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We present a gauge-invariant theory of the electromagnetic response of a chiral px+ ipy superconductor in
the clean limit. Due to the spontaneously broken time-reversal symmetry, the effective action of the system
contains an anomalous term not present in conventional superconductors. As a result, the electromagnetic
charge and current responses contain anomalous terms, which explicitly depend on the chirality of the super-
conducting order parameter. These terms lead to a number of unusual effects, such as coupling of the transverse
currents to the collective plasma oscillations and a possibility of inducing the charge density by the magnetic
field perpendicular to the conducting planes. We calculate the antisymmetric part of the conductivity tensor �the
intrinsic Hall conductivity� and show that it depends on the wave vector of the electromagnetic field. We also
show that the Mermin–Muzikar magnetization current and the Hall conductivity are strongly suppressed at
high frequencies. Finally, we discuss the implications of the theory to the experiments in Sr2RuO4.
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I. INTRODUCTION

Unconventional superconductors with spontaneously bro-
ken time-reversal symmetry �TRS� recently attracted signifi-
cant interest.1,2 The idea of a superconducting pairing violat-
ing additional symmetries of the normal phase �on top of the
gauge symmetry� is intriguing, and there has been a lot of
effort to find materials exhibiting such pairings. Considerable
evidence indicates that Sr2RuO4 is an unconventional super-
conductor with broken TRS.3–6 The most convincing indica-
tion is the recent observation of the polar Kerr effect �PKE�
in the superconducting state of Sr2RuO4 by Xia et al.3 In this
experiment, a linearly polarized light, incident along the z
direction, perpendicular to the conducting planes of
Sr2RuO4, experiences normal reflection.7 It was found in
Ref. 3 that the polarization plane of the reflected light is
rotated relative to the polarization plane of the incident light
by the Kerr angle �K�65 nrad. The effect appears below the
superconducting transition temperature Tc=1.5 K. The Kerr
rotation, which may be clockwise or counterclockwise, de-
velops in the absence of an external magnetic field and is a
clear signature of the spontaneous TRS breaking in the su-
perconducting state. The experiment3 used the Sagnac inter-
ferometer, where two counterpropagating laser beams retrace
their paths, so that all effects, other than the TRS breaking in
the sample, cancel out exactly. Although previous muon-
spin-relaxation measurements5,6 gave an indirect evidence
that the TRS is broken in Sr2RuO4, the PKE experiment3

provides a much stronger evidence for this remarkable effect.
Additional indication for the TRS breaking in Sr2RuO4
comes from the Josephson junction experiment in the pres-
ence of a magnetic field,4 which was interpreted as the evi-
dence for the existence of domains with opposite chiralities.
On the other hand, the scanning superconducting quantum
interference device and Hall probe experiments,8,9 designed
to search for domains with opposite chiralities at the surface
of Sr2RuO4, did not find any evidence for the TRS breaking.

These results show that macroscopic manifestations of the
microscopic TRS breaking are not fully understood and re-
quire further theoretical investigation. In this paper, we study
the electromagnetic properties of a chiral superconductor
with the px+ ipy pairing in the clean limit.

Sr2RuO4 is a layered perovskite material consisting of
weakly coupled two-dimensional �2D� metallic sheets paral-
lel to the �x ,y� plane.10,11 It was proposed theoretically that
the superconducting pairing in this material is spin triplet12

and has the chiral px+ ipy or px− ipy symmetry.13 In this state,
Cooper pairs have the orbital angular momentum Lz= +� or
Lz=−� normal to the layers. Such an order parameter breaks
the TRS and is analogous to the 2D superfluid 3He-A.14 It
should be emphasized that the questions of the spin symme-
try �singlet vs triplet� and the orbital symmetry �chiral vs
nonchiral� are separate issues. It is possible to construct chi-
ral order parameters for both triplet and singlet pairings.15

There is substantial experimental evidence in favor of the
spin triplet and odd orbital symmetry of pairing in
Sr2RuO4,10 which includes measurements of the spin
susceptibility16–18 and the Josephson effect.19 However, there
are also alternative interpretations15 in terms of singlet pair-
ing. We study the electromagnetic response of quasi-2D
�Q2D� chiral superconductors, and our results are applicable
�with minor modifications� for either spin symmetry. We do
not pay special attention to the existence of nodal lines in the
order parameter of Sr2RuO4 �see, e.g., Ref. 20 for an inter-
pretation of tunneling measurements�. The nodal lines do not
affect the chiral response qualitatively, so we concentrate on
the simplest case of the px+ ipy pairing.

Although the px+ ipy superconducting pairing breaks the
TRS and, in principle, permits a nonzero Kerr angle �K, an
explicit theoretical calculation of �K is challenging. A text-
book formula21 expresses �K in terms of the ac Hall conduc-
tivity �xy��� at the optical frequency �. A calculation of the
intrinsic �xy��� for a chiral superconductor in the absence of
an external magnetic field turns out to be quite nontrivial. It
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is customary for theoretical calculations to use the gauge
where the scalar potential A0 is set to zero and only the
vector potential A is considered. In this gauge, the
calculations22,23 show that there are no chiral terms in the
single-particle response of a px+ ipy superconductor. Using
this gauge and taking into account particle-hole asymmetry,
Ref. 24 found a small chiral response from the collective
flapping modes.

However, when calculations are performed in a general
gauge, they do produce a nontrivial Chern–Simons-type �CS�
term in the effective action of a Q2D px+ ipy superconductor,
which breaks the TRS:

SCS = �� dtd3r�A0 + �t�/2e���yAx − �xAy�/c . �1�

Here, � is the phase of the superconducting order parameter;
e and c are the electron charge and the speed of light, respec-
tively. Equation �1� was first derived in Ref. 14 at T=0, and
the coefficient � was found to be �= �e2 /2hd, where h and
d are the Planck constant and the distance between the lay-
ers. The signs�correspond to the px� ipy pairing. The term
�1� was then studied in Refs. 25–30, either at T=0 or at T
close to Tc, using the Ginzburg–Landau expansion. In a re-
cent paper,31 SCS was obtained for a finite frequency � and
arbitrary temperature T, in which case Eq. �1� should be
written in the Fourier representation with the coefficient
���� under the integral. Reference 31 found that ���� de-
creases as ��0 /���2 at high frequencies ��	�0, where �0
is the superconducting gap �see Eqs. �71�–�74��.

Equation �1� is the only term in the effective action of a
px+ ipy superconductor that breaks the TRS. Under the time-
reversal operation, the variables in Eq. �1� transform as A
→−A, A0→A0, �t→−�t, and �→−�, so SCS changes sign.
The coefficient � in Eq. �1� explicitly depends on the chiral-
ity of the order parameter px� ipy and changes sign when the
time-reversal operation is applied to the superconducting
pairing itself. The action SCS is similar to the standard
Chern–Simons term, which has the structure 
��
A���A
,
with 
��
 being the �2+1�D antisymmetric tensor and the
indices �, �, and 
 taking the values t, x, and y. Compared
with the full, gauge-invariant Chern–Simons action, Eq. �1�
misses the term Ax�tAy −Ay�tAx. In Eq. �1�, the gauge invari-
ance is ensured by the presence of the superconducting phase
�, which changes upon a gauge transformation to compen-
sate for the change of A0.14

Taking a variation of the effective action with respect to
A, one obtains the electric current j=−c�S /�A. For a full
Chern–Simons term, this would give the usual Hall effect
jx=�xyEy. However, a variation of Eq. �1� gives the follow-
ing �anomalous� current

j�a� = − �ẑ � ��A0 + �t�/2e� , �2�

where ẑ is a unit vector perpendicular to the conducting
planes. It was shown in Ref. 29 that the current �2� can be
expressed as a Mermin–Muzikar current32

j�a� =
�

4me
ẑ � �� , �3�

where � is the electron charge density, and me is the electron
mass. Equation �3� can be understood as a magnetization
current j=��M originating from a magnetization M
=−��� /4me�ẑ associated with the angular momentum L=�ẑ
of each Copper pair.29,32 While Eq. �3� is valid at low fre-
quencies, our calculations show that at high frequencies, it is
suppressed by a factor ��0 /���2 �see also Ref. 33�. More-
over, we show that, in addition to the magnetization current
�3�, there is also an anomalous electric polarization current
that gives a comparable contribution even at low frequencies.

Equation �2� is similar to the standard expression for the
Hall conductivity, but its right-hand side does not contain the
complete electric field E=−�A0−�tA /c and includes the su-
perconducting phase �. Equation �2� can be expressed in
terms of E as

j�a� = �ẑ � �E −
���� − �2e/c�A�

2e�t
� . �4�

The second term in the brackets of Eq. �4� is proportional to
the acceleration of the London supercurrent js
= ��s /2me����− �2e /c�A�, where �s is the superfluid charge
density. It was argued in Ref. 31 that this term in Eq. �4�
becomes ineffective at high frequencies and may be ne-
glected. Then, Eq. �4� reduces to the conventional Hall rela-
tion, and the coefficient � can be identified with the Hall
conductivity �xy =� and used for a calculation of the Kerr
angle �K.31,33

However, within the two-fluid model of superconductiv-
ity, one can argue that Newton’s equation of motion for the
supercurrent is �m /e��tjs=�sE, i.e., the supercurrent is accel-
erated by the electric force. Then, the right-hand side of Eq.
�4� vanishes, and the chiral Hall current j�a� is zero.34 The
reason for this cancellation is that the superconducting phase
� has its own dynamics and compensates the electromag-
netic field in Eq. �2�.35–37 In general, Eq. �2� should be
supplemented with an equation of motion for �, and then �
should be eliminated, so that the current response is ex-
pressed in terms of the electromagnetic field only. In other
words, one should derive the effective action S�A� ,�� for a
px+ ipy superconductor as a function of the electromagnetic
field A� and the superconducting phase �, and then integrate
out � and obtain a new action S�A�� in terms of the electro-
magnetic field only. This procedure is well established for
nonchiral superconductors,38–41 and it was implemented for
chiral superfluids in Refs. 25, 26, and 28. However, the cal-
culations in Refs. 25, 26, and 28 were performed only in the
limit of low frequencies. As a result, some terms in the ef-
fective action were neglected, and the frequency dependence
of the coefficients in the action was not considered. In our
paper, we perform a detailed derivation of the effective ac-
tion by taking into account dynamics of � and the internal
Coulomb potential. Our results are applicable for all frequen-
cies and exhibit nontrivial frequency dependence.

