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We investigate the influence of inhomogeneity in the pairing coupling constant U�r�� on dirty BCS super-
conductors, focusing on Tc, the order parameter ��r��, and the energy gap Eg�r��. Within mean-field theory, we
find that when the length scale of the inhomogeneity is comparable to or larger than the coherence length, the
ratio 2Eg /Tc is significantly reduced from that of a homogeneous superconductor, while in the opposite limit,
this ratio stays unmodified. In two dimensions, when strong phase fluctuations are included, the Kosterlitz-
Thouless temperature TKT is also studied. We find that when the inhomogeneity length scale is much larger than
the coherence length, 2Eg /TKT can be larger than the usual BCS value. We use our results to qualitatively
explain recent experimental observation of a surprisingly low value of 2Eg /Tc in thin films.
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I. INTRODUCTION

The presence of disorder in essentially all superconduct-
ing systems makes research of the interplay of disorder and
superconductivity essential. In their pioneering work,
Anderson1 and Abrikosov and Gorkov2 claimed that non-
magnetic impurities have no considerable effect on the ther-
modynamic properties of s-wave superconductors; this result
is known as “Anderson theorem” for weakly disordered dirty
superconductors. Since the discovery and elucidation of the
localization phenomenon,3 corrections to the Anderson theo-
rem have been intensively investigated both
experimentally4–8 and theoretically.9–18 Within mean-field
theory, it has been shown that if one neglects Coulomb in-
teractions, pairing survives below the mobility edge until the
localization length reaches a critical value.11,12 However, in-
teractions change this picture significantly, since the effect of
Coulomb repulsion is strengthened by localization, resulting
in a suppressed effective attractive interaction and thus a
reduced mean-field Tc.

9,10,13–15 An underlying assumption of
these works is the uniformity of the superconducting order
parameter, which has been questioned by numerical simula-
tions in recent years.17,18

Experiments in this field focused on two-dimensional �2d�
superconductors, namely, superconducting thin films. The
disorder in superconducting films is expected to reduce the
superfluid density and the phase ordering temperature, i.e.,
the Kosterlitz-Thouless temperature TKT, in addition to sup-
pressing the mean-field Tc. These considerations natural lead
to the possibility of a quantum superconductor-insulator tran-
sition �SIT� at a critical amount of disorder or magnetic field.
Furthermore, the scale invariant nature of a film’s resistance
raised expectations that such a SIT would exhibit many uni-
versal features.19 The superconductor-insulator transition was
intensively studied experimentally.20–31 The theoretical view-
point on these transitions took two main forms: The nature of
the SIT was interpreted either as the breaking of Cooper
pairs caused by amplitude fluctuation14–16 or localization of
Cooper pairs resulting from phase fluctuation.19,32–36 While
the nature of the SIT in various systems is still debated, in
recent years, the interest in this problem is further intensified

by the observation of a possible metallic phase intervening
the superconducting and insulating phases.37–41 This obser-
vation stimulated several theoretical proposals,42–47 but its
origin is still a mystery.

Motivated by the thin-film physics, more experimental
studies focused on the nature of the density of states �DOS�
and the quasiparticle energy gap of disordered single layer
superconducting thin films5–7,23,26,25,28 and superconductor–
normal-metal �SN� bilayers.41,48,49 Interestingly, these studies
found a broadening of the BCS peak and also a subgap den-
sity of states.6,23,25,26,28,48 Of particular interest to us is the
work in Ref. 49, which studied a thin SN bilayer system, and
found a surprisingly low value of the ratio of the energy gap
to Tc, in contradiction to standard BCS theory, and the theory
of proximity50–52 where it is claimed that the energy gap–Tc
ratio should be bounded from below by �3.52. A drop below
this bound, 2Eg /Tc�3.52, was also observed in amorphous
Bi films as it approaches the disorder tuned SIT.23,26 Similar
trends were also observed in SN bilayers in Ref. 41 and in
amorphous tin films in Ref. 7.

In this paper, we show that a reduction of the 2Eg /Tc ratio
in a dirty superconductor could be explained as a conse-
quence of inhomogeneity in the pairing interaction. In SN
bilayer thin films, thickness fluctuations of either layer result
in effective pairing inhomogeneity �in thin SN bilayers, the
effective pairing is the volume averaged one, cf. Refs. 51 and
52 and Sec. V�. Such inhomogeneities in other systems occur
due to grain boundaries, dislocations, or compositional het-
erogeneity in alloys.53 For simplicity, we will assume in our
analysis that the pairing coupling constant takes a one-
dimensional modulating form:

U�r�� = Ū + UQ cos�Qx� . �1�

In bilayer SN films, the effect of localization and Cou-
lomb interaction is minor compared to proximity effect, and
therefore we will neglect these complications in this work.

In our results, the ratio between the inhomogeneity length
L�1 /Q and the superconducting coherence length � plays a
crucial role. When Q��1, the superconducting properties

are determined by an effective coupling Ū�Ueff� Ū+UQ.54
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In this limit, the ratio 2Eg /Tc is preserved at the standard
BCS value �3.52. Small corrections are obtained when
1 / �Q�� is finite. In the opposite limit, Q��1, the system
tends to be determined by the local value of U�x�. Within
mean-field theory, the ratio 2Eg /Tc is generally suppressed
from the BCS value of 3.52; in two dimensions, however,
when one includes the thermal phase fluctuation and studies
the Kosterlitz-Thouless temperature TKT, the ratio 2Eg /TKT
can be larger than the usual BCS value. These results on
2Eg /Tc are summarized in Fig. 6.

