† di,−�� is the charge-e and spin-1/2 projected
doped-carrier operator �di, which has the same quantum
numbers as the holes doped into the Mott insulator, was
called the dopon operator in Ref. 31�. Further writing the
above spin operators in terms of chargeless spin-1/2 spinons

as S̃i=
1
2 f i

†�f i leads to the DC mean-field Hamiltonian
HMF

DC =H
DC+H�

DC+Hmix
DC , where31,32

H
DC =

3J̃

16 �
�ij	�NN

Tr�UijUji� + a0 . ��
i

i
†�i�

− �
�ij	�NN

i
†�3J̃

8
Uij −

t1x

2
�3� j + H.c.� , �9�

H�
DC = �

i
�

�=2,3
�

u���NN

t�

4
�i+u�

† �3�i − �d�
i

�i
†�3�i, �10�

Hmix
DC = − �

i

Tr�Bi1
† Bi0� − �

i

��i
†Bi1i + H.c.�

−
3

16�
i,�

�
u���NN

t���i+u�
† Bi0i + H.c.� . �11�

Above, i and �i are the spinon and dopon operators in the
Nambu representation. u� = � x̂ , � ŷ, u� = � x̂� ŷ, and u�
= �2x̂ , �2ŷ for �=1,2 ,3, respectively. �d is the chemical

potential that sets the doped-carrier density x. J̃= �1−x�2J,
t1= t, t2=J+ �1−x /0.3�t�, and t3=J /2+ �1−x /0.3�t�, where J,
t, t�, and t� parametrize the tt�t�J model Hamiltonian. In the
d-wave SC ansatz, Uii+x̂=��3+��1, Uii+ŷ =��3−��1, Bi0=
−b0�3, and Bi1=−b1�3. Furthermore, the Lagrange multiplier
a0=a0�3 sets �i

†�i	=0. As shown in Ref. 32, the SB and
the DC formulations are related to each other since the local
singlet state of a dopon di and a spinon f i in the DC approach
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corresponds to the holon in the SB approach. Consequently,
the DC theory mean-field b0= �f i

†di	 is equivalent to the SB
holon condensate magnitude h.

In this paper, we extend the previous work on the DC
framework and introduce the electromagnetic gauge field Aij,
as well as the fluctuations around the Uij mean field de-
scribed by the SU�2� gauge modes aij �analogous to those in
the SB formulation�. Before constructing the minimally
coupled Hamiltonian HMF

DC�Aij ,aij�, we summarize how the
fields in Eqs. �9�–�11� transform under U�1� electromagnetic
gauge transformations and under SU�2� gauge transforma-
tions associated with the aij modes: �i� i is an on-site field
that carries no electric charge and that is in the SU�2� fun-
damental representation; �ii� �i is an on-site field that carries
an electric charge and is invariant to SU�2� gauge transfor-
mations; �iii� Bi0 is an on-site field that carries an electric
charge and that is in the SU�2� fundamental representation;
�iv� Uij is defined on the lattice bonds, carries no electric
charge, and is in the SU�2� adjoint representation. As a re-
sult, HMF

DC�Aij ,aij� is obtained from HMF
DC by replacing �i�

� 3J̃
8 Uij −

t1x
2 �3� in Eq. �9� by 1

2 � 3J̃
8 Uij −

t1x
2 �3�exp�iaij ·��

+ 1
2exp�iaij ·��� 3J̃

8 Uij −
t1x
2 �3�, �ii� �i+u�

† �3�i in Eq. �10� by

�i+u�
† exp�iAi+u�i�3��3�i, and �iii� �i+u�

† Bi0i in Eq. �11� by

�i+u�
† exp�iAi+u�i�3�Bi0i. Similar to what we did in Sec. II A,

we further recast Ai+u�i�Ax̂u� · x̂+Aŷu� · ŷ and ai+u�i�ax̂u� · x̂
+aŷu� · ŷ.