Our calculations show that the effective Hall conductivity
depends not only on frequency, but also on the wave vector
and is proportional to the square of the wave vector q	

2=qx
2
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+qy
2 parallel to the layers: �xy �q	

2. This conclusion agrees
with Refs. 25, 26, and 28. By taking the limit of q→0 at
��0,42 we find that the Hall conductivity for a spatially
homogeneous system vanishes, i.e., the cancellation in Eq.
�4�, indeed, takes place. This result is consistent with the
general conclusion of Ref. 43, in which it was argued that an
electric field cannot produce a sideways motion of the elec-
tron gas without an external magnetic field, no matter what
the internal interaction between electrons producing the
p-wave pairing is. This argument is based on the Galilean
invariance and is applicable to an infinite, spatially homoge-
neous, clean system without boundaries and impurities.

This conclusion does not contradict the results of the PKE
experiment, because the setup used in Ref. 3 generates spa-
tial inhomogeneities within the �x ,y� plane of Sr2RuO4. In-
deed, as sketched in Fig. 1, Xia et al.3 used a tightly focused
Gaussian laser beam of the transverse size l�25 �m, not an
infinite uniform electromagnetic plane wave. �The beam size
l is smaller than the sample size and the size of a domain
with a given chirality.� In the Fourier representation, this
means that the electromagnetic wave has nonzero in-plane
Fourier components q	 of the order of 1 / l. Because �K is
proportional to �xy �q	

2, we conclude that the Kerr angle
should be inversely proportional to l2,

�K � 1/l2. �5�

The theoretical prediction �5� can be checked experimentally.
It is commonly assumed in literature that �K depends only on
� and on the properties of a material.21 However, Eq. �5�
shows that the Kerr angle for a chiral superconductor also
depends on the geometrical size of the laser spot.

Equation �3� shows that the chiral current of a px+ ipy
superconductor directly couples to charge response and
plasma collective modes. The Chern–Simons-type term �1�
couples the longitudinal and transverse electromagnetic
fields and leads to a number of interesting effects that are not

present in nonchiral superconductors. By taking a variation
of Eq. �1� with respect to A0, we find an anomalous charge
response to the transverse electromagnetic field: ���a��Bz,
i.e., the charge is induced by the magnetic field Bz along the
z direction.27,29 In Sec. VII B, we propose an experimental
setup to directly verify this relationship. We also calculate
how the relationship between ���a� and Bz is modified at high
frequencies. By the continuity relation, the induced charge
���a� produces an electric polarization current, which gives
an additional contribution to the Hall effect of the same order
as the magnetization current.

The paper is organized as follows. In Sec. II, we rigor-
ously derive a general expression for the effective action of a
Q2D px+ ipy superconductor and obtain the gauge-invariant
electromagnetic response. In Secs. III–V, we discuss the col-
lective modes and the conventional and anomalous �chiral�
electromagnetic responses. In Sec. VI, we obtain the sym-
metric and antisymmetric parts of the conductivity tensor of
a chiral superconductor. In Sec. VII, we discuss the relation-
ship of our results with the experimental studies of the chiral
response of Sr2RuO4. Finally, we summarize the results in
Sec. VIII. Some technical details are relegated to the Appen-
dixes. In particular, a simplified alternative derivation of the
effective action is given in Appendix C.

II. EFFECTIVE ACTION FOR A CHIRAL QUASI-TWO-
DIMENSIONAL px+ ipy SUPERCONDUCTOR

A. Triplet px+ ipy pairing

First, we briefly summarize basic information about the
triplet p-wave pairing.44 The Cooper pairing between elec-
trons is described by the pairing potential ����r ,r��
� 
���r����r���. Here, ���r� is the electron annihilation op-
erator at the point r with the spin projection �= ↑ ,↓. For a
uniform, translationally invariant system, the pairing poten-
tial depends only on the relative distance r−r�, so one can
perform the Fourier transform and use the momentum repre-
sentation ����p�� 
���p����−p��. The pairing tensor
����p�=��p�d�p� ·��

�
�� can be written in terms of the an-
tisymmetric metric tensor 
�� and the Pauli matrices ��

�,
where the unit vector d�p� characterizes the spin polarization
of the triplet state. The prefactor ��p� is a momentum-
dependent pairing amplitude.

For Sr2RuO4, we consider the case where the vector
d�p�= ẑ has a uniform, momentum-independent orientation,
which represents pairing between electrons with opposite
spins 
�↑�p��↓�−p��. �It can be transformed into pairing with
parallel spins by changing the spin quantization axis.� For
the orbital symmetry, we consider the chiral pairing potential
��p�=�0�px� ipy� / pF, where pF is the Fermi momentum
and �0 is the superconducting gap. This order parameter cor-
responds to a vortex in the momentum space, because the
phase of ��p� changes by �2� when p goes around the
Fermi surface. It is instructive to write the pairing potential
in the form

��p� = �xpx + i�ypy , �6�

and set �x= ��y =�0 / pF only at the end of the calculations.
The sign of the product

FIG. 1. �Color online� Schematic picture of the experimental
setup in Ref. 3. The incoming laser beam is incident normally to the
conducting planes of the layered superconductor Sr2RuO4. The
beam is focused by the lens to a spot of the diameter l at the surface
of the sample. The solid �red� line shows the Gaussian profile of the
polarized electric field Ex in the beam �Ref. 7�. The interlayer dis-
tance in Sr2RuO4 is d.
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sxy � sign��x�y� �7�

reflects the sign of the order-parameter chirality.

B. Theoretical model

Our goal is to derive an effective action for a chiral su-
perconductor in a weak electromagnetic field. This approach
is equivalent to a linear response calculation.45–49 We use the
Greek indices, e.g., � and �, to denote the space-time com-
ponents of tensors in the Minkowski notation and the Roman
indices, e.g., k and l, for the space components. To simplify
intermediate steps of calculations, we set the Planck constant
�, the Boltzmann constant kB, and the speed of light c to
unity: �=kB=c=1. The constants � and kB can be easily
restored in the final equations by dimensionality. The speed
of light can be restored by noting that it appears only in the
combination A /c with the vector potential A. To simplify
presentation, we first study a purely 2D case, which corre-
sponds to just one metallic layer in the �x ,y� plane, and then
generalize the calculation to the case of many coupled par-
allel metallic layers, as appropriate for Sr2RuO4.

The Hamiltonian of interacting electrons, subject to an
external electromagnetic field A�, is given by

Ĥ =� d2r��
†�r�� �p̂ − eA�r��2

2me
− �����r� +� d2reA0�r��n�r�

−� d2rd2r�g�r − r���↑
†�r��↓

†�r���↓�r���↑�r�

+
e2

2
� d2rd2r��n�r�V�r − r���n�r�� . �8�

Here, me and � are the electron mass and the chemical po-
tential, g�r−r�� is an anisotropic interaction potential leading
to a p-wave pairing, and V�r−r��=1 / 
r−r�
 is the Coulomb
interaction potential. The density fluctuation operator �n�r�
reads

�n�r� = ��
†�r����r� − n0, �9�

with n0 being the 2D background charge density. The sum-
mation over repeated indices is assumed everywhere.

The starting point for our calculation is the partition func-
tion Z, which can be expressed as a path integral over the
anticommuting fermionic fields � and �†. We use the
Hubbard–Stratonovich transformation to decouple the fer-
mion interaction terms in Eq. �8� by introducing additional
integrals over auxiliary bosonic fields � and �.38–40,50,51 The
complex field ��r ,r� ,�� is the superconducting pairing po-
tential and ��r ,�� is the internal electric potential produced
by electrons. As a result, the partition function, written in the
imaginary time �, reads52

Z =� D�*D�D�e−Sbos� D�†D�e−Sel, �10�

where the bosonic action is

Sbos = ie� d�d2r���r,�� + A0�r,���n0

+� d�d2rd2r�� 
��r,r�,��
2

g�r − r��
+

��r,����r�,��
2V�r − r��

� ,

�11�

and the electronic action is

Sel =� d�d2r��
†�r,��� �p̂ − eA�r,���2

2me
− �����r,��

+� d�d2r��
†�r,����� − ie���r,�� + A0�r,�������r,��

−� d�d2rd2r����r,r�,���↑
†�r,���↓

†�r�,�� + H.c.� .

�12�

The superconducting pairing potential in Eq. �12� can be
written as a function of the relative coordinate r−r� and the
center-of-mass coordinate R= �r+r�� /2. For a uniform sys-
tem, in the absence of electromagnetic field, the equilibrium
saddle-point configuration of �0 in the total action �10� does
not depend on R and �, and is given by Eq. �6� in the Fourier
representation with respect to r−r�. In the presence of an
applied electromagnetic field, the saddle-point value of the
complex superconducting pairing potential is shifted and can
be written in the adiabatic Born–Oppenheimer approxi-
mation40,53 as

��p,R,�� =
px + ipy

pF
��0 + ���R,���ei��R,��. �13�

We assume here that the applied electromagnetic field is
weak and varies slowly in space and time, i.e., � /
�1 and
���cutoff��F. Here, 
 and � are the wavelength and fre-
quency of the electromagnetic field, �=vF /�0 is the super-
conducting coherence length, �cutoff is the cutoff frequency
of the interaction responsible for superconducting pairing,
and �F is the Fermi energy. The field shifts the amplitude of
the pairing potential by �� and gives a space-time depen-
dence to the phase � of the order parameter. As in the
s-wave superconductors, the amplitude variations �� are
massive47 and their contribution to the linear electromagnetic
response is small in the parameter ��0 /�F�2�1.46 Therefore,
we neglect the amplitude fluctuations in the rest of the paper
and only consider the dynamics of the phase �. The p-wave
order parameter also has other modes, such as the clapping
modes, due to its internal orbital structure.24 However, these
modes are also massive, and we do not consider them.

The phase � of the order parameter is essential for ensur-
ing the gauge invariance of the theory. By performing a uni-
tary transformation of the fermion operators ���r ,��
→ei��r,��/2���r ,��, one can compensate the phase of the or-
der parameter.40 As a result, the electromagnetic field in Eq.
�12� is replaced by the gauge-invariant combinations of elec-
tromagnetic potentials and the superconducting phase:
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Ã0 = A0 − ���/2e, Ã = A − ��/2e . �14�

In this way, one ensures that the gauge invariance is fulfilled
at every step of the calculation.