Our analysis is inspired by similar previously studied
models. Particularly, the Tc of the clean case of this model
has been analyzed in Ref. 54. Here, we extend the study of
nonuniform pairing to both Tc and zero-temperature proper-
ties of disordered films, in the regime where the electron
mean free path l obeys 1 /kF� l��0�

�vF

Tc
, which is relevant

to the experiments of Long et al.48,49 Note that while Ander-
son theorem states that the critical temperature and gap of a
homogeneous superconductor do not depend on disorder,1 in
an inhomogeneous system, the theorem does not hold. In-
deed, we find that the results of Ref. 54 are modified in the
dirty case. In another related work, a system with a Gaussian
distribution of the inverse pairing interaction was
studied.55,56 It was shown that an exponentially decaying
subgap density of states appears due to mesoscopic fluctua-
tions which lie beyond the mean-field picture. Finally, inho-
mogeneous couplings in the attractive Hubbard model57,58

and lattice XY model59 were also analyzed, with relevance to
high-Tc materials.

This paper is organized as follows. In Sec. II, we review
the quasiclassical Green’s function formalism which we use
and briefly demonstrate how it works for the usual dirty su-
perconductors with spatially uniform coupling constant.
Then, in Sec. III, we discuss the cases with nonuniform cou-
pling classified by the competition of two length scales: the
coherence length � and the length scale associated with the
variation of the coupling constant L=1 /Q. We will also dis-
cuss the effect of other types of inhomogeneities briefly. In
Sec. IV, we provide a useful analogy with superconductor–
normal-metal superlattice to provide more physical intuition
about our results on the energy gaps. In Sec. V, we will
summarize our analysis and discuss the connection with ex-
perimental results.

II. GAP EQUATION OF A NONUNIFORM FILM

The starting point of our analysis is the standard s-wave
BCS Hamiltonian:

H = H0 + Hint + Himp,

H0 = �
	


	
†�r���̂
�r��	,

Hint = − U�r��
↓
†�r��
↑

†�r��
↑�r��
↓�r�� , �2�

where �̂�− �2

2m −�, U�r���0 is the attractive coupling con-
stant between electrons, and Himp includes scattering with
nonmagnetic impurities. When the pairing interaction U�r�� is

nonuniform, so is the order parameter in this system. A stan-
dard technique to tackle this nonuniform superconductivity
problem is the quasiclassical Green’s functions.60–62 In the
dirty limit ���0�

�vF

Tc
, the quasiclassical Green’s functions

obey a simple form of the Usadel equation, which in the
absence of a phase gradient is

D

2
�− �2
� = � cos 
 − �n sin 
 , �3�

where D= 1
dvFl is the diffusion constant, l is the mean free

path, d is the spatial dimension, and � is the superconducting
order parameter. 
 is a real function of space and Matsubara
frequencies �n and is a parametrization of the quasiclassical
Green’s functions g and f:

g = cos 
, f = f† = − i sin 
 . �4�

Also, we list the relation between the integrated quasiclassi-
cal Green’s function and Gor’kov’s Green’s function G and
F:

g�r�� =� d�p

4�
� d�p

i�
G�r�,p�� =

1

i�NF
� d3p

�2��3G�r�,p�� ,

f�r�� =� d�p

4�
� d�p

i�
F�r�,p�� =

1

i�NF
� d3p

�2��3F�r�,p�� ,

where r� is the center of mass coordinate and p� is the momen-
tum corresponding to the relative coordinate; �p is the angle
of momentum p� and NF is the density of states �per spin� of
the normal state at the Fermi energy. The self-consistency
equation reads

��r�� = U�r��NF�T�
n

if�n
�r�� . �5�

For simplicity, we assume the pairing is as given in Eq. �1�,

U�r�� = Ū + UQ cos�Qx� .

Uniform pairing case

Before analyzing the inhomogeneous pairing problem, let
us briefly review the calculation of Tc, the superconducting
order parameter ��T=0�, and the density of states �DOS�
��E� of a dirty superconductor with a spatially uniform cou-
pling constant U using quasiclassical Green’s functions. In
this case, Eqs. �3� and �5� admit a uniform solution for both

 and �:


 = arctan� �

�n
� . �6�

Using Eq. �5�, we obtain the standard BCS self-consistency
equation:

1 = UNF�T�
n

1

	�2 + �n
2

. �7�

Tc and ��T=0� are easily obtained from Eq. �7�:
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Tc =
2C

�
�De−1/UNF, ��T=0� = 2�De−1/UNF,

where C=e�
1.78, with �=0.5772. . . the Euler constant,
and �D the Debye frequency. The DOS can be obtained from
the retarded quasiclassical Green’s function: ��E�
=Re�gR�E��, which can be obtained from g��n�=cos�
n� by
analytical continuation i�→E+ i0+:

��E� = Re
− iE

	�2 − �E + i0+�2
= 
 E

	E2 − �2 if E � �

0 if E � � .
�

Thus, there exists a gap in the excitation spectrum Eg=�,
and its ratio with Tc is a universal number � /C
1.76. As
expected, these results for dirty superconductors are exactly
the same as those of clean superconductors, thus explicitly
illustrating Anderson theorem.