Given HMF
DC�Aij ,aij�, we can determine the DC mean-field

free-energy FDC�A ,a�, from which the DC electromagnetic
current and response function follow. By using the aforemen-
tioned Gaussian approximation, we have

JDC = JA
DC − �Aa

DC · ��aa
DC�−1 · Ja

DC, �12�

�DC = �AA
DC − �Aa

DC · ��aa
DC�−1 · �aA

DC, �13�

where JA,û
DC =− 1

N � �FDC�A,a�
�Aû

�A,a=0, Ja,û
DC=− 1

N � �FDC�A,a�
�aû

�A,a=0, �AA,ûv̂
DC

= 1
N � �2FDC�A,a�

�Aû�Av̂
�A,a=0, ��aA,v̂û

DC �†=�Aa,ûv̂
DC = 1

N � �2FDC�A,a�
�Aû�av̂

�A,a=0, and

�aa,ûv̂
DC = 1

N � �2FDC�A,a�
�aû�av̂

�A,a=0. As in the SB approach, we recast

JA,û
DC = 1

N�b,knb,kjb,k,û
A,DC and Ja,û

DC= 1
N�b,knb,kjb,k,û

a,DC, where the nota-
tion is analogous to that in Sec. II A. The DC theory quasi-
particle current �within RPA� then is

jb,k,û
DC �

�Jû
DC

�nb,k
= −

dEb,k
DC�A�
dAû

, �14�

where Eb,k
DC�A�= �
b,k

DC�A ,a��a=−��aa
DC�−1·�aA

DCA is the quasiparticle
energy renormalized by aû’s Gaussian fluctuations and

b,k

DC�A ,a� is HMF
DC�Aij ,aij�’s eigenenergy for the quasiparticle

state in band b and with momentum k �once again, we as-
sume thermal equilibrium and the absence of external fields,
in which case Ja,û

DC=0�. Finally, the DC theory superfluid den-
sity �within RPA� �S

DC follows from �ûv̂
DC=�S

DC�ûv̂.44

III. RESULTS

In this section, we discuss our results for the electromag-
netic quasiparticle current and response function of super-

conductors described by the SB and DC formalisms. The
main difference between these two frameworks is that the
above mean-field DC approach captures the effect of high-
energy and short-range staggered local moment correlations
in the low-energy SC properties.31,45 Hence, below, we com-
pare the SB and DC results to learn how local AF correla-
tions renormalize the electromagnetic response of doped
Mott insulator superconductors in the static and uniform
limit. Naturally, the SC electromagnetic response is deter-
mined by the underlying mean-field order parameters that
define the SC phase, namely, h ,��0 in the SB approach and
b0 ,��0 in the DC framework. Therefore, in order to estab-
lish a meaningful comparison between the doping depen-
dences of our SB and DC results, below, we take the SB
mean fields h and � to be equal to the self-consistent DC
mean-field parameters b0 and �, respectively. All other
mean-field parameters are self-consistently determined
within each approach.

A. Quasiparticle current

In Figs. 1�a� and 1�b�, we show the momentum depen-
dence of jb,k,û

SB in the x=0.1 hole doped SC regime �hence-
forth defined by the model parameters tHD=3J, tHD� =−2tHD�
=−J� and in the x=0.1 electron doped SC regime �henceforth
defined by the model parameters tED=3J, tED� =−2tED� = +J�,
respectively. Aside from a small magnitude difference, which
is attributed to the larger holon condensation in the hole
doped side, these current patterns are very similar to each
other and are reminiscent of a quasiparticle dispersion that is
approximately proportional to �cos kx+cos ky�. This result
follows from the spin-liquid correlation-driven renormaliza-
tion of the intrasublattice hopping parameters t� and t�,43,46

which only enter HMF
SB as part of the products xt� and xt�.

The above SB results considerably differ, both in direc-
tion and magnitude, from those obtained in the DC approach
�see Figs. 1�c� and 1�d� for the momentum dependence of
jb,k,û
DC in the aforementioned parameter regimes�. For instance,

in the hole doped regime, a vortex configuration appears in
the jb,k,û

DC vector map near ��� /2, �� /2� �Fig. 1�c��, which
is absent in the corresponding jb,k,û

SB plot �Fig. 1�a��. The DC
quasiparticle current magnitude in this region of momentum
space is also visibly larger. A similar vortex configuration
�absent in the SB theory� and enhanced quasiparticle current
magnitude occur in the electron doped regime jb,k,û

DC plot near
��� ,0� and �0, ��� �Fig. 1�d��.