After the phase transformation, the superconducting pair-
ing potential in Eq. �12� has the equilibrium value given by
Eq. �6�. The electron Lagrangian �12� can be written in the
momentum-frequency representation as a 2�2 Nambu ma-
trix acting on the spinor ��p�= ��↑�p ,�m� ,�↓

†�−p ,�m��,
where �m is the fermionic Matsubara frequency and p
= �i�m , px , py�,

Sel = �
p

�†�p�G−1�p���p� + �
p,q

�†�p + q��1�p,q���p�

+ �
p,q

�†�p��2�p,q���p� . �15�

Here, �p represents the integration over momenta as well as
the summation over the Matsubara frequencies.54 The terms
G−1, �1, and �2 in the electron action �15� contain the zeroth,

first, and second powers of the electromagnetic fields Ã� and
�,

G−1�p� = i�m − �p�̂3 − px�x�̂1 + py�y�̂2, �16�

�1�p,q� = − ie�Ã0�q� + ��q���̂3 − ev�p + q/2� · Ã�q� ,

�17�

�2�p,q� =
e2

2

�2�p

�pk�pl
Ãk�q�Ãl�− q��̂3. �18�

Here, the wave vector q of the electromagnetic field and its
bosonic Matsubara frequency �n are combined into q
= �i�n ,q�. The electron dispersion and velocity are �p
=p2 /2me−� and v�p�=p /me. Equations �16�–�18� are writ-
ten in terms of the Pauli matrices �̂ acting on the electron
spinor �.

C. Integrating out fermions

Substituting the action �15� into Eq. �10� and taking the
functional integral over �, we obtain the electron contribu-
tion Seff

el to the effective action up to the second order in the

electromagnetic fields Ã� and �,

Seff
el �Ã�,�� = − Tr ln�G−1 + �1 + �2� = − Tr ln G−1 − Tr G�1

− Tr G�2 +
1

2
Tr G�1G�1. �19�

Here, Tr denotes both the matrix trace and the sum over the
internal frequencies and momenta.

The term Tr ln G−1 in Eq. �19� and the term proportional
to 
�
2 in Eq. �11� define the saddle-point configuration �6� of
the unperturbed system. The functional integral over the am-
plitude of � is taken by expansion in the vicinity of this
saddle-point configuration. Combining the remaining terms
in Eqs. �11� and �19�, we obtain the effective phase-only
action of the system

Z =� D�D� exp�− Seff�Ã�,��� , �20�

Seff�Ã�,�� =
1

2�
q
���q���− q�

V�q�
+

e2n0

m
Ã�q� · Ã�− q��

+
1

2
Tr�G�1G�1� . �21�

Here, V�q� is the Fourier transform of the Coulomb potential,
which in two dimensions is equal to V�q�=2� / 
q
.

Now we need to evaluate the trace in Eq. �21�. This
amounts to the calculation of one-loop Feynman diagrams by
using the fermionic Green’s function G from Eq. �16�,

G = −
i�m + �p�̂3 + px�x�̂1 − py�y�̂2

�m
2 + �p

2 + px
2�x

2 + py
2�y

2 , �22�

and the vertex �1 �17�, which represents interaction with the
electromagnetic field. The final expression for the effective
action �21� can be written as

Seff�Ã�,�� =
1

2�
q

��q���− q�
V�q�

+ Q00i�Ã0�q� + ��q��

�i�Ã0�− q� + ��− q�� + QklÃk�q�Ãl�− q�

+ iQ0k�Ã0�q� + ��q��Ãk�− q�

+ iQk0Ãk�q��Ã0�− q� + ��− q�� . �23�

Here, Q00, Qkl, and Q0k�q�=Qk0�−q� are the corresponding
correlation �polarization� functions.

The density-density polarization function Q00
=e2 Tr��3G�3G� is

Q00 =� d2p

�2��2

2e2

�
�
i�m

i�m�i�m + i�n� + �−�+ − �+�−

���m + �n�2 + E+
2���m

2 + E−
2�

.

�24�

Here, �=1 /T, ��=�p�q/2, �+�−=�x
+�x

−+�y
+�y

−, and E�

=���
2 + ��x

��2+ ��y
��2, with �x�y�

� = �px�y��qx�y� /2��x�y�.
The current-current correlation function Qkl consists of

the diamagnetic Qkl
�1� and paramagnetic Qkl

�2�=e2 Tr�vkGvlG�
parts,

Qkl = Qkl
�1� + Qkl

�2�, Qkl
�1� =

e2n0

me
�kl, �25�

Qkl
�2� =� d2p

�2��2

2e2vkvl

�
�
i�m

i�m�i�m + i�n� + �−�+ + �+�−

���m + �n�2 + E+
2���m

2 + E−
2�

,

�26�

with v=��p /�p=p /me being the electron velocity.
The expressions �24�–�26� for the density-density and

current-current correlation functions are the same for chiral
and nonchiral superconductors and contain nothing special.
The only important difference between chiral and nonchiral
superconductors appears in the structure of the current-
density correlation function Qk0=e2 Tr�vkG�3G�. This differ-
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ence plays a crucial role for the results of our paper. In a
px+ ipy superconductor, Qk0 consists of the conventional
symmetric part Qk0

�s� and the anomalous antisymmetric part
Qk0

�a�:

Qk0 = Qk0
�s� + Qk0

�a�, �27�

Qk0
�s� = −� d2p

�2��2

2e2vk

�
�
i�m

�i�m + i�n��− + i�m�+

���m + �n�2 + E+
2���m

2 + E−
2�

,

�28�

Qk0
�a� = −� d2p

�2��2

2e2vk

�
�
i�m

�iqxpy − iqypx��x�y

���m + �n�2 + E+
2���m

2 + E−
2�

.

�29�

The two terms have the following symmetries

Qk0
�s��− q� = Qk0

�s��q�, Qk0
�a��− q� = − Qk0

�a��q� , �30�

where the operation q→−q means changing the signs of
both frequency and momentum. Equation �30� follows from
an observation that Qk0

�s� is proportional to a product of the
frequency and momentum components of q, whereas Qk0

�a� is
a linear function of the momentum components qx and qy
only. One can also check using Eqs. �24�–�26� that Q00�−q�
=Q00�q� and Qkl�−q�=Qkl�q� are symmetric.

Equation �29� shows that the anomalous charge-current
correlation function Qk0

�a� explicitly depends on the chirality
�7� of the order parameter, whereas the other correlation
functions do not depend on it. We demonstrate in the rest of
the paper that all of the nontrivial, chiral responses of a px
+ ipy superconductor originate from the anomalous term �29�.
The density-current correlator Qk0 �27� is rarely discussed in
textbooks and literature. Nonchiral superconductors have
only the symmetric term Qk0

�s� �28�, which couples to the lon-
gitudinal degrees of freedom �see Sec. IV A�, such as plas-
mon collective modes, but does not affect the transverse re-
sponse, such as the London–Meissner current. Therefore, for
the calculation of the transverse response, it is sufficient to
consider a gauge with A��0 and A0=0. However, in chiral
superconductors, the antisymmetric term Qk0

�a� couples to the
transverse response �see Sec. V A� and controls the TRS-
breaking response of the system. In the technical language,
when calculating the transverse response of the chiral super-
conductors, one has to include vertex corrections in order to
obtain correct results. Without vertex corrections, calcula-
tions do not generate chiral terms in the electromagnetic re-
sponse of a px+ ipy superconductor.22,23

D. Integrating out the internal Coulomb potential

It is well known that response functions of a charged su-
perconductor, as opposed to a neutral superfluid such as 3He,
are strongly modified by the Coulomb interaction. In our
approach, integrating out the internal electric potential � is
equivalent to taking into account the Coulomb interaction,
because � mediates the electrostatic interaction between

electrons. The effective action Seff�Ã��, obtained after taking

the functional integral over � in Eq. �20�, is defined as fol-
lows:

Z =� D�D�e−Seff�Ã
�,�� =� D�e−Seff�Ã

��. �31�

Substituting Eq. �23� into Eq. �31� and taking the Gaussian
integral over �, we find

Seff�Ã�� =
1

2�
q

Q̃00iÃ0�q�iÃ0�− q� + Q̃klÃk�q�Ãl�− q�

+ 2Q̃0kiÃ0�q�Ãk�− q� , �32�

where the polarization functions are renormalized by the
Coulomb interaction V�q� as follows:

Q̃00 =
Q00�q�

1 − V�q�Q00�q�
, Q̃k0 =

Qk0�q�
1 − V�q�Q00�q�

,

Q̃kl = Qkl +
Qk0V�q�Q0l

1 − V�q�Q00
. �33�

The renormalized polarization functions �33� can be equiva-
lently obtained through the resummation of the most diverg-
ing diagrams due to the Coulomb interaction in the random
phase approximation �RPA� as shown in Fig. 2.

E. Integrating out the superconducting phase

We integrate out the superconducting phase � to obtain
the gauge-invariant effective action Seff�A�� that depends
only on the electromagnetic field A�

Z = e−Seff�A
�� =� D�e−Seff�Ã

��, �34�

where the field Ã� is defined by Eq. �14� and contains �.
Substituting Eq. �32� into Eq. �34� and taking the Gaussian
integral over �, we finally obtain the effective action55 as
follows:

Seff�A�� =
1

2�
q

K���q�A��q�A��− q� , �35�

K�� = Q̃�� −
Q̃��q�q�Q̃��

Q̃��q�q�
. �36�

Notice that the kernel �36� satisfies the identity

FIG. 2. Renormalization of the polarization functions �33� due
to the Coulomb interaction V�q� in the RPA. The wavy line denotes
V�q�, which couples only to the charge vertices represented by the
Pauli matrices �3.
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q�K�� = K��q� = 0, �37�

which ensures that the effective action �35� is gauge invari-
ant. Indeed, in the momentum representation, the gauge
transformation is A�→A�− iq��, where � is an arbitrary
scalar function. Substituting this expression into Eq. �35� and
taking into account the identities �37�, we see that the addi-
tional terms q�� drop out and, thus, the effective action is
gauge invariant.

F. Generalization to the quasi-two-dimensional case

The derivation presented in the previous sections can eas-
ily be generalized to a Q2D system consisting of parallel
superconducting layers separated by the distance d in the ẑ
direction. The layers are coupled via the interlayer electron
tunneling amplitude tc. In the tight-binding approximation,
the electron dispersion and velocity are

�p =
px

2 + py
2

2me
− tc cos�pzd� − �, v�p� =

��p

�p
, �38�

where �px , py� and pz are the in-plane and out-of-plane mo-
menta, respectively. We assume that the interlayer tunneling
amplitude is much smaller than the in-plane Fermi energy:
tc��F. Then, the Fermi surface is a slightly warped cylinder
extended in the pz direction. Equation �38� should be substi-
tuted into Eqs. �24�–�29�, where the integrals should be taken
over a three-dimensional �3D� momentum p, with pz limited
to the interval �−� /d ,� /d�.

The diamagnetic term Qkj
�1� in Eq. �25� should be replaced

by the expression following from Eq. �18�,40

Qkl
�1� = e2� d3p

�2��3�1 −
�p

Ep
tanh� Ep

2T
�� �2�p

�pk�pl
, �39�

where Ep=��p
2+ 
��p�
2. The integrals �39� can easily be

evaluated and give the following expression for the diamag-
netic tensor of a Q2D superconductor:

Qkl
�1� =

e2n0

med
nJkl, nJ =�

1 0 0

0 1 0

0 0
tc
2med

2

2�F

� . �40�

Here, n0= pF
2 /2� is the 2D electron density, and pF, vF, and

�F= pF
2 /2me are the in-plane Fermi momentum, velocity, and

energy. The dimensionless tensor nJ represents the anisotropy
of the superfluid density.