III. CASE OF INHOMOGENEOUS PAIRING

Using the formalism reviewed in the previous section, we
now discuss the nonuniform superconducting film. Our dis-
cussion will concentrate on the limits of fast and slow pair-
ing modulations, i.e., large and small Q�, respectively �� is
the zero-temperature coherence length in the dirty limit, �

=	�D / �̄T=0�	�D /Tc, where �̄ is the spatially averaged
��x��.

A. Fast pairing modulation: Proximity enhanced
superconductivity

With a nonuniform coupling U�x�, uniform solution of
either 
�x� or ��x� no longer exists. When fast pairing modu-
lation is present, the angle 
 is dominated by its k=0 Fourier
component, 
0, since it cannot respond faster than its char-
acteristic length scale �. Corrections to the uniform solution
are of the form 
1 cos�Qx� and are suppressed by powers of

1
Q� . From Eq. �5�, we see that in contrast to 
, the order
parameter ��x� has a factor of U�x� in its definition, and
therefore it can fluctuate with the fast modulation of U�x�.
The modulating component of ��x� is thus only suppressed

by UQ / Ū, while the modulating part of 
�x� is suppressed by

both UQ / Ū and 1 / �Q��. Keeping both 1 /Q��1 and expand-

ing in UQ / Ū, we can perturbatively solve Eqs. �3� and �5�.
Starting with

��x� = �0 + �1 cos�Qx�,
�x� = 
0 + 
1 cos�Qx� , �8�

Eq. �3� can be solved order by order:


0 = arctan��0

�n
� ,


1 = �1
�n

D

2
Q2	�n

2 + �0
2 + �n

2 + �0
2

. �9�

The self-consistency equation �5� can be Fourier trans-
formed:

�0 = NF�T�
�n

�Ū sin 
0 + 2
UQ

2

cos 
0

2

1� ,

�1

2
= NF�T�

�n

�Ū
cos 
0

2

1 +

UQ

2
sin 
0� , �10�

where the �n index of 
0 and 
1 is implicit.
When T→Tc, we can linearize 
0 and 
1 with respect to

�0 and �1, respectively,

sin 
0 

�0

��n�
, 
1�cos 
0� 


�1

��n� +
DQ2

2

.

Noting that

�
n=0

N0 1

n + 1/2

 ln N0 + 2 ln 2 + � for N0 � 1, �11�

where � is the Euler constant, we have approximately

2�T �
�n=0

�D/2�T
1

�n

 ln�2C�D

�T
� ,

2�T �
�n=0

�D/2�T
1

�n + DQ2/2

 ln�1 +

�D

DQ2/2� , �12�

where, as before, C=e�
1.78 and �D is the Debye fre-
quency. Defining

K0 = ŪNF ln�2C�D

�T
�, K1 = ŪNF ln�1 +

2�D

DQ2� , �13�

we get

�0 = K0�0 +
1

2

UQ

Ū
K1�1,

�1 =
UQ

Ū
K0�0 + K1�1.

Tc is the temperature at which this equation admits a nonzero
solution:

Tc =
2C

�
�D exp�−

1

Uef fNF
� , �14�

where the effective pairing strength is

Uef f = Ū�1 + �UQ

Ū
�2 K1

2�1 − K1�� . �15�

This is the dirty case analog of the result obtained by Ref.
54.

Next, we turn to the order parameter. At T=0, the sums in
the self-consistency equations �10� become integrals, which
can be performed �see also the Appendix� as follows:

�0 = NFŪ�0 ln�2�D

�0
� +

1

2

UQ

Ū
K1�1,
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�1

2
=

K1�1

2
+

NFUQ

2
�0 ln�2�D

�0
� , �16�

thus giving the solution

�0�T=0� = 2�D exp�−
1

Uef fNF
� ,

�1�T=0� = �0�T=0�
UQ

Uef f

1

1 − K1
,

with the same Uef f defined in Eq. �15�. Noting that �0 is the

spatially averaged value of the order parameter �̄, we arrive
at the conclusion that in the limit Q��1, the ratio

2�̄

Tc
=

2�0�T=0�

Tc
=

2�

C
�17�

is preserved.
The modification of the gap, however, must be addressed

separately. Although the gap and the order parameter coin-
cide for a uniform BCS superconductor, this is not generally
true in a nonuniform superconductor. To obtain the DOS and
the gap, one has to rephrase the problem in a real-time for-
malism and calculate the retarded Green’s function which is
parametrized by a complex 
�x ,E�=
��x ,E�+ i
��x ,E�, with
both 
�,
� real, and then compute the DOS via ��x ,E�
=Re gR�x ,E�=Re cos 
�x ,E�=cos 
� cosh 
�.61,62 Naively,
one can perform the prescription i�→E+ i0+ in the imagi-
nary time Green’s functions to obtain the retarded ones, but
our perturbative solution will break down as E approaches
�0, since 
1 diverges faster than 
0. Therefore, to analyze the
gap, one has to re-solve the real-time counterpart of Eq. �3�
with ��x� given above. Note that our solution of ��x� is still
valid, sparing us the need to solve the self-consistency equa-
tion.