The clear anisotropy between the hole and electron doped
regimes in the DC approach reflects the role of AF correla-
tions, whose staggered pattern leaves the intrasublattice hop-
ping parameters t� and t� largely unrenormalized. The effect
of t� and t� in the presence of AF correlations has been
extensively addressed in literature,46–52 which indicates that
t��−2t��0 lower the energy of AF correlations close to
��� /2, �� /2�, while t��−2t��0 have a similar effect
close to ��� ,0� and �0, ���. This trend supports that the
differences between the above jb,k,û

SB and jb,k,û
DC plots are a

manifestation of the underlying AF correlations captured
within the DC approach. Indeed, the aforementioned vortices
in Figs. 1�c� and 1�d� are clearly reminiscent of the x=0 AF
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state quasiparticle current plot in Fig. 1�f� �this current pat-
tern is given by jk,û

AF �−�kû
Ek

AF, where we take Ek
AF

� �cos�2kx�+cos�2ky�� 34�. Also, the large quasiparticle cur-
rent close to ��� /2, �� /2� in the hole doped regime, and
close to ��� ,0�, �0, ��� in the electron doped regime, is
also consistent with the well known enhancement of quasi-
particle features in these regions of momentum space due to
AF correlations.31,46,47,49–53 Finally, we note that when t�
= t�=0, AF correlations do not differentiate between the
above two regions of momentum space,46,54,55 and the DC
quasiparticle current pattern along the �0,��− �� ,0� re-
sembles the SB results �Fig. 1�e��.

B. Superfluid stiffness

We now address the doping dependent behavior of �S�T�
at a low temperature, in both the SB and the DC theories. In
Figs. 2�a�–2�c�, we take the hole doped regime parameters
t� , t�= tHD� , tHD� and analyze the dependence on values of t /J
that pertain to the physically relevant regime 2� t /J�5.
Specifically, Fig. 2�a� depicts the scaled superfluid density,
�̃0�g��t /J��S�0�, where the scaling function g��t /J�=3J / t in
the SB theory and g��t /J�=1 in the DC theory. These results
show that within the considered parameter range, the SB
approach yields �S�0��xt, while in the DC approach, �S�0�
�xJ is almost independent of t. This shows that AF correla-
tions can renormalize the SC condensate kinetic energy scale
from xt to xJ.

Figure 2�b� depicts the scaled nodal quasiparticle current
renormalization factor �̃HD�g��t /J��HD, where g��t /J�
= �3J / t�1/2 in the SB approach and g��t /J�= �t /3J�1/2 in the
DC approach. We see that even though �HD linearly vanishes
in x, it displays a much weaker x dependence for x�0.05. To
make the last statement more quantitative, consider the t /J
=3 results, for which �HD�x=0.05� /max��HD�x� ,0�x

�0.2�=0.73 and �HD�x=0.10� /max��HD�x� ,0�x�0.2�
=0.93 in the SB framework and �HD�x
=0.05� /max��HD�x� ,0�x�0.2�=0.65 and �HD�x
=0.10� /max��HD�x� ,0�x�0.2�=0.86 in the DC frame-
work. We remark that the above behavior appears to be a
robust property of slave-particle formulations since it applies
to two different slave-particle frameworks and various t /J
values. This state of affairs should be contrasted to the ap-
proximate �S�0��x relation applicable in both theories
throughout the interval 0�x�0.2 �Fig. 2�a��. In addition to
having different doping dependences, �S�0� and �HD also dis-
play distinct parametric dependences on t /J in either slave-
particle approach. Hence, the way interactions and quantum
fluctuations in doped Mott insulator superconductors renor-
malize �S�0� differs from the way they renormalize �.13

More importantly, we show that this difference is captured
by slave-particle approaches, which are often dismissed on
the grounds that they imply ���S�0�, a relation that
counters experimental evidence.22–24 Our calculation shows
that this relation holds only in the asymptotic limit x→0,
where the mismatch with experiments is expected since
long-range AF order develops in material compounds.