In a layered Q2D system, the renormalized polarization

functions Q̃�� are given by Eq. �33� with the appropriate
form of the Coulomb interaction:49

V�q� =
2�d


q	

sinh�
q	
d�

cosh�
q	
d� − cos�qzd�
, �41�

where q	 = �qx ,qy�. Equation �41� reduces to the 3D expres-
sion for the Coulomb potential V3D�q� at small momenta

q 
d�1 and to the 2D Fourier transform of the Coulomb
potential V2D�q	� in the limit 
q	 
d	1 as follows:

V3D�q� =
4�

q2 , V2D�q	� =
2�d


q	

. �42�

In the long-wavelength limit �
q
d�1� considered in the rest
of our paper, the appropriate form of the Coulomb potential
is V3D�q�.

G. Linear response

By taking a variation of Eq. �35� with respect to A�, we
obtain the gauge-invariant electromagnetic response of the
system,

j��q� = K���q�A��q� . �43�

Notice that the identities �37� ensure that the current �43�
satisfies the continuity equation q�j�=0.

To obtain physical results, we perform an analytical con-
tinuation from the Matsubara frequency to the real frequency
i�n→�+ i�.52 After the continuation, the vector q becomes
q�= �� ,q�, and Eq. �43� gives a causal response to the exter-
nal electromagnetic field A�= �A0 ,A� at a finite temperature
T. The kernel K���q� is defined via Eqs. �33� and �36� in
terms of the one-loop response functions �24�–�29�. Their
analytical continuations to the real frequency after summa-
tion over the fermionic Matsubara frequencies are given in
Appendix A.

III. COLLECTIVE MODES

Under certain conditions, an infinitesimal external electro-
magnetic field can induce a large current or density response
of the system, which indicates the existence of internal col-
lective excitations in the superconductor. These resonances
occur when the denominator in Eq. �36� goes to zero. Using

Eq. �33�, the denominator can be written as Q̃��q�q�

= R̃�� ,q� / �1−V�q�Q00�, where the function R̃�� ,q� is de-
fined as

R̃��,q� = Qklqkql + 2�Q0l
�s�ql + �2Q00

+ V�q��Q0k
�s�Ql0

�s� − Q00Qkl�qkql. �44�

Notice that only the conventional tensor Ql0
�s� appears in Eq.

�44�. The anomalous tensor Qk0
�a� does not appear because it is

transverse, as will be discussed in Sec. V A. The dispersion
relation for the collective modes is determined by the equa-

tion R̃�� ,q�=0.
In the limit of small 
q
, we can simplify Eq. �44� by

keeping only the nonvanishing terms Q00 and Qkl in the first
and second lines of Eq. �44�, whereas the terms Qk0

�s� and Qkl
�2�

vanish in this limit. Using Eq. �40� for Qkl
�1�, we find the

dispersion relation for the collective modes at T=0,

�2 = V�q�
e2n0

med
�q	

2 +
tc
2med

2

�F
qz

2� . �45�

In the case 
q
d�1, it is appropriate to use the 3D limit
V3D�q� from Eq. �42� for the Coulomb interaction in Eq. �45�
and, thus, we find the following spectrum of collective
modes:48,49,56
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�2 =
�ab

2 q	
2 + �c

2qz
2

q	
2 + qz

2 = �ab
2 q · nJ · q

q2 . �46�

Here, the tensor nJ is defined in Eq. �40�, and �ab and �c are
the in-plane and out-of-plane plasma frequencies,

�ab
2 = 4�

e2n0

med
, �c

2 = 2�
e2tc

2dn0

�F
. �47�

As shown in Appendix B, the collective mode �46� corre-
sponds to coupled plasma oscillations of the internal electric
potential and the superconducting phase �. The plasma
mode frequency �46� depends on the ratio of the in-plane q	

and out-of-plane qz momenta.57 Plasma oscillations are
gapped in all directions, but are strongly anisotropic due to
the smallness of the interlayer tunneling amplitude tc. The
experimental values of the plasma frequencies in Sr2RuO4
are �c=0.32 eV and �ab=4.5 eV.58,59

If one formally sets tc=0 and uses the 2D expression for
the Coulomb potential from Eq. �42�, then Eq. �45� gives the
plasmon mode dispersion for a single 2D layer,

�q =�2�n0e2

me

q	
 . �48�

However, this limit does not correspond to Sr2RuO4.
At higher temperatures T→Tc, there may be long-

wavelength oscillations with the acoustic spectrum. These
oscillations are neutral and consist of supercurrent oscilla-
tions compensated by oscillations of the normal current, as
discovered by Carlson and Goldman.60 However, at T�Tc,
only the plasma mode survives, because the normal density
is exponentially suppressed.

IV. CONVENTIONAL NONCHIRAL
ELECTROMAGNETIC RESPONSE

A. Transverse and longitudinal tensors

First, we describe the general properties of the tensors Qkl

and Qk0
�s�. It is convenient to separate the symmetric tensor Qkl

into the longitudinal Qkl
	 and transverse Qkl

� parts defined by
the following relations:

Qkl = Qkl
	 + Qkl

�, �49�

qkQkl
	 = qkQkl, Qkl

	 ql = Qklql, �50�

qkQkl
� = Qkl

�ql = 0. �51�

Equations �50� and �51� have the following general solu-
tions:

Qkl
	 =

QkrqrqsQsl

quQuvqv
, Qkl

� = Qkl − Qkl
	 . �52�

In the dynamic limit, ��0 and q→0, which are relevant for
optical measurements; the paramagnetic term Qkl

�2�, defined in
Eq. �A2�, vanishes; and Qkl is given by the diamagnetic term
�40�. Then, the transverse and longitudinal parts of the tensor
Qkl are

Qkl
� =

�ab
2

4�
�nJ −

�nJ · q��q · nJ�
q · nJ · q

�
kl

, �53�

Qkl
	 =

�ab
2

4�
� �nJ · q��q · nJ�

q · nJ · q
�

kl

. �54�

The conventional current-density correlation function
Qk0

�s�, given by Eq. �A3�, is an odd function of q and �. The
term Qk0

�s� satisfies the following identity for small q:

Q0k
�s� = Qkl

	 ql
quQu0

qrQrs
	 qs

. �55�

To prove Eq. �55�, we observe that the tensor structure of
Qkl=�vkvl. . . and Qk0

�s�=�vk. . . in Eqs. �39�, �A2�, and �A3� is
determined by the electron velocities v=��p /�p. Since the
term Qk0

�s� vanishes at q=0, the leading-order expansion of the
integrand is proportional to vkvlql, i.e., Qk0

�s�=�vkvlql. . .. Thus,
in the long-wavelength limit, we have Qk0

�s��Qklql, which
leads to Eq. �55�. Equation �A3� gives the following explicit
expression for Qk0

�s� for small q and finite � at T=0:

Qk0
�s� = −

�ab
2

4�

��nJ · q�k

�0
2 �

1

 dx

x2�x2 − 1

1

2x + ��� + i��/�0�

�
1

2x − ��� + i��/�0�
. �56�

We see that Qk0
�s� is proportional to the tensor nJ multiplied by

q, which is consistent with Eq. �55�.

B. Conventional nonchiral electromagnetic response

We now show that if we omit the anomalous chiral term
�29� in Eqs. �33� and �36�, we recover the conventional re-
sponse of a superconductor to the electromagnetic field. Us-
ing Eqs. �33� and �49� and the identity �55�, we obtain the
following expression for the space-time components of the
conventional response kernel K��

�c� �36�:

Kkl
�c� = Qkl

� − �2!̃kl, K00
�c� = − qk!̃klql,

Kl0
�c� = K0l

�c� = �qk!̃kl. �57�

In the long-wavelength limit assumed here, the transverse
tensor Qkl

� is given by Eq. �53�, and the longitudinal tensor
!̃kl is defined as follows:

!̃kl =
Qk0

�s�Q0l
�s� − Qkl

	 Q00

R̃
, �58�

with the function R̃�� ,q� given by Eq. �44�. By using Eq.
�57�, the charge and current responses �43� can be written in
the following forms:

�� = − iq · P , �59�

j = − QJ� · A − i�P , �60�
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P = !̃J · Eext. �61�

Here, �� and j are the induced charge and current densities,
and P is the polarization vector. In Eq. �60�, we use the

shorthand notation �QJ��kl�Qkl
� �see Eq. �53��.

Equation �61� expresses P in terms of the external electric
field Eext=−iqA0+ i�A. �We remind the reader that the elec-
tromagnetic potential A� in our calculations represents the
external field.� Eext is connected to the total electric field Etot,
which includes the field created by other electrons in the
system, by the standard relation

Eext = Etot + 4�P = "J · Etot, �62�

where "J is the tensor of dielectric permeability. If we ex-
pressed the polarization vector P in Eq. �61� as a linear func-
tion of the total electric field Etot, then the corresponding
proportionality tensor would be the dielectric susceptibility
tensor !kl.

61 However, because Eq. �61� expresses P as a
function of the external field Eext, the corresponding tensor
!̃kl is the RPA-renormalized dielectric susceptibility tensor,
which includes the effect of charge screening via the RPA
diagrams shown in Fig. 2.

The tensor !̃kl in Eq. �58� can be simplified in the limit of
small q. In this case, the terms involving Qk0

�s� in the numera-
tor and denominator of Eq. �58� can be neglected relative to
the other terms because Qk0

�s� vanishes at q→0. Using this
approximation and Eq. �44�, we rewrite Eq. �58� in terms of
the longitudinal tensor Qkl

	 �54� as follows:

!̃J = −
���,q�

�ab
2 QJ 	 , �63�

���,q� =
�ab

2 Q00

q · QJ · q + �2Q00 − V�q�Q00q · QJ · q
. �64�

Here, the dimensionless function ��� ,q� describes screening
of charge in the static case and plasma oscillations in the
dynamic case.

Indeed, in the static limit �=0, the function Q00, given by
Eq. �A1�, is proportional to the density of states

Q00�� = 0� = − 2e2N0/d, N0 = me/2� , �65�

where N0 is the 2D density of states per spin. Then Eq. �64�
for �=0 reads

��s��� = 0,q� = −
1

�q · nJ · q�
qTF

2

1 + qTF
2 /q2 , �66�

where qTF is the inverse Thomas–Fermi screening length

qTF
2 = 8�e2N0/d . �67�

Thus, Eq. �66� describes the electrostatic screening of charge
in an anisotropic conductor.