In real time, Eq. �3� becomes

−
D

2
�x

2
� = cos 
��� cosh 
� − E sinh 
�� ,

D

2
�x

2
� = sin 
��� sinh 
� − E cosh 
�� . �18�

We numerically solved these coupled equations with periodic
boundary condition on �0,2� /Q� and computed the DOS
��E�=cos 
1 cosh 
2, and thereby obtained the gap. We find
that despite the fluctuating ��x�, the energy gap Eg is spa-
tially uniform. Figure 1 shows a graph of Eg vs Q� for
�1 /�0=0.1 and 0.2. Again, in the plot, we define the coher-

ence length � to be 	�D / �̄T=0=	�D /�0,T=0. One can see
that in the limit Q�→� , Eg coincides with �0, and nonzero
1 / �Q�� brings about only small corrections to make the gap
slightly smaller than �0. These corrections increase with

smaller Q� or larger UQ / Ū �i.e., �1 /�0�. Thus, we find that
for Q��1 case,

2Eg�T=0�

Tc
�

2�0�T=0�

Tc
=

2�

C
= 3.52. �19�

It is easy to understand the uniformity of Eg, since the wave
function of a quasiparticle excitation should be extended on a
length scale 1 /Q��. Some intuition for the fact that Eg

�0 is provided in Sec. IV.

B. Slow pairing fluctuations: WKB-like local superconductivity

When the pairing strength fluctuates slowly, i.e., over a
large distance, both the Green’s functions and the order pa-
rameter ��x� can vary on the length scale of 1 /Q, and we
can approximate the zeroth order solution by a “local solu-
tion”


0�x� = arctan���x�
�n

� , �20�

where ��x� is to be solved from the self-consistency equa-
tion. This “local” property of the system implies a large spa-
tial variation of both ��x� and 
�x�, in contrast to the Q�
�1 case. To improve the zeroth order solution, we write

�x�=
0�x�+
1�x�. Neglecting the small gradient term of 
1,
one can solve for 
1 from Usadel’s equation �3�


1 =
D

2
� �n�x

2�

��2 + �n
2�3/2 −

2��n��x��2

��2 + �n
2�5/2� . �21�

Thus, the self-consistency equation �5� becomes

��x� = U�x�NF2�T �
n=0

�D/2�T � �

	�2 + �n
2

+
�n

	�2 + �n
2

1� .

�22�

In the Ginzburg-Landau regime, one is justified in keeping
lowest order terms in Eq. �22�:

4 6 8 10
0.95

0.96

0.97

0.98

0.99

1

∆
1
=0.1∆

0

∆
1
=0.2∆

0

g(∆0)

Qξ

E

FIG. 1. The energy gap Eg measured in units of �0 vs Q� for
Q��1. The two curves are for �1 /�0=0.1 and 0.2, respectively.
Here, �0 and �1 are the uniform and oscillating components of the
order parameter, respectively. Q is the modulating wave vector of
the inhomogeneous coupling constant; � is the superconducting co-
herence length. The estimated numerical error of Eg /�0 is about
0.01. The deviation of Eg from �0 is small, but it increases with
larger �1 /�0 or smaller Q�.
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��x� = U�x�NF���x�ln�2C�D

�T
� −

7��3�
8�2T2�3�x�

+
��D

8T
�x

2��x�� , �23�

where ��n� is the Riemann � function. Remarkably, Eq. �23�
is nothing but the Ginzburg-Landau equation for a modulat-
ing coupling constant U�x� with Q��1 and is precisely the
dirty case analog of Eq. �9� in Ref. 54, with � replaced by the

dirty limit expression �̃2=��D /8T ��̃ is slightly different
from the coherence length defined in this work, �

�	�D / �̄T=0, where �̄ is the spatially averaged ��x��. In the
limit Q�→0, ��x� would be determined only by the local
value of U�x�, and the mean-field transition temperature

would be given by Tc,max= �2C�D /��exp(−1 / �Ū+UQ�). A
small but nonzero Q� leads to a weak coupling between spa-
tial regions, hence slightly reducing the mean-field Tc. Fol-
lowing the analysis of Ref. 54, one obtains the mean-field
transition temperature

Tc
MF 


2C�D

�
e−1/NF�Ū+UQ�e−�̃QA/	2, �24�

where A�	UQ / �NFŪ2�.
Although the inhomogeneous U�x� largely increases the

mean-field Tc, it also makes the system more susceptible to
phase fluctuations. This effect will be more pronounced in a
two-dimensional superconductor, which we will focus on
now. A film becomes superconducting through a Kosterlitz-
Thouless transition. To determine the Kosterlitz-Thouless
transition temperature TKT, we note that the Ginzburg-
Landau free energy corresponding to Eq. �23� is

F„��x�… = NF� d3x���x��2�x� +
�

2
�4�x� + ����x��2�� ,

��x� =
1

NFU�x�
− ln�2 � 1.78�D

�T
� ,

� =
7��3�
8�2T2 , � =

��D

8T
. �25�

As a functional of ��x�, F can be minimized numerically,
thus giving a solution of ��x�. The free energy cost for phase
fluctuations is approximately F= 1

2 �d2xJ�x���
�2. For
quasi-2D films,

J�x� = 2N�NF
2d�̃2��MF�x��2, �26�

where NF
2d is the 2D electron DOS, N� is the number of

channels, �̃�	��D / 8T , and �MF is the mean field solution
of Eq. �25�. To explain the bilayer thin-film experiments in-
vestigated by Long et al.,48,49 we use the measured value of
the diffusion constant D=5�10−3 m2 s−1 �see Ref. 48� and
estimate N�=kFd /�
50, where the film thickness d