Figure 2�b� further shows that in the hole doped cuprate
regime, i.e., for t , t� , t�= tHD, tHD� , tHD� , �HD is approximately a
factor of 2.5 larger in the DC theory than in the SB approach
�as expected from the quasiparticle current plots in Figs. 1�a�
and 1�c��. In particular, the inclusion of AF correlations, and
the consequent momentum space anisotropy, brings �HD up
to 0.5��HD�0.6 when 0.1�x�0.2 and t /J=3, which is
quantitatively consistent with experimental data.36–38

The above AF correlation-driven enhancement of �HD
also renders thermally excited quasiparticles effective in re-
ducing the superfluid stiffness in the DC theory. This effect is

depicted in Fig. 2�c�, which plots T̃c
QP�gT�t /J�Tc

QP, where
gT�t /J�= t /3J in the SB framework and gT�t /J�=3J / t in the
DC framework. In particular, for t , t� , t�= tHD, tHD� , tHD� and x
�0.10, Tc

QP�J /10 in the DC theory, a value that is consis-
tent with the cuprates’ Tc scale and represents an order of
magnitude improvement over the corresponding scale ob-
tained within the SB approach.

As Fig. 1�d� illustrates, AF correlations do not enhance
the nodal quasiparticle current in the electron doped regime
and in this case, the nodal current renormalization factor �ED
is much smaller than its hole doped counterpart. This fact is
attested by the small DC theory value of ��ED /�HD�2�0.1 in
Fig. 2�d� and is consistent with the electron doped cuprates’
experimental data showing a low temperature �S�T� that are
hard to reconcile with gapless nodal excitations39,40 despite
solid evidence for predominant dx2−y2-wave symmetric
pairing.56–59 This asymmetry between the electron and hole
doped regimes is considerably larger in the DC approach
than that in the SB approach �Fig. 1�d�� and, therefore, our
calculation suggests that the above apparent discrepancy be-
tween different experimental probes reflects the short-range
AF correlations present in the strongly correlated SC state.

The results in Fig. 2 disclose specific parametric depen-
dences of the low temperature �S�T� on intermediate values
of t /J, which apply throughout a wide doping range. These
dependences can be remarkably different between the SB
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FIG. 2. �Color online� Doping dependence of �a� �̃0, �b� �̃HD,

and �c� T̃c
QP for t /J=2,3 ,4 ,5 �see legend� and t� , t�= tHD� , tHD� . Re-

sults are shown for both the SB and the DC theories. �d� Doping
dependence of ��ED /�HD�2. The full �dashed� line in �a�–�d� plots
t /J=3 results in the DC �SB� theory.
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and DC approaches, thus showing that they are strongly
modified by the inclusion of local staggered spin correla-
tions. For instance, the SB theory predicts that �HD decreases
upon lowering t /J, while the DC approach implies the oppo-
site trend �Fig. 2�b��. Only the DC theory result, however,
correctly captures the well documented enhancement of qua-
siparticle features upon lowering t /J—it specifically predicts
that �HD� �J / t�1/2, which is a parametric dependence equal
to that obtained for the nodal quasiparticle spectral weight in
exact numerical calculations concerning the same parameter
regime.60 Now, consider the results in Fig. 2�c�, which show
that the quasiparticle-driven Tc scale lowers with increasing
t /J in the SB approach, whereas it increases with t /J once
AF correlations are included in the DC theory. The latter
trend seems to be more consistent with experiments though.
In fact, these support that the Tc scale is, to a large extent, set
by quasiparticles and that superconductivity emerges in un-
derdoped cuprates as a means to enhance the kinetic energy
of charge carriers61–63 �which is otherwise frustrated by the
background staggered moment correlations�. Hence, one ex-
pects Tc

QP to grow with t /J, as obtained in the DC frame-
work.

IV. EXPERIMENTAL SIGNATURE OF AN APPLIED
SUPERCURRENT

Gauge invariance implies that upon substituting Aij by the
linear combination �Aij − �� j −�i� /2�, where �i is the order
parameter’s phase, the Hamiltonians HMF

SB �Aij ,aij� and
HMF

DC�Aij ,aij� describe the coupling between SC quasiparticles
and an applied supercurrent, which can be addressed by ex-
periments that probe single-electron physics. One such ex-
ample is ARPES, which probes the single-electron energy
dispersion Eb,k�A� and that, at least in principle, provides the
means to directly measure the quasiparticle current, jb,k,û=

−
dEb,k�A�

dAû
. Unfortunately though, such measurements require

both good energy and momentum resolution and are most
likely unfeasible in underdoped cuprates, whose low-energy
quasiparticle spectral features have a small intensity and
large widths. Alternatively, one may use STM, which has a
better energy resolution than ARPES. However, STM is a
local probe in real space and misses a considerable amount
of momentum resolved information. In addition, since STM
integrates over momentum space, it is sensitive only to the
second power of an applied supercurrent’s magnitude �as
long as the time-reversal symmetry remains unbroken�. Still,
as we show in what follows, STM can be used to probe
certain qualitative features that derive from the underlying
quasiparticle current momentum space distribution.