In the dynamic case �	vF
q
, we neglect the first term in
the denominator of Eq. �64� and obtain

��d���,q� =
�ab

2

�2 − ��ab
2 �q · nJ · q�/q2�

. �68�

Equation �68� exhibits a resonance, signifying a divergence
of the charge response, when the frequency � approaches the
plasma frequency defined in Eq. �46�.

Equations �58�–�61� coincide with the results of Ref. 46
�cf. Eqs. �28� and �29� of Ref. 46, which were obtained using
an exact solution for vertex functions�. Note that the trans-
verse part of the current response in Eq. �60� is not affected
by the collective modes,45 whereas the charge response �Eq.
�59�� is strongly affected by the collective dynamics of the
superconducting phase and the Coulomb interaction. Equa-
tions �59� and �60� satisfy the continuity equation ���=q · j
and are invariant with respect to gauge transformations of the
electromagnetic field. In anisotropic superconductors, it is
not practical to separate A and Eext into longitudinal and
transverse components, because such separation does not di-
agonalize the response equations �59� and �60�, unlike in the
isotropic case.

V. ANOMALOUS CHIRAL ELECTROMAGNETIC
RESPONSE

A. Anomalous current-density correlation function

The chiral anomalous current-density correlation function
Qk0

�a� is given by Eq. �A4�. By separating the factors qx and
qy, it can be written as

Qk0
�a� = i�� qy

− qx

0
�

k

= i�
klql = i�q̌k, �69�

where 
xy =−
yx=1 is the 2D antisymmetric tensor, and q̌k is
the kth component of the vector

q̌ = ẑ � q . �70�

The anomalous term Qk0
�a� �69� is transverse: qkQk0

�a�=0, unlike
the conventional term Qk0

�s� in Eqs. �55� and �56�.
In the limit q→0, we obtain the following expression for

the function ���� from Eq. �A4�:

���� =
e2�x�y

me
� d3p

�2��3

px
2 + py

2

4E2 �1 − 2f�E��

�� 1

2E + � + i�
+

1

2E − � − i�
� , �71�

which was found before in Ref. 31. Changing the variable of
integration to x=E /�0 and taking into account that the inte-
gral converges near the Fermi surface, we express Eq. �71� in
the following form at T=0:

���� = sxy
e2

2hd
I���, I�0� = 1, �72�

I��� = �
1

 dx
�x2 − 1

1

x2 − ��� + i��/2�0�2 . �73�

We restored the dimensional constants in Eq. �72�. The sign
of � is determined by the chirality sxy of the superconducting
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condensate. The function I��� has the following asymptotic
behavior:62

I��� � �− 4��0

�
�2

ln� �

�0
� + 2�i��0

�
�2

, � 	 �0

1, � � �0.
�

�74�

The crossover between the two limiting cases occurs at �
�2�0, where the photon energy is equal to the binding en-
ergy between two electrons in a Cooper pair. The real and
imaginary parts of I��� are shown in Fig. 3. The imaginary
part is zero for ��2�0 and diverges as 1 /��−2�0 when �
approaches 2�0 from above. The real part is approximately
constant at low frequencies and diverges as 1 /�2�0−� when
� approaches 2�0 from below. Both real and imaginary parts
go to zero at �→ .

B. Anomalous chiral electromagnetic response

Now we collect the terms that contain the chiral anoma-
lous correlator Qk0

�a� in the kernel K�� �36�. First, we notice

that Qk0
�a� does not appear in the denominator Q̃��q�q� of Eq.

�36� because the denominator is longitudinal, whereas Qk0
�a� is

transverse. Then, Eq. �36� contains only the linear and qua-
dratic terms in Qk0

�a�. The quadratic in Qk0
�a� term may be called

the “double-anomalous.” Although this term has an anoma-
lous origin, it is not chiral, i.e., it does not change sign under
the time-reversal operation or when the chirality sxy of the
order parameter changes sign. This term turns out to be small
in the relativistic parameter �vF /c�2 and is not particularly
important. The discussion of this term is deferred to Appen-
dix C.

In the rest of the paper, we concentrate on the linear in
Qk0

�a� terms in the response. Using Eq. �36�, one obtains the
following expression for the space-time components of the
anomalous chiral kernel K��

�a�:

Kkl
�a� = i��

q̌kWl − Wkq̌l

R̃
, K00

�a� = 0,

Kl0
�a��q� = − K0l

�a��q� = i�q̌l
qkWk

R̃
. �75�

Here, R̃, �, and q̌k are given by Eqs. �44�, �69�, and �70�, and
the vector W is defined as

Wk = Qkl
	 ql + Qk0

�s�� . �76�

By using Eq. �75�, the anomalous charge and current re-
sponses �43� can be written in the following form:

��̃�a� = − iq · P�a�, �77�

j�a� = iq � M�a� − i�P�a�, �78�

where M�a� and P�a� can be identified as the chiral magneti-
zation and polarization21,61 and are given by

P�a� = − i�W
�q � Eext� · ẑ

�R̃
= − i�

W

R̃
Bz

ext, �79�

M�a� = iẑ�
�W · Eext�

R̃
. �80�

Here, Bz
ext is the z component of the external magnetic field

Bext, which is related to Eext via Maxwell’s equation q
�Eext=�Bext. Both M�a� and P�a� in Eqs. �79� and �80� are
proportional to the chiral response function � �72� and, thus,
change sign when the chirality sxy of the order parameter
changes sign. The peculiar feature of chiral superconductors
is that the electric polarization P�a� �79� is induced by the
magnetic field Bz, whereas the magnetization M�a� �80�
couples to the longitudinal electric field. The first and second
terms in Eq. �78� give the transverse and longitudinal com-
ponents of the anomalous current, respectively.

In the limit of small 
q
, by using Eqs. �54� and �56� and
the condition I�0�=1, the vector W in Eq. �76� can be written
as

Wk = qlQlk
	 + �Q0k

�s� = I���
�ab

2

4�
�nJ · q�k, �81�

where I��� is given by Eq. �73�. In the same limit, only the

terms proportional to Q00 survive in the function R̃ given by
Eq. �44�. Using Eq. �A1� at q→0, we find that

Q00��� = −
2e2N0

d
I��� , �82�

where I��� again is given by Eq. �73�. Then, with the help of
Eqs. �81�, �82�, and �44�, we find that

W

R̃
= −

���,q�d
4e2me

�nJ · q� , �83�

where the function ��� ,q� is given by Eq. �64�. By using Eq.
�83�, the expressions �79� and �80� for P�a� and M�a� can be
written as

2 4 6 8 10

1

2

3

4

ω/∆0

I(ω)

FIG. 3. �Color online� Frequency dependence of the function
I��� given by Eq. �73�. This function determines the frequency
dependence of the ac Hall conductivity �104� of a chiral px+ ipy

superconductor in the dynamic limit. The solid �red� and dashed
�blue� lines show the real and imaginary parts of I���.
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P�a� = i�
���,q�d
4e2me

�q � Eext� · ẑ

�
�nJ · q�

= i�
���,q�d
4e2me

Bz
ext�nJ · q� , �84�

M�a� = − iẑ�
���,q�d
4e2me

�q · nJ · Eext� . �85�

The static and dynamic limits of Eqs. �84� and �85� can be
obtained by taking appropriate limits �66� and �68� for the
function ��� ,q�.

C. Discussion of the anomalous magnetization current

By comparing Eq. �85� for the anomalous magnetization
with the expression for the induced conventional charge den-
sity from Eqs. �59�, �61�, �63�, and �54�, one can notice that
M�a� can be expressed in terms of ��

M�a� = − sxyẑ
I���
4me

�� . �86�

Then, the first term in Eq. �78�, the magnetization current,
can be written in real space as

jM
�a���,r� = sxy

I���
4me

�ẑ � �����,r�� . �87�

At �=0, Eq. �87� reduces to expression �3� for the Mermin–
Muzikar current,32 which was discussed in Sec. I. However,
at high frequencies, the anomalous magnetization current
�87� is suppressed by the function I���� ��0 /��2 �see Eq.
�74��. The general reason for this suppression is that physical
manifestations of the low-energy Cooper pairing with the
angular momentum Lz=� should fade away at high frequen-
cies �	�0. Indeed, the electron states at high energies are
essentially the same as in a normal metal, so the properties of
the system should approach those of a normal metal at high
frequencies. The suppression of the anomalous magnetiza-
tion current at high frequencies is one of the reasons why the
Kerr angle is so small.33 Equation �87� gives an important
generalization of the Mermin–Muzikar current to arbitrary
frequencies.

In order to calculate the magnetization current correctly, it
is very important to take into account the term Q0k

�s� in Eq.
�81�. This term vanishes at �=0 and can be neglected at low
frequencies, as was done in Refs. 25–29. However, at high
frequencies, Eq. �56� shows that Q0k

�s��−qk /� and, in the
leading order of approximation, the second term of the sum
in Eq. �81� cancels the first term. The remaining difference
gives the small factor I���� ��0 /��2. The term Q00 is also
proportional to I��� in Eq. �82�, so the factors I��� in W and

R̃ cancel out in Eq. �83�, but ���� produces the factors I���
in Eqs. �85�–�87�. If Q0k

�s� were neglected in Eq. �81�, then W
would have a constant value at high frequencies, and one
would incorrectly conclude that Eq. �3� is valid for arbitrarily
high frequencies. The asymptotic cancellation of the two
terms in the sum in Eq. �81� can also be shown using the
Ward identities.46

D. Discussion of the anomalous polarization current

The second term jP
�a� in Eq. �78� is determined by the

chiral polarization P�a�. Although jP
�a� is formally proportional

to �, it contributes equally to the total current even at low
frequencies. Indeed, Eqs. �79� and �84� show that the chiral
polarization diverges at low frequencies as 1 /�. This diver-
gence exactly cancels � in Eq. �78�, which results in a finite
contribution from the chiral polarization to the current even
at low frequencies. Both magnetization and polarization cur-
rents equally contribute to the Hall conductivity tensor,
which is discussed below in Eqs. �100� and �103�. The
anomalous polarization current jP

�a� was often omitted in pre-
vious papers in the low-frequency limit.

Equations �77�, �79�, and �84� show that the magnetic
field Bz induces an anomalous electric charge, as mentioned
in Sec. I. The polarization current jP

�a� in Eq. �78� is necessary
to satisfy the continuity equation for the anomalous charge in
Eq. �77�.

E. Anomalous chiral effective action

Substituting the components �75� of the anomalous tensor
K��

�a� into Eq. �35�, we obtain the chiral part of the gauge-
invariant effective action for the electromagnetic field as

S̃eff
�a� = − i�

q

��q�
W�q� · Eext�q�

R̃�q�
Bz

ext�− q�

� i
sxy

8hme
�

q

���,q�I����q · nJ · Eext�q��Bz
ext�− q� .