10–20 nm �Refs. 48 and 49� and the Fermi wave vector
kF�1 Å−1. As in Ref. 54, one can estimate TKT self-
consistently from

TKT =
�

2
	J�x��1/J�x��−1, �27�

since J�x� is the stiffness along the “stripes,” while
�1 /J�x��−1 is perpendicular to the stripes. Although our esti-
mation of N� is crude, the value of TKT is very insensitive to
it. This is because TKT is solved self-consistently from Eq.
�27�. If one attempts to use a larger N� in Eq. �26�, the
enhancement of TKT is limited by J�x� which itself is sup-
pressed as temperature increases. Typical solutions of TKT are
shown in Fig. 2. One can see that the phase fluctuation re-
gion, i.e., the difference between Tc

MF and TKT, increases with
stronger inhomogeneity �Figs. 2�a� and 2�b��. Also, for
longer wavelength modulation, TKT is reduced more strongly
�Fig. 2�c��. Heuristically, this is because for smaller Q�, the
superconducting stripes become farther apart, and therefore it
is more difficult for them to achieve phase coherence.

Moving our focus to the zero-temperature order parameter
and gap, we note that at T=0, the integrals in Eq. �22� can be
done:

��x�
U�x�NF

= ��x�ln� 2�D

��x�
� +

�D�x
2�

8��x�
−

�D��x��2

16�2�x�
.

This can be approximately solved by

��x� 
 �0�x�e−��x�,

�0�x� = 2�De−1/NFU�x�,

��x� =
�D

8�0�x�
Q2A2�cos�Qx� −

1

2
A2 sin2�Qx�� . �28�

Noting that �x��x�
−A2Q sin�Qx���x� �with A defined un-
der Eq. �24��, for our WKB analysis to be self-consistent, we

need to require the that A�O�1�; thus, UQ / Ū needs to be
small. Also, when this is satisfied, ��x� leads to a slight av-
eraging between ��x�, which is a manifestation of proximity
effect.

To analyze the gap, we must switch to a real-time formal-
ism again, since our perturbative solution for the Green’s
function becomes invalid as E→��x�. Thus, we have to
solve the real-time Usadel equation �18� with ��x� obtained
above. Using the same numerical code as in Sec. III A, we
have obtained the local gap Eg�x�, which is plotted vs x in
Fig. 3 for half a period of modulation. One can see that, in
general, Eg�x� is lower than ��x�, and when Q�=0.3, Eg�x� is
largely set by the region with weakest coupling; however,
when Q�→0, Eg�x� tends to follow much closer to ��x� as
expected. In addition, the minimum of Eg�x� is always
slightly higher than the minimum of ��x� by an amount that
also diminishes upon Q�→0. This behavior will be further
clarified in the next section.

The ratio Eg / �̄ vs UQ / Ū or Q� is plotted in Fig. 4. The
suppression of the gap strengthens when either the inhomo-

geneity becomes stronger �UQ / Ū is large� or its length scale
L�1 /Q becomes smaller, consistent with the results in Fig.

3. The Eg suppression relative to �̄, together with the fact the
Tc

MF, is largely determined by strongest coupling region, im-
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plying that the ratio 2Eg /Tc
MF is generically reduced. The

ratios 2Eg /Tc
MF and 2Eg /TKT are plotted in Fig. 5 for several

representative cases. As expected, there is always a strong
suppression of the ratio 2Eg /Tc

MF from 3.52; for a two-
dimensional system, however, the ratios with TKT are more
subtle. For very small Q�, the ratio 2Eg /TKT might be en-
hanced due to the large deviation of TKT from Tc

MF �see also
Fig. 2�c��, while for larger value of Q�, the phase fluctuation

region is narrow �see also Fig. 2�a��, and 2Eg /TKT is reduced
from 3.52.

For the purpose of comparison with the thin-film experi-
ments, a comment on the determination of Tc

MF and TKT is in
order. Due to disorder and phase fluctuations, the resistive
transition curve can be significantly broadened. Tc

MF can be
estimated as the temperature at which the resistance drops to
half of its normal state value, while TKT can be defined as the
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FIG. 2. The mean-field transi-
tion temperature Tc

MF, the
Kosterlitz-Thouless temperature
TKT, and the minimum mean-field
transition temperature Tc,min

= 2C
� �De−1/NF�Ū−�UQ�� �a� vs UQ / Ū

with Q�=0.3, �b� vs UQ / Ū with
Q�=0.1, and �c� vs Q� with

UQ / Ū=0.1. In all cases, ŪNF

=0.2. T is in units of Tc,a

� 2C
� �De−1/NFŪ. Here, Ū and UQ

are the uniform and oscillating
components of the coupling con-
stant, respectively. NF is the den-
sity of states of the normal state,
Q is the modulating wave vector
of the inhomogeneous coupling
constant and � is the supercon-
ducting coherence length. The es-
timated numerical error of
TKT /Tc,a is about 0.01.
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FIG. 3. The local order parameter ��x� and the local gap Eg�x� �in units of ��UQ=0�=2�De−1/ŪNF� vs spatial coordinate x� �0,� /Q�.
Q�=0.3 and 0.1 in �a� and �b�, respectively. ŪNF=0.2, UQNF=0.02. Here, Ū and UQ are the uniform and oscillating components of the
coupling constant, respectively. NF is the density of states of the normal state, Q is the modulating wave vector of the inhomogeneous
coupling constant, and � is the superconducting coherence length. The estimated numerical error of Eg�x� is about 0.01.
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temperature at which the resistance drops below the mea-
surement threshold �see, for example, Ref. 28�. Alternatively,
one can extract Tc