A. Supercurrent dependence of tunneling conductance: BCS
theory

We first study the supercurrent dependence of the tunnel-
ing conductance within the BCS theory. This allows us to
introduce the general formal approach, as well as to estimate
the �generic� order of magnitude of the effect produced by a
supercurrent on the STM spectrum.

The mean-field BCS superconducting Hamiltonian,

HMF
BCS = �

k
c�k

† 
kc�k + �
k

�c�k
���kc�,−k + H.c.� �15�

where 
k is the normal state dispersion, �k is the gap func-
tion, and 
�� is the antisymmetric tensor, can be rewritten as

HMF
BCS = E0 + �

k
�Ek

BCS + 
k
a�b�k

† b�k, �16�

where


k
s =

1

2
�
k + 
−k

N �, 
k
a =

1

2
�
k − 
−k

N � ,

Ek
BCS = 
�
k

s�2 + ��k�2, �17�

if we introduce the fermionic Nambu operators b�k,

c↑k = ukb↑k + vkb↓,−k
† , c↓k = ukb↓k − vkb↑,−k

† , �18�

where uk
2= 1

2 �1+

k

s

Ek
BCS� and vk

2= 1
2 �1−


k
s

Ek
BCS� are the BCS coher-

ence factors. E0 in Eq. �16� is the ground-state energy, where
the ground-state �SC	 is determined by b�k�SC	=0 if Ek
+
k

a�0 and by b�k
† �SC	=0 if Ek+
k

a�0.
From the above, we can obtain the density of states,

N�
� = �
B.Z.

d2k

�2��2��Ek + 
k
a − 
�uk

2

+ �
B.Z.

d2k

�2��2��Ek + 
k
a + 
�vk

2. �19�

In addition, since in layered materials such as the cuprates,
we can approximately consider that the conductance between
a metal and a superconductor at a bias voltage V is propor-
tional to the total tunneling density of states N�
� of the
superconductor at 
=V,64,65 we have

� dI

dV
��V� � �

B.Z.

d2k

�2��2 f�Ek + 
k
a − V�uk

2

+ �
B.Z.

d2k

�2��2 f�Ek + 
k
a + V�vk

2, �20�

where f�
�= e�


�1+e�
�2 and �= 1
kBT account for the effect of ther-

mal broadening.
We now apply the above formula to calculate the differ-

ential tunneling conductance between a metal and a simple
BCS d-wave superconductor whose gap function is �k
=2��cos�kx�−cos�ky�� and whose dispersion in the absence
of a supercurrent is 
k

0=−2t�cos�kx�+cos�ky��+�. In the
presence of a supercurrent Js on the plane, the energy dis-
persion shifts in momentum space as given by 
k=
k+�

0 ,
where �=A and where the vector potential A is determined
from London’s equation, Js=�SA. Since the quasiparticle
current is given by jk=−

�Ek�A�
�A , the quasiparticle current dis-

tribution in the Brillouin zone controls the above energy dis-
persion shift. Consequently, the change in the tunneling spec-
trum due to an applied supercurrent reflects the underlying
quasiparticle current distribution.
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To estimate the order of magnitude of the momentum shift
�, we consider the effect of a supercurrent density of mag-
nitude, Js=108 A /cm2, on the surface of a superconductor.
Such a current density can be achieved by passing 0.1 A of
current through a superconducting thin film of 10 �m wide
and 0.01 �m thick. The penetration depth of the supercon-
ductor is �L=0.1 �m. �Note that here, the London penetra-
tion depth is the penetration depth for a magnetic field per-
pendicular to the CuO plane.� Since the London penetration
depth �L is given by �L=
c2 /4��Se2 �the constants e and c
are introduced for convenience�, we have

� = �
4��L

2

c

Js

e
, �21�

where � embodies the effect of the quasiparticle current
renormalization due to interactions. If we take the noninter-
acting case, �=1, and we find �=1.75�105 /cm or �a=7
�10−3, where a=3.8 Å is the lattice constant of the CuO
plane.