�88�

Given that Eq. �75� is written for the real frequency �, we
write Eq. �88� for the real frequency as well. The anomalous
charge and current responses, given by Eqs. �77�–�80�, can
be obtained by taking the appropriate variations of Eq. �88�.
The causality of the response function should be properly
addressed, as discussed in Ref. 50.

Unlike the conventional action for the electromagnetic
field, the anomalous action �88� involves a product of the
electric and magnetic fields. Thus, the anomalous action
�105� breaks the TRS, because E→E and B→−B upon the
time-reversal operation. Equation �105� is manifestly gauge
invariant and is a replacement for the Chern–Simons-type
term �1� after integration out of the superconducting phase
�. The calculation of this action is one of the central results
of our paper. A simplified alternative derivation of the effec-
tive action is also given in Appendix C.

Anomalous effective actions of the forms similar to Eq.
�88� were obtained for chiral superfluids in Refs. 25, 26, and
28. Coupling between the electric and magnetic fields was
discussed in Ref. 63. However, because these calculations
were performed in the low-frequency limit, they did not ob-
tain the factor I���, which suppresses the chiral effects at

high frequencies, as discussed in Sec. V C. The factor R̃ in
the denominator of Eq. �88� represents the collective modes
of the system. References 25 and 26 did not take into ac-
count the Coulomb interaction, which is appropriate for elec-
trically neutral superfluids, such as 3He. Thus, the collective
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modes in the denominator of the effective actions in these
papers were the acoustic modes of the superconducting
phase, which can be obtained by setting V�q�=0 in Eq. �44�.
However, in the case of a charged superconductor, the col-
lective modes are the gapped plasmons represented by the

function R̃ in Eq. �88� �see also Ref. 28�. One should keep in
mind that, because we have integrated out the internal Cou-
lomb potential, the electromagnetic field in Eq. �88� is the
external one. Depending on the physical context, it may also
be useful to study the chiral response with respect to the total
electromagnetic field, which includes both external and in-
ternal fields. This problem is discussed in Sec. VI.

VI. CONDUCTIVITY TENSOR OF A CHIRAL
SUPERCONDUCTOR

A. Response to the external versus total electric field

In order to calculate the polar Kerr angle �see Appendix
D� and other observable experimental quantities, one needs
to know the conductivity tensor �J of a chiral superconductor,
which is defined by the standard relation

j = �J · Etot. �89�

Here, Etot is the total electric field inside the superconductor.
In principle, the tensor �J can be extracted from Eqs. �60� and
�78� for the conventional and chiral currents. However, the
polarization and magnetization vectors in these equations are
expressed by Eqs. �61�, �79�, and �80� in terms of the exter-
nal electric field Eext. These equations give the linear re-
sponse relation in the form

j = �̃J · Eext �90�

with a different tensor �̃J,42 which includes the renormaliza-
tion due to the RPA diagrams shown in Fig. 2.

The linear response relation in the form �90� is physically
transparent, because it gives a direct response of the system
to the external perturbation. However, in general, the re-
sponse of the system to the external field depends on the
geometry of the sample and the experimental apparatus.
Only in the idealized case of an infinite uniform system can
the problem be solved by the Fourier transform. To deal with
this problem, the standard approach in the electrodynamics
of continuous media61 is to use the constituency relation
�89�, which expresses the response of the media to the total
electromagnetic field in terms of the conductivity tensor
characterizing the material. The constituency relations are
substituted into Maxwell’s equations as the source terms, and
then Maxwell’s equations are solved with the boundary con-
ditions appropriate for the experimental setup. This is how,
for example, one can take into account the Meissner screen-
ing, which was not included in the RPA-renormalized linear
response given by Eq. �90�.

In order to obtain the proper constituency relations, we
need to transform the results of the paper to the form �89�.
This can easily be done by noticing that, in Eq. �12�, the
internal �induced� electric potential � appears next to the
external potential A0. Thus, the combined electric potential

corresponds to the total electric field Etot inside the supercon-
ductor. Then, Eq. �23� gives the effective action for the total
electromagnetic field. By taking a variational derivative with
respect to the total electromagnetic field, one arrives at Eq.
�89�. Formally, this means that we do not integrate out the
internal field � and do not perform the RPA renormalization
of the response kernels Q�� in Eq. �33�. Thus, the transition
between Eqs. �90� and �89� can be accomplished by setting
V�q�=0 and replacing Eext with Etot in the electromagnetic
response. The Coulomb potential V�q� appears explicitly

only in the function R̃�� ,q� defined in Eq. �44�. Therefore,
one should replace this function with the bare one,64

R��,q� = Qklqkql + 2�Q0k
�s�qk + �2Q00. �91�

Using this prescription and Eqs. �60� and �78�, one can easily
obtain the conductivity tensor

�J = �J�c� + �J�a�, �92�

which consists of the conventional �nonchiral� �J�c� and the
anomalous �chiral� �J�a� contributions, as discussed below.

B. Conventional nonchiral conductivity tensor

Following the prescription of Sec. VI A and using Eqs.
�58�, �60�, and �61�, we obtain the conventional part of the
conductivity tensor as follows:

�J�c� = �J�1� + �J�2�, �93�

�Jkl
�1� = −

1

i�
Qkl

�, �94�

�Jkl
�2� = − i�

�Qk0
�s�Q0l

�s� − Qkl
	 Q00�

R
, �95�

where the function R�� ,q� is given by Eq. �91�.
In the dynamic limit ��0 and q→0, the terms Qk0

�s� in the
numerator of Eq. �95� and the terms proportional to q in Eq.
�91� vanish. As a result, the expression for the conductivity
tensor is simplified

�Jkl
�1� = −

1

i�
Qkl

�, �Jkl
�2� = −

1

i�
Qkl

	 . �96�

From Eq. �96�, we find the total conductivity tensor in the
long-wavelength limit as follows:

�Jkl
�c� = −

Qkl
�1�

i�
= −

1

4�i���ab
2 0 0

0 �ab
2 0

0 0 �c
2� , �97�

where we used Eq. �40� for Qkl
�1�.

Combining Eq. �97� with the standard formula for the
dielectric permeability tensor "J,

"J= 1J +
4�i

�
�J , �98�

we obtain
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"J��� =�
1 −

�ab
2

�2 0 0

0 1 −
�ab

2

�2 0

0 0 1 −
�c

2

�2

� . �99�

Equations �97� and �99� represent the standard Drude re-
sponse of an anisotropic conductor.

C. Anomalous chiral conductivity tensor

The anomalous chiral response of the system to the total
electric field is obtained from Eqs. �77�–�80� by replacing

R̃→R, where the function R�� ,q� is given by Eq. �91�. From
Eqs. �78�–�80� for the current response, we obtain the
anomalous chiral conductivity tensor

�Jkl
�a� = �

q̌kWl − Wkq̌l

R
, �100�

where q and Wk are given by Eqs. �70� and �76�. Notice that
the anomalous conductivity tensor is antisymmetric �kl

�a��q�
=−�lk

�a��q� and represents the intrinsic Hall conductivity of a
chiral superconductor.

Using Eq. �81�, we can rewrite the anomalous conductiv-
ity tensor �100� as

�J�a� =
�ab

2 ����I���
4�R��,q�

�q̌�q · nJ� − �nJ · q�q̌� �101a�

=
�ab

2 �I

4�R � 0 − �qx
2 + qy

2� − #qyqz

qx
2 + qy

2 0 #qxqz

#qyqz − #qxqz 0
� , �101b�

where #=�c
2 /�ab

2 is a small parameter representing the aniso-
tropy of the band dispersion in a Q2D metal. The tensor
components �zx

�a� and �zy
�a� in Eq. �101b� are small unless qz

2

	#2�qx
2+qy

2�.
Now we concentrate on the �xy

�a� component of the anoma-
lous conductivity tensor �101b�,

�xy
�a� = − ����

�ab
2 I���

4�R��,q�
q	

2, q	
2 = qx

2 + qy
2. �102�

It was argued in Refs. 31 and 33 that the Hall conductivity of
a chiral superconductor can be obtained by omitting the last
term in the brackets of Eq. �4� which gives �xy

�a�=����. How-
ever, Eq. �102� shows that the systematic integration out of
the superconducting phase � produces a different expression
for �xy

�a�, which differs from ���� by the additional factor
proportional to q	

2. This factor involves the in-plane wave
vector of the electromagnetic field and, in the appropriate
limit, makes �xy

�a� vanish when q	
2→0. This fact reflects the

cancellation of the Hall effect34 for a uniform �in the plane�
system discussed in Sec. I. Equation �102� is the central re-
sult of our paper and will be used in Sec. VII to estimate the
observable Kerr effect. At low frequencies ���0, where I

�1, Eq. �102� agrees with the corresponding results of Refs.
25 and 28. However, at higher frequencies �$�0, the func-
tion I��� exhibits the nontrivial frequency dependence
shown in Fig. 3. This behavior originates from the tendency
to cancel between the current-current Qkl and current-density
Qk0

�s� polarization functions in Eq. �81�. Thus, it is essential to
take Qk0

�s� into account at high frequencies �see discussion in
Sec. V C�.

Let us discuss Eq. �102� in different limits. First, we con-
sider the static limit �=0, set qz=0, and then take q	→0.
Using Eqs. �72� and �91�, we see that q	

2 cancels out, and we
find that �xy

�a�=e2 /2hd, which is reminiscent of the quantum
Hall effect.14,31,33 However, this formally calculated value
does not correspond to an observable dc Hall effect. The
static limit describes the system in thermodynamic equilib-
rium, where an applied electric field causes an inhomoge-
neous equilibrium redistribution of the electron density. As a
result of the nonzero Cooper-pair angular momentum, the
inhomogeneous electron density produces the equilibrium
magnetization current Eq. �87�. However, the total magneti-
zation current flowing through any cross section of the
sample, including the bulk and the edges, is zero, because the
current is solenoidal. Therefore, the total current measured
by an ammeter is zero. Thus, the formally calculated �xy

�a�

does not represent a measurable Hall effect.65

The experimentally relevant limit is the dynamic limit
with ��0 and small q. Taking this limit in Eq. �102� and
using Eqs. �91� and �82�, we find

�xy
�a� = ����

vF
2q	

2

2�2 , �103�

where vF is the in-plane Fermi velocity. Equation �103� gives
the ac Hall conductivity, where the frequency dependence of
���� is given by Eqs. �72� and �73�. Equation �103� differs
from the expression �xy

�a�=���� obtained in the previous
papers31,33 by the small factor vF

2q	
2 /2�2.