MF from fitting the fluctuation resistance to
Aslamazov-Larkin theory63 and obtain TKT from nonlinear
I-V characteristics or from fitting the resistance below Tc

MF to
Halperin-Nelson form64 �see, e.g., Refs. 65 and 66�. Thus,
both Tc

MF and TKT, in principle, can be measured from ex-
periments and can be used for comparison with our theoret-
ical results here.

C. Additional inhomogeneities

Apart from modulation of the coupling U, one may also
be interested in a simultaneous modulation of other proper-
ties. For example, in the small Q� limit, one may expect the
periodicity of U to be accompanied by a periodicity of the
local density of states at the Fermi level, or the mean free
path. Another possible modulation, that of a periodic poten-
tial, is suggested in Ref. 54 and, in practice, is equivalent to
local modulation of U. Indeed, one may use an effective
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2Ēg
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FIG. 5. The ratios of the spa-
tially averaged gap Eg to Tc

MF or

TKT �a� vs UQ / Ū, Q�=0.3, �b� vs

UQ / Ū, Q�=0.1, and �c� vs Q�,

UQ / Ū=0.1. In all cases, ŪNF

=0.2. Here, Ū and UQ are the uni-
form and oscillating components
of the coupling constant, respec-
tively. NF is the density of states
of the normal state, Q is the
modulating wave vector of the in-
homogeneous coupling constant,
and � is the superconducting co-
herence length. The estimated nu-
merical error is about 0.02.
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description of the self-consistency equation �5�, taking NF
→NF+NQ cos�Qx� to lowest order in the amplitude NQ of
the local DOS in the form

��r�� = NFUmod�r���T�
n

if�n
�r�� . �29�

where Umod= Ū+
NQŪ+NFUQ

NF
cos�Qx� and NF is the spatially

averaged DOS. Formally, this is exactly the same as Eq. �1�
and can be treated similarly, taking

UQ →
NQŪ + NFUQ

NF
. �30�

In practice, a local periodic potential may be imposed on the
system externally by either acoustic means or an electromag-
netic field. Thus, it might be interesting to check the change
in TC of a superconductor in the presence of an acoustic
wave experimentally.

Another possibility of interest is that along with U, the
electron mean free path is modulated in the system. This can
be naturally occurring if the periodicity in U is a conse-
quence of spatial variation in the properties of the material
used. Alternatively, one may obtain this case by a periodic
doping of the superconductor.

In this case, we may describe the system effectively by
modification of the Usadel equation �3� to

−
1

2
� · �D � 
� = � cos 
 − �n sin 
 , �31�

and taking the diffusion coefficient D to be spatially depen-

dent. Choosing D= D̄+DQ cos�Qx� and repeating the treat-
ment above, we find that DQ does not change the values of
the Green’s functions 
0 and 
1 above �it, however, appears
at higher orders of the equation�, and so does not change the
results of this paper within this order.

IV. SUPERCONDUCTOR–NORMAL-METAL
SUPERLATTICE ANALOGY

Some insight into the nature of the lowest-lying excita-
tions for both large and small Q� cases can be gained by
considering a simplified system: superconductor–normal-
metal–superconductor �SNS� junctions. First, consider a
single SNS junction with length L=2� /Q, and ��x�=�, 0 in
the S, N parts, respectively. Andreev bound states will form
in the normal metal, and the energy of these states can be
obtained by solving Bogoliubov–de Gennes equations for the
clean case, or Usadel equations for the dirty case. In the limit
L→0, the energy of the lowest-lying state is �, while in the
opposite limit L��, the �mini�gap is much smaller than �: in
the clean case, Eg�vF /L��Q���, and in the dirty case, the
gap equals the Thouless energy D /L2��Q��2�.51,67,68 These
states exponentially decay into the superconductors for a dis-
tance ��.

Based on a single SNS junction, one can build an SN
superlattice with alternating superconductor and normal
metal, each with length L=2� /Q and ��x�=�, 0 in the S, N
parts, respectively. If L��, Andreev bound states remain lo-

calized in the normal regions with the gap much smaller than
�. On the other hand, if L��, these states strongly mix with
each other, and they form a tight-binding band. Therefore,
the gap, namely, the lower band edge, is lower than �, and in
the limit Q�→�, it is precisely at � /2, the averaged ��x�
�see the analytical calculation by Ref. 69�. The SN superlat-
tice thus allows a qualitative understanding of the gap’s be-
havior in the problem we addressed above: If Q��1, all
excitations are extended in space, with the uniform gap Eg


 �̄. If Q��1, the lowest-lying excitations are localized in
the weakest coupling regions whose gap is close to the mini-
mum of ��x�. This analogy also elucidates the features in
Fig. 3: Given a point in space x0, Eg�x0� is generally lower
than ��x0�, because the wave function of the low-lying ex-
citations originating at a nearby region �within ��� with
smaller ��x� is exponentially suppressed at x0, and when � is
smaller, this effect is reduced; thus, Eg�x� follows closer to
��x� in the limit Q�→0. Finally, the difference between the
minimum of Eg�x� and the minimum of ��x� resembles the
minigap in SN superlattice �vF /L or D /L2, which ap-
proaches zero as Q�→0.