Let � dI
dV ���V� be the differential tunneling conductance in

the presence of a supercurrent flowing in the CuO plane in
the x direction. �� dI

dV �0�V� then stands for the differential tun-
neling conductance in the absence of a traversing supercur-
rent.� Figure 3 plots �� dI

dV ���V�− � dI
dV �0�V�� / � dI

dV ��V1/2� for the
choice of parameters t=0.3 eV, �=0.2 eV, �=0.02 eV,
and �a=0.01. Here, we use the scale factor � dI

dV ��V1/2�, which
denotes the differential tunneling conductance at V1/2
=0.033 V=Vgap /2. Following the above calculation, we ex-
pect that in an experimentally relevant context, the change in
the tunneling spectrum is on the order of 0.001–0.01 of the
original signal’s magnitude. The effect of a supercurrent on
the tunneling dI /dV curve can also be studied by tunneling
near a vortex.

B. Supercurrent dependence of tunneling conductance: DC
and SB theories

We now focus on the particular case of a doped Mott
insulator superconductor, as described by the SB and DC
theories. We thus extend previous calculations of the tunnel-
ing differential conductance by using the SB and DC
frameworks45,66 to account for the presence of an applied
supercurrent. Specifically, we consider the mean-field Hamil-
tonians, HMF

SB �Aij���HMF
SB �Aij ,aij��a=−��aa

SB�−1.�aA
SBA and

HMF
DC�Aij���HMF

DC�Aij ,aij��a=−��aa
DC�−1.�aA

DCA, to determine the de-
pendence of the mean-field energy dispersions Ek

SB�A� and
Ek

DC�A� on the gauge field A. We then straightforwardly ob-
tain the dependence of the differential tunneling conductance
� dI

dV ���V� on A for both the SB and the DC approaches, as
outlined in Sec. IV A. Let we, however, note a few technical
differences between what follows and Sec. IV A. First, be-
low, we assume that interactions provide the main contribu-
tion to the broadening of the spectral features of doped Mott
insulators. Hence, instead of thermal broadening, we include
the effect of a Lorentzian broadening parametrized by �
=0.01t �a value consistent with experiments67,68�. Second, we
explicitly focus on the small � limit, in which case we can
write

� dI

dV
�

�

�V� = � dI

dV
�

0
�V� +

�2

2
� dI

dV
��V� + O��4� , �22�

since in the absence of time-reversal symmetry breaking,
� dI

dV ���V�= � dI
dV �−��V�. Hence, below, we focus on the behavior

of � dI
dV ���V� instead of selecting a particular value of �.

Figures 4�a� and 4�b� depict the resulting DC and SB
theory plots of
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FIG. 3. �Color online� �� dI
dV ���V�− � dI

dV �0�V�� / � dI
dV ��V1/2� is plotted

as a function of a bias voltage V at three different temperatures and
for �a=0.01. The solid line is for electron tunneling into the super-
conductor and the dashed line is for electron tunneling out of the
superconductor. We use t=0.3 eV, �=0.2 eV, and �=0.02 eV,
which results in Vgap�0.066 V. � dI

dV ���V�− � dI
dV �0�V� has a tempera-

ture dependent peak at around V=0. The width of the peak at the
half of maximum value is about 4kBT. The height of the peak is
proportional to 1 /T.
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about 4kBT �see Fig. 3�.
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� dI

dV
�

norm

�
�V� � � dI

dV
��

�V�/� dI

dV
��

�0� , �23�

for x=0.05 and x=0.15 and within the subgap frequency
range, Vgap /2�V�Vgap /2, where V is the bias voltage and
Vgap is the SC coherence peak voltage. �We only show results
for the above values of V in order to focus on the specific
experimental signature we discuss below.� In the above ex-
pression, we normalize the second derivative of the tunneling
conductance with respect to � so that it equals unity at V
=0.