D. Anomalous effective action and charge response

Equation �88� gives the anomalous effective action as a
function of the external electromagnetic field. Transforma-
tion of this action to the total field is straightforward by

replacing R̃→R,64

Seff
�a� = − i�

q
��q�

W�q� · Etot�q�
R�q�

Bz
tot�− q�

� i
vF

2

2 �
q

����
�q · nJ · Etot�q��Bz

tot�− q�
�2 − vF

2�q · nJ · q�/2
. �104�

The difference between Eqs. �88� and �104� is that the former

involves the gapped plasmon modes represented by R̃ �44� in
the denominator, whereas the latter involves the acoustic
modes of the superconducting phase represented by R �91�.
This difference occurs because the two effective actions are
written using the screened and unscreened electric fields,
whereas the magnetic field is not screened by the internal
Coulomb potential. For small q and high �, this difference

amounts to using R�Q00�
2 vs R̃�Q00��2−�ab

2 �q ·nJ·q� /
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q2�, where the last term represents the momentum-dependent
plasma frequency. The effective action is also discussed in
Appendix C.

By taking a variational derivative of the action �104� with
respect to the total field A0

tot, we find the anomalous electric
charge induced by the magnetic field,66

���a� = −
�ab

2

4�

�I

R
�q · nJ · q�Bz

tot. �105�

In the static limit, Eq. �105� reads

���a� = − sxy
e2

2hdc
Bz

tot. �106�

Equation �106� was derived earlier in Refs. 27 and 29 and
was mentioned in Sec. I. It is reminiscent of the Streda for-
mula for the quantum Hall effect.67 However, at high fre-
quencies, Eq. �105� shows that the induced electric charge is
significantly reduced relative to the static limit �106�

���a� = sxy
e2

2hdc
I���

vF
2�q · nJ · q�

2�2 Bz
tot. �107�

It is instructive to calculate how much electric charge
would be induced by the static magnetic field of one super-
conducting vortex. If we take an integral �dxdy of Eq. �106�,
the left-hand side gives us the total induced electric charge,
and the right-hand side gives the total magnetic flux. Taking
the latter to be one superconducting flux quantum �0
=hc /2e, we find that the total induced electric charge in a
vortex �Qvortex is

�Qvortex = − sxy
e

4
�108�

per layer, i.e., the superconducting vortex has a fractional
electric charge. Equation �108� was obtained by Goryo,27

who also pointed out that a vortex has a fractional angular
momentum. However, the anomalous induced charge �108�
would be screened by the conventional screening
mechanism,66 and its experimental measurement may be
challenging. It should be emphasized that the charge density
�106� is not concentrated in the vortex core at the coherence
length, but extends to the London penetration length, where
the magnetic field is present. A possible experiment for the
detection of the anomalous induced electric charge is dis-
cussed in Sec. VII B.

VII. EXPERIMENTAL IMPLICATIONS

A. Polar Kerr effect experiment

In this section, we apply the derived theoretical results to
the interpretation of the Kerr effect measurements.3 We use
the relationship between the Hall conductivity �xy and the
Kerr angle �K as presented in Appendix D.

First, we briefly discuss the estimates of the polar Kerr
angle in the previous literature,31,33 where the formula �xy

�a�

=���� was used without the additional factor appearing in
Eq. �103�. To estimate the Kerr angle, Ref. 31 implicitly
assumed that the refraction coefficient n is real by using the

value n�n2−1�=3 quoted in Ref. 3 expressed �K in terms of
�xy� via Eq. �D2�. The theoretical estimate given in Ref. 31 is
�K�230 nrad, which is of the same order of magnitude as
the experimental value of 65 nrad.3 In Ref. 33, a more de-
tailed estimate was presented, using Eq. �D4� for the refrac-
tion coefficient n and discussing different limits �%�p and
���p. However, the factor " was overlooked in Ref. 33 as
well as the presence of the real part �xy� ���, which gives the
primary contribution to �K for ���p �see Appendix D�.
Overall, the numerical estimate of �K given in Ref. 33 is of
the same order of magnitude as in Ref. 31.

However, as discussed in Sec. I, Refs. 31 and 33 did not
take into account the self-consistent dynamics of the super-
conducting phase � and, thus, missed the additional factor in
Eq. �103�, which makes the Hall conductivity dependent on
the wave vector q	. In this case, strictly speaking, one cannot
use the equations for �K presented in Appendix D, because
they were derived for the normally incident infinite plane
wave with q	 =0. However, as shown in Fig. 1, the
experiment3 was performed with a tightly focused Gaussian
laser beam, which has nonzero Fourier components with q	

�0. Solving the boundary value problem for a reflection of a
finite-size Gaussian beam from a chiral superconductor and
determining the Kerr angle for polarization rotation is a com-
plicated problem, that is beyond the scope of this paper. Nev-
ertheless, to make a crude estimate of the Kerr angle, we can
use the equations from Appendix D and the Hall conductivity
given by Eq. �103� with the replacement q	→1 / l, where l is
the typical transverse size of the Gaussian beam �see Fig. 1�.
Taking into account that �=c
q
, where the wave vector 
q

=2� /
 is related to the wavelength of light 
, we can
roughly estimate the Hall conductivity in Eq. �103� as

�xy � �����vF

c
�2�


l
�2

. �109�

Using the values vF=5.5�104 m /s for the � sheet of the
Fermi surface,10 c=3�108 m /s, 
=1.55 �m, l�25 �m3,
and �0=0.8 meV �Ref. 20� in Eqs. �D7� and �109�, we esti-
mate the Kerr angle to be �K�10−14 rad. This estimate for
�K is about 6 orders of magnitude smaller than the experi-
mental value of 65 nrad. The strong suppression of the Kerr
angle relative to the previous estimate originates primarily
from the small relativistic factor �vF /c�2 in Eq. �109�.

In the rest of this section, we speculate about possible
ways of resolving the discrepancy between the theory and
experiment. As discussed in Sec. I, the general arguments of
Ref. 43 show that the intrinsic Hall conductivity should van-
ish for a spatially homogeneous uniform system. One way to
break the translational symmetry is by taking into account
the finite size l of the laser beam. Then, inevitably, the Kerr
angle acquires a dependence on l as shown in Eq. �5�, which
is a very robust theoretical result. This proportionality rela-
tion should be checked experimentally.

Although the dependence on l introduces a small factor,
there may be mechanisms for enhancement of the response
of the system, which may compensate for this additional
smallness. One possibility is a resonance with the plasma
modes. Equation �87� shows that the magnetization current is
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produced by the gradients of electron density. Therefore, the
problem of the chiral current calculation reduces to how
much electron charge is induced on the surface of a crystal
by the inhomogeneous laser beam. The continuity of the
electric field lines in a Gaussian beam in vacuum requires
that the electric field components Ez must be present at the
periphery of the beam, even though the electric field is nomi-
nally polarized along Ex at the center of the beam. This is
well known for the fiber-optics modes, which have similari-
ties with the Gaussian mode in vacuum.68 When the Gauss-
ian beam hits the sample �see Fig. 1�, the Ez components
induce electric charges of opposite signs on the two sides of
the beam in the x direction, which induce the electric current
jy �qxEz according to Eq. �87�. The induced electric current
jy generates a magnetic field Bx and a reflected electromag-
netic wave with the Ey polarization. Taking into account that
Ez� �q	 / 
q
�Ex, we obtain the same result as in Eq. �103�.
However, because the external electric field Ez directly
couples to the induced electron charge, the response of the
system would be enhanced by the factor ��d��� ,q� in Eq.
�68� when the frequency of light � is in resonance with one
of the plasma modes. As discussed in Appendix D, the ex-
perimental frequency � is in between the upper and lower
plasma frequencies �ab%�%�c and, thus, � can be in reso-
nance with one of the plasma modes �46� for some vector q.
Besides, because of the boundary at z=0 between the sample
and vacuum, it may be necessary to solve for the plasma
modes more accurately by taking into account the surface
plasmons as well.

Another reason for the discrepancy in the magnitude of
the Kerr effect may be the idealization of our theoretical
model. Indeed, we considered the electromagnetic response
of a clean superconductor in the presence of particle-hole
symmetry. Within this model, Eqs. �A1�–�A4� for the re-
sponse kernels are written assuming momentum conserva-
tion for the electrons. A more realistic model has to take into
account the effect of impurities, in which case the momen-
tum conservation does not hold. Indeed, one of the reasons
for smallness of �K within our model can be traced back to
the cancellation of the two terms in Eq. �81� at high frequen-
cies. As a result, the right-hand side of Eq. �81� is small in
the parameter ��0 /���2�10−6. If we take into account im-
purities, the complete cancellation in Eq. �81� might not
hold, and the estimate for �K would be significantly larger.
Indeed, in the derivation of this equation, we assumed that
the paramagnetic kernel Qkl

�2� given in Eq. �A2� vanishes in
the dynamic limit ���0 and q→0�. However, it is well
known from the classic paper by Mattis and Bardeen69 that
Qkl

�2� does not vanish when impurity scattering is taken into
account. This term plays a significant role by taking away
some spectral weight from the London–Meissner supercur-
rent, which makes the superconducting gap visible in optical
measurements. For Sr2RuO4, this fact was experimentally
confirmed in Ref. 70, which found that the superfluid density
at T=0 is reduced by 22%. Therefore, the cancellation in Eq.
�81� in the presence of disorder should be investigated in a
future theoretical work.

B. Proposed experiments

As discussed in Sec. VI D, the magnetic field component
Bz applied perpendicular to the conducting planes of

Sr2RuO4 is expected to induce an electric charge. The effect
is stronger in the static limit than in the dynamic limit. In this
section, we propose a conceptual experiment to verify this
effect. The schematic experimental setup is shown in Fig. 4.
A miniature solenoid or a coil carrying electric current cre-
ates a magnetic field with the Bz component. The current and
the magnetic field are modulated at a low frequency �a few
kilohertz�, so that the quasistatic formula �106� is
applicable,71 but the lock-in measurements are enabled. The
slowly alternating magnetic field Bz induces an alternating
electric charge near the center of the coil, which is produced
by the radial alternating currents, shown by the arrows in
Fig. 4. The induced electric charge is detected by a sensitive
atomic force microscope �AFM� tip, shown as the pointed
vertical object in Fig. 4. The AFM tip should be made from
a nonmagnetic but highly electrical polarizable material to
reduce the response to magnetic fields and enhance the re-
sponse to the electric charge. To increase sensitivity, mea-
surements should be performed at the lock-in frequency of
the current in the coil. The difference of the signals above
and below the superconducting transition temperature should
be taken in order to subtract the background effects. A no-
ticeable increase of the signal below Tc would signify the
observation of the effect. Then, the measurements can be
performed at different locations on the sample. If a supercon-
ducting domain of the opposite chirality is found, the effect
would change sign, i.e., the sign of the induced electric
charge would change vs the sign of the applied magnetic
field. It may be possible to map out the chiral domain bound-
aries in this way, assuming that the domains are sufficiently
static and do not fluctuate in time too fast.