V. SUMMARY AND DISCUSSION

In this paper, we investigated the properties of dirty BCS
superconductors with a fluctuating pairing coupling constant

U�x�= Ū+UQ cos�Qx�. Particularly, we analyzed the change
in the mean-field Tc, the zero-temperature order parameter
��x�, and the energy gap in quasiparticle excitation Eg�x�
using the Usadel equation for quasiclassical Green’s func-
tions. In addition, we estimated the Kosterlitz-Thouless tran-
sition temperature TKT. Our analysis found four different re-
gimes:

�1� Q�→�. In this case, the mean-field Tc and the spa-

tially averaged order parameter �̄ are determined by the ef-

fective coupling constant Ueff� Ū �see Eq. �15��. Moreover,
since in this regime any quasiparticle wave function is ex-
tended over the length scale L=1 /Q, the local energy gap Eg
is uniform in space, and we found it to coincide with the

spatially averaged �̄. The ratios 2�̄ /Tc=2Eg /Tc=3.52 main-
tain their universal BCS value.

�2� Q��1. In this regime, the physics is qualitatively the
same as that of the previous case. The gap Eg, however, is

smaller than �̄ by an amount that grows with decreasing Q�

or increasing UQ / Ū. Therefore, 2Eg /Tc�3.52 �see Fig. 1�.
�3� Q��1. The system tends to divide into regions which

behave according to the local value of U�x�. Thus, the mean-
field Tc is determined by the first formation of local super-
conductivity upon lowering temperature, and therefore Tc

MF

is close to highest local Tc. In contrast, the global energy gap
or the spatially averaged local gap is largely determined by
the region with smallest U�x�. Consequently, in this regime,
the ratio 2Eg /Tc

MF is always suppressed from the universal
BCS value, 3.52 �see Fig. 5�a��. Moreover, although the sys-
tem is affected by phase fluctuations, in this regime, TKT is
close to Tc

MF for small values of UQ �see Fig. 2�a��. Thus,
2Eg /TKT is also smaller than 3.52 �see Fig. 5�a��.
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�4� Q�→0. As opposed to the previous regime, here
phase fluctuations lead to a large suppression of TKT relative
to Tc

MF �see Fig. 2�b��. Although 2Eg /Tc
MF is still below 3.52,

the ratio 2Eg /TKT is close to or larger than 3.52 �see Fig.
5�c��.

The value of 2Eg /Tc
MF and 2Eg /TKT vs the entire range of

Q� is plotted schematically in Fig. 6, with regimes 1–4 ex-
plicitly labeled in the graph. Schematic results of Tc

MF and
TKT vs Q� are summarized in Fig. 7.

Finally, we discuss connections with thin-film
experiments.48,49 A straightforward realization of inhomoge-
neous coupling is in disordered superconductor–normal-
metal �SN� bilayer thin films. In a homogeneous bilayer SN

with thickness smaller than the coherence length �, mean-
field analysis yields that Tc and the energy gap Eg of the
system are determined by the averaged coupling
constant50–52

Uef f =
dSNS

dSNS + dNNN
U , �32�

where U is the pairing coupling in the superconducting layer,
d is the thickness, N is the DOS at the Fermi energy, and the
subscripts S and N denote the superconductor and normal-
metal layers, respectively. Thus, the ratio 2Eg�T=0� /Tc is ex-
pected to remain at the BCS value 2� /C
3.52 in a homo-
geneous SN bilayers. Nevertheless, from Eq. �32�, one
observes that a spatially inhomogeneous thickness dS,N�x�
�which is also consistent with the granular morphology of the
sample70� leads to a nonuniform coupling U�x� even if the
original coupling U is homogeneous. Therefore, thickness
variation generically leads to a superconductor with inhomo-
geneous pairing coupling. According to our results, a devia-
tion of 2Eg /Tc from 3.52 is expected in such a system.

Indeed, our study was motivated by such observations. In
Refs. 48 and 49, Long et al. report measurements of recently
fabricated a series of Pb-Ag bilayer thin films, with thickness
dPb=4 nm and dAg increasing from 6.7 to 19.3 nm. They ob-
served a significant reduction of 2Eg /Tc

MF from the expected
value �3.52, where Eg is the spatially averaged gap ex-
tracted from tunneling measurement of the DOS, and Tc

MF is
measured as the temperature at which R�T� drops to half of
its normal state value, and the resistive transition is sharp and
well defined. This suppression of 2Eg /Tc

MF is more pro-
nounced in systems with thicker Ag, thereby lower Tc

MF. In
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FIG. 8. The ratios of the spatially averaged gap Eg to the mean-
field transition temperature Tc

MF or the Kosterlitz-Thouless transi-

tion temperature TKT vs ŪNF. UQNF=0.002, Q�=0.3. Here, Ū and
UQ are the uniform and oscillating components of the coupling
constant, respectively. NF is the density of states of the normal state,
Q is the modulating wave vector of the inhomogeneous coupling
constant, and � is the superconducting coherence length. Since Tc