The interesting feature in Figs. 4�a� and 4�b� is that out of
all the curves in these two figures, the DC theory plot of
� dI

dV �norm� for x=0.05 stands out as the only curve that is
clearly asymmetric around V=0. To further emphasize the
asymmetry in the DC theory x=0.05 curve, as well as the
symmetry around V=0 of all other curves, in Figs. 4�c� and
4�d�, we plot � dI

dV �−�, where

� dI

dV
�

−

�
�V� � � dI

dV
�

norm

�
�− V� − � dI

dV
�

norm

�
�V� . �24�

The question then arises of what the physical reason that
singles out the DC theory x=0.05 curve is. We find that there
are at least three reasons to associate the tilting toward the
negative bias side in the DC theory x=0.05 curve to the
presence of local staggered moment correlations. First, such
a qualitative feature is altogether absent in the SB results.
Second, the above asymmetry develops upon lowering x,
which is known to enhance the signatures of AF correlations.
Lastly, it naturally follows from the DC theory two-band
picture that describes the interplay between coexisting AF
and SC correlations at short length scales.31,32 To clarify the
latter point, we remark that the DC mean-field theory con-
tains two different families of fermions, namely, spinons and
dopons, whose dispersions are determined by Eqs. �9� and
�10�. Applying a supercurrent shifts the spinon and dopon
bands relatively to each other and thus affects the electronic
spectral weight transfer to low energy �which is determined
by the hybridization of spinons and dopons described in Eq.
�11��. This spectral weight transfer is mainly reduced in
those regions of momentum space where the second deriva-
tive with respect to the momentum of the energy difference
between both bands is larger, which happens to occur close
to the peak of the AF-like dopon dispersion, hence close to
�� /2,� /2�. Since the spinon nodal point shifts away from
�� /2,� /2� toward �0,0�, the above spectral weight reduction
is stronger in the positive bias side, as obtained in Fig. 4�a�
�this argument implies that if the nodal point were to shift
toward �� ,��, the � dI

dV �� curve would rather tilt in the oppo-
site direction�.

From the above argument, the DC theory bias asymmetry
in � dI

dV �� relies on two things, namely, the nodal point shift
away from �� /2,� /2� and the presence of strong local AF
correlations. There exists ample experimental evidence for
the former.69–72 As to the latter, AF correlations were pro-
posed to underlie the momentum space anisotropy that weak-
ens the differential tunneling conductance SC coherence
peaks.45 Therefore, we propose that if, indeed, local AF cor-

relations are the cause of the aforementioned differentiation
of the nodal and antinodal momentum space regions, an
asymmetry around V=0 should be detected in the � dI

dV ��
curve measured by STM experiments in the large gap �and
small coherence peak� regions of inhomogeneous bismuth
strontium calcium copper oxide �BSCCO� samples traversed
by a supercurrent. This effect should be weaker, if at all
observable, in the small gap �and large coherence peak� re-
gions of these same samples.

We remark that the above asymmetry in � dI
dV �� is maximal

at low values of V �in the above calculation, this asymmetry
peaks around V�0.15Vgap�. At this energy scale, the differ-
ential conductance in the absence of a supercurrent, namely,
� dI

dV �0�V�, is nearly symmetric around V=0, which should fa-
cilitate the detection of the aforementioned low-energy bias
asymmetry. The low bias tunneling spectrum is also nearly
spatially homogeneous, a fact that should also facilitate the
detection of the spatially inhomogeneous asymmetry of � dI

dV ��
at low bias. In this context, we find that within the DC
framework, the low bias � dI

dV �� spatial inhomogeneity corre-
lates with three aspects of the differential tunneling conduc-
tance at a higher energy, namely, the gap size, the size of SC
coherence peaks, and the high-energy asymmetry between
positive and negative biases.

The above proposal of a specific experimental signature
of a traversing supercurrent in the STM spectra of BSCCO
samples relies on a calculation that assumes a homogeneous
system. There are two reasons to believe that our proposal is
robust to the BSCCO samples’ spatial inhomogeneity. First,
the large BSCCO’s STM spectral diversity can be repro-
duced in homogeneous systems proximate to a Mott insula-
tor transition.45 Second, the spatial inhomogeneity correlates
with off-plane disorder,73 which affects the effective param-
eters t� and t� but not t and J.74 In Fig. 5, we depict the DC
and SB theory results for the curves � dI

dV �−� with x=0.05 and
x=0.15, as well as t�=−2t�=0.5tHD� and t�=−2t�=2tHD� .
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FIG. 5. �Color online� � dI
dV �−� for t , t� , t�= tHD,0.5tHD� ,0.5tHD� in

�a� the DC theory and �b� the SB theory. � dI
dV �−� for t , t� , t�

= tHD,2tHD� ,2tHD� in �c� the DC theory and �d� the SB theory. We plot
the x=0.05 �full line� and x=0.15 �dashed line� results and use a
Lorentzian broadening given by �=0.01t.
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These show that our � dI
dV �−� results are almost insensitive to

changes in t� and t� within the range 2tHD� � t��0.5tHD� and
0.5tHD� � t��2tHD� , which argues in favor of the robustness of
the experimental effects discussed above.