VIII. CONCLUSIONS

In this paper, we studied the electromagnetic response of a
Q2D chiral px+ ipy superconductor, such as Sr2RuO4. By in-
tegrating out the superconducting phase �, we obtained the
gauge-invariant effective action of the system in an electro-
magnetic field. Besides the well-known conventional terms,

FIG. 4. �Color online� Schematic setup of a proposed experi-
ment to measure the electric charge induced by a magnetic field
perpendicular to the layers in Sr2RuO4, as given by Eq. �106�. A
current in the solenoid or the coil produces a magnetic field Bz

inducing an electric charge at the center, which is carried by the
radial currents shown by the arrows. The induced charge is detected
by the AFM tip.
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this action also contains an anomalous chiral term, which
breaks the time-reversal symmetry. Instead of the Chern–
Simons-type term �1�, discussed in the earlier litera-
ture,14,30,31 the gauge-invariant anomalous effective action
�104� contains a product of the electric and magnetic fields.
This is a rather unusual situation, and the modified Chern–
Simons-type term �104� leads to a number of interesting ef-
fects.

By taking variations of the anomalous effective action
with respect to the electromagnetic potentials A�, we ob-
tained the anomalous charge and current responses of the
system. We found that the transverse chiral response couples
to the collective plasma modes, while the anomalous charge
response manifests itself as the electric charge induced by
the magnetic field Bz perpendicular to the conducting layers
of Sr2RuO4. In Sec. VII B, we proposed an experiment for
the detection of this charge. The effect is stronger in the
static case than at high frequencies.

The anomalous current response manifests itself as the
intrinsic Hall effect, i.e., the existence of the antisymmetric
Hall conductivity �xy =−�yx in the absence of an external
magnetic field. In the static case, it is a formal consequence
of the magnetization current j=��M �the Mermin–Muzikar
current32� in the presence of an inhomogeneous electron den-
sity induced by an electric field. Because the Cooper pairing
takes place with the angular momentum Lz= ��, the varia-
tion of electron density causes a variation of magnetization.
However, the equilibrium magnetization currents, obtained
in the static limit, are solenoidal and cannot be directly mea-
sured in the transport experiments. In the dynamic limit, our
calculations show that the magnetization current is greatly
reduced by the parameter ��0 /��2. In addition to the magne-
tization current, there is also an anomalous polarization cur-
rent, which originates from the motion of the electric charges
induced by the magnetic field Bz. Both the magnetization and
polarization currents are of the same order and are sup-
pressed at high frequencies.

We found that the calculated Hall conductivity is propor-
tional to q	

2, where q	 is the in-plane wave vector of the
electromagnetic wave. This result is consistent with Refs. 25,

26, 28, and 43 and follows from the cancellation of the elec-
tric field by the supercurrent. The latter was not taken into
account in the previous papers.31,33 As a consequence, we
found that the Kerr angle �K should depend on the transverse
size l of the laser beam �see Fig. 1� according to Eq. �5�.
Within the considered model here �a clean superconductor in
the presence of particle-hole symmetry�, we found that the
overall magnitude of the Kerr angle is much smaller than
experimentally observed in Ref. 3. We pointed out two pos-
sible reasons for this discrepancy: coupling to the plasma
resonances and the effect of impurity scattering. In the pres-
ence of impurities, the quasiparticle momentum is not con-
served, and the results of our calculations would change sig-
nificantly. We conclude that, in order to understand the
experiment,3 it is necessary to take into account the effect of
disorder.

Note added. Recently, a preprint by Roy and Kallin �Ref.
72� appeared, in which similar results were found using a
somewhat different approach.
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APPENDIX A: POLARIZATION FUNCTIONS

In this appendix, we present analytical expressions for the
correlation functions given by Eqs. �24�–�29� and general-
ized to the 3D case as explained in Sec. II F. After calculat-
ing the Matsubara sums and performing the analytical con-
tinuation to the real frequency, we find the following
expressions for the finite-temperature causal polarization
functions:

Q00 = −
e2

2
� d3p

�2��3��1 +
�+�− − �+�−

E+E−
�� 1

E+ − E− + � + i�
+

1

E+ − E− − � − i�
��f�E−� − f�E+��

+ �1 −
�+�− − �+�−

E+E−
�� 1

E+ + E− + � + i�
+

1

E+ + E− − � − i�
��1 − f�E−� − f�E+��� , �A1�

Qkl
�2� = −

e2

2
� d3p

�2��3vkvl��1 +
�+�− + �+�−

E+E−
�� 1

E+ − E− + � + i�
+

1

E+ − E− − � − i�
��f�E−� − f�E+��

+ �1 −
�+�− + �+�−

E+E−
�� 1

E+ + E− + � + i�
+

1

E+ + E− − � − i�
��1 − f�E−� − f�E+��� , �A2�
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Qk0
�s� = −

e2

2
� d3p

�2��3vk�� �+

E+
−

�−

E−
�� 1

E+ + E− + � + i�
−

1

E+ + E− − � − i�
��1 − f�E−� − f�E+��

+ � �+

E+
+

�−

E−
�� 1

E+ − E− + � + i�
−

1

E+ − E− − � − i�
��f�E−� − f�E+��� , �A3�

Qk0
�a� =

ie2

2
� d3p

�2��3vk
�pxqy − pyqx��x�y

E+E−
�� 1

E+ + E− + � + i�
+

1

E+ + E− − � − i�
��1 − f�E−� − f�E+��

− � 1

E+ − E− + � + i�
+

1

E+ − E− − � − i�
��f�E−� − f�E+��� . �A4�

The notation is explained after Eq. �24�, and the integration
over pz runs from −� /d to � /d. Here, f�E� is the Fermi
distribution function. The diamagnetic term Qkj

�1� is given by
Eq. �39�.

APPENDIX B: COLLECTIVE MODES

An alternative way of deriving the collective modes40 is to
set A�=0 in Eq. �23� and study the dynamics of the internal
scalar potential ��q� coupled with the superconducting phase
��q�. After an analytical continuation to the real frequencies,
the effective action becomes

Seff��,�� =
1

2�
q
� 1

2e
��q�,��q���M11 M12

M21 M22
�� 1

2e
��− q�

��− q�
� .

�B1�

Here, the matrix elements are

M11 = Qklqkql + Q00�
2 + �Q0k + Qk0��qk,

M22 = V�q�−1 − Q00,

M12 = − M21 = − �Q00� + Qk0qk� . �B2�

Dispersion of this mode is determined by setting the deter-
minant of the matrix M to zero,

Det�M� = M11M22 − M21M12 = 0. �B3�

This equation is the same as the equation R̃=0 with R̃ given
by Eq. �44�.

APPENDIX C: ALTERNATIVE DERIVATION OF THE
EFFECTIVE ACTION

In this appendix, we give a simplified alternative deriva-
tion of the effective action for a chiral superconductor after
elimination of the superconducting phase �. This derivation
is more transparent and easier to compare with the effective
actions discussed in Refs. 14, 25, 26, 28, and 29.

The starting point is the effective action �23�, which is
explicitly written below in the tensor components

S =
1

2�
q

Q00�A0 −
i�

2e
���A0 +

i�

2e
��

+ Qkl�Ak −
iqk

2e
���Al +

iql

2e
��

+ 2Qk0�A0 −
i�

2e
���Ak +

iqk

2e
�� . �C1�

Here, in the spirit of Sec. VI A, we take the electromagnetic
potentials A� to represent the total electromagnetic field,
without separating into the external and internal parts, so we
drop the terms with the internal scalar potential � from Eq.
�23�. To shorten notation, it is implied in each term of Eq.
�C1� that the first dynamical variable has the argument q,
e.g., A0�q�, and the second variable has the argument −q,
e.g., A0�−q�, as in Eq. �23�. The effective action �C1� is writ-
ten using the real frequency �, as discussed in Sec. V E.

The superconducting phase � in Eq. �C1� is the dynami-
cal variable, which should be eliminated by minimizing S
with respect to � and integrating it out. Before doing so, we
shift the variable � by introducing a different variable �,

��q� = ��q� +
2e

i�
A0�q� . �C2�

Substituting Eq. �C2� into Eq. �C1� and sorting out the ob-
tained terms, we find

S =
1

2�
q

Qkl
EkEl

�2 + R
��

�2e�2 + 2Wk
�

2e

Ek

�
+ 2�

�

2e
i�Bz,

�C3�

where Ek and Bz are the electric and magnetic fields. The first
term in Eq. �C3� corresponds to the Drude response of a
metal at high frequencies, as in Eq. �97�. The second term in
Eq. �C3� represents the effective action for the collective
variable �, where the function R is given by Eq. �91�. The
last two terms in Eq. �C3� represent the interaction between
the collective variable � and the electromagnetic field. The
third term is the conventional one, where the function Wk is
given by Eq. �76�. The last term corresponds to the anoma-
lous Chern–Simons-type term �1� with the function � being
given by Eq. �72�. Equation �C3� is manifestly gauge invari-
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ant because it contains only the electric and magnetic fields,
rather than the scalar and vector potentials.

The effective action �C3� is quadratic with respect to �.
After the elimination of �, we obtain the final result

S =
1

2�
q
�Qkl −

WkWl

R
�Ek�q�El�− q�

�2 − 2i
�Wk

R
Ek�q�Bz�− q�

−
�2�2

R
Bz�q�Bz�− q� . �C4�

The first term in Eq. �C4� represents the conventional contri-
bution to the effective action discussed in Sec. VI B. The
second term is the chiral anomalous term �104� representing
the modification of the Chern–Simons-type term due to the
dynamics of the collective variable �. The third term in Eq.
�C4� is the double-anomalous nonchiral term, which was
briefly mentioned at the beginning of Sec. V B. These terms
are discussed in more detail below.

The effective actions similar to Eq. �C4� were obtained
for chiral superconductors after integration out of the super-
conducting phase in Refs. 25, 26, and 28. However, the focus
in these papers was on the low-frequency limit, and some
terms in the effective action were omitted in this limit. The
high-frequency limit of the effective action, which is relevant
for the experiment,3 was not discussed in literature before,
except for Ref. 31. It is remarkable that, in the high-
frequency limit, all three different functions �, W, and R
�Q00�

2 are proportional to the same function I���,

����,W���,Q00��� � I��� �
�0

2

�2 , �C5�

as follows from Eqs. �72�, �81�, �82�, and �74�. As a conse-
quence of Eq. �C5�, the last terms in Eq. �C4� are propor-
tional to I��� and tend to zero as ��0 /��2 at high frequen-
cies. Only the very first term in Eq. �C4� survives, which
represents the Drude response of free electrons at high fre-
quencies. The suppression of