MF

monotonically increases with Ū, this result resembles the experi-
mental data of Ref. 49 �see Fig. 3�b� of Ref. 49�, which shows that
the lower the measured Tc of a thin-film bilayer, the smaller the
ratio 2Eg /Tc. The estimated numerical error is about 0.02.
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FIG. 6. Schematic plot of the ratios 2Eg /Tc
MF and 2Eg /TKT vs

Q�. Here, Eg is the spatially averaged gap in local DOS, Tc
MF is the

mean-field Tc, TKT is the Kosterlitz-Thouless transition temperature
in two dimensions, Q is the modulating wave vector of the inho-
mogeneous coupling constant, and � is the superconducting coher-
ence length. 1, 2, 3, and 4 are labels of different regimes described
in the text.
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FIG. 7. Schematic plot of the mean-field transition temperature
Tc

MF and the Kosterlitz-Thouless temperature TKT vs Q�, where Q is
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stant, � is the superconducting coherence length, Tc,max

= 2C
� �De−1/NF�Ū+UQ� is the maximum Tc

MF, and Tc,a� 2C
� �De−1/NFŪ is

the mean-field Tc for a uniform coupling Ū. 1, 2, 3, and 4 are labels
of different regimes described in the text. The qualitative feature of
these results on Tc are similar to those of Ref. 54 on clean
superconductors.
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these samples with Tc
MF decreasing from 2.55 to 0.72 K with

increasing dAg, the ratio 2Eg /Tc
MF decreases from �3.6 to

�2.6 �see Fig. 3�b� of Ref. 49�.
These results can be qualitatively well understood by our

study. The reduction of 2Eg /Tc
MF from 3.52, together with the

observed fact that the resistive transition is sharp and well
defined,48 implies that the experimental systems are in the
regime 2 or 3 of our theoretical results summarized above
�see Fig. 6�. In these regimes, both 2Eg /Tc

MF and 2Eg /TKT are
lower than 3.52, and the phase fluctuation is either absent or
small enough to keep TKT close to Tc

MF, explaining the sharp

resistive transition. For samples with lower Tc, Ū is smaller.
Therefore, if we assume roughly the same amount of UQ for
all samples, the effect of inhomogeneity will be stronger for
samples with lower Tc samples, and, consequently, the
gap-to-Tc ratio is even smaller for them. To make a rough

comparison, we have calculated the gap-Tc ratio vs Ū for
fixed UQ and plotted the results in Fig. 8. Although not
claiming more than a qualitative explanation of the bilayer
measurements, we note that our Fig. 8 resembles Fig. 3�b� of
Ref. 49.

An interesting venue for future research, which may ex-
tend to more 2D superconducting systems, is to consider a
general fluctuation of the pairing interaction, not restricted to
a particular wave number, but rather having a particular cor-
relation length. In addition, aside from the low gap-Tc ratio,
Ref. 48 has also reported an unexpected subgap density of
states of quasiparticles in the same bilayer materials. Al-
though our current model does not produce this behavior,
one expects that it could be explained by including large
spatial fluctuations of the pairing interaction �e.g.,

UQ

Ū
�1�,

which strongly suppress the gap, and the effect of mesos-
copic fluctuations which tend to produce subgap states.56
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APPENDIX: CALCULATION OF �(T=0) IN THE LIMIT
Q�š1

Here, we show some calculation details in deriving Eq.
�16�. At T=0, the self-consistency equations are

�0 = NFŪ��
0

�D

d� sin 
0� +
NFUQ

2 ��
0

�D

d�
1 cos 
0� ,

�1

2
=

NFŪ

2 ��
0

�D

d�
1 cos 
0� +
NFUQ

2 ��
0

�D

d� sin 
0� .

The evaluation of the integrals gives �define a= DQ2/2
�0

and
x0=�D /�0�

�
0

�D

d� sin 
0 = �0 arcsinh��D

�0
� 
 �0 ln�2�D

�0
� ,

�
0

�D

d�
1 cos 
0 =
�1

2a�− 2 arctan�x0� + 2a arcsinh�x0�

− 	a2 − 1�arctanh� x0
	a2 − 1 + 1

a	x0
2 + 1

�
+ arctanh� x0

	a2 − 1 − 1

a	x0
2 + 1

�
− 2 arctanh� x0

	a2 − 1
��� . �A1�

We take the limit x0=
�D

�0
�1 and a= �Q��2�1 simulta-

neously, but their relative ratio might be either large or small.
Also, using arctanh �z�= �1 /2� ln��1+z� / �1−z��, one can show
that, in this limit, the above integral equals

�1

2a
2a ln�2x0� − a�1

2
ln� 2x0a

a

2x0
+

x0

2a
− 1�

+
1

2
ln� 2x0a

a

2x0
+

x0

2a
+ 1� + ln� �x0 − a�

x0 + a
���

=
�1

2 
2 ln�2x0� − �ln� 2x0a

� x0

2a
−

a

2x0
�� + ln� �x0 − a�

x0 + a
���

= �1 ln�1 +
x0

a
� = �1 ln�1 +

2�D

DQ2� =
�1

ŪNF

K1,

here K1 has exactly the same form as defined in Eq. �13�.
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