V. SUMMARY

As discussed in Sec. I, experimental data together with
theoretical arguments support the important role of thermally
excited SC quasiparticles in setting the Tc scale of under-
doped cuprates. In this paper, we use two different wave
functions, namely, the SB27,28 and DC31,32 d-wave SC wave
functions, together with the tt�t�J model Hamiltonian to
show that the combined effect of slave particles and local AF
correlations reproduces nontrivial aspects of these quasipar-
ticles’ low energy and long wavelength electromagnetic re-
sponse.

Slave-particle formulations are attractive in that they pro-
vide a microscopic description of doped Mott insulator su-
perconductors, which yields both �i� a nonvanishing quasi-
particle d-wave gap and �ii� a vanishing effective density of
charge carriers as the half-filling composition is approached.
However, a previous work on the SC electromagnetic re-
sponse in slave-particle frameworks9 was not consistent with
a third crucial experimental fact, namely, that the nodal cur-
rent renormalization factor � displays a much weaker x de-
pendence than �S�0�. The aforementioned work was con-
cerned with the x→0 limit, where real materials display
long-range AF order and do not superconduct. Even though
variational Monte Carlo studies have extended the calcula-
tion of � to doping values beyond the above limit,75 this
technique obtains only a maximum bound on the value of
�S�0�.76 In this paper, we relax the no-double occupancy con-
straint �which is exactly implemented in the variational
Monte Carlo approach� and include only �the gapped� gauge
fluctuations at the Gaussian level. This allows us to calculate
the temperature dependent electromagnetic response in the
static and uniform limit for two different slave-particle ap-
proaches and, consequently, we are able to compare the dop-
ing dependence and the t /J parametric dependence of both
�S�0� and �. Interestingly, we find that even though �
��S�0��x in the limit x→0, away from this limit, � is
much more weakly x dependent than �S�0�. This result ap-
plies to both utilized slave-particle frameworks and, we pro-
pose, may be generic to slave-particle formulations.

In this paper, we also compare the SB and the DC theory
results to learn how high-energy and short-range staggered
moment correlations affect the SC electromagnetic response
in the static and uniform limit. We find that inclusion of these
correlations improves SB results, as we summarize below.
For instance, the SB and the DC theories imply different
parametric dependences on intermediate t /J values and in
Sec. III B, we argue in favor of the DC theory expectations.
We also find that local AF correlations, which enhance the
quasiparticle current in specific momentum space regions
that differ for the hole and electron doped regimes, provide a
microscopic rationale for the experimentally observed hole
vs electron doped asymmetry in the nodal quasiparticles’
electromagnetic response. The aforementioned quasiparticle
current renormalization further brings quantitative agreement
with the hole doped cuprates’ experimental data, specifically
� and the Tc scale for x�0.10, if we use physically relevant
bare parameters in the tt�t�J model Hamiltonian. To under-
stand the above improvement upon inclusion of AF correla-
tions, note that in the SB framework, the projection con-
straint is implemented after integrating out the SU�2� gauge
field, a procedure that enhances this type of AF
correlations.77 To check the consistency of this interpretation,
we refer to a variational Monte Carlo study75 that exactly
enforces the no-double occupancy constraint on BCS wave
functions and whose values of � are, indeed, larger than
those we obtain in this paper’s SB approach.

Finally, we point out that a momentum dependent, and
thus energy dependent, coupling of quasiparticles to an elec-
tromagnetic gauge field is reflected in the local density of
states in the presence of an applied supercurrent. In this con-
text, we derive �DC theory specific� qualitative predictions
for the effect of short-range staggered correlations between
local moments in the tunneling spectrum of a sample tra-
versed by a supercurrent, namely, this theory implies an
asymmetry in � dI

dV ���V� around V=0 for underdoped samples.
This effect may be probed by STM experiments, which thus
could distinguish the DC theory description of the high-Tc
superconductors from the SB theory and the conventional
BCS theory.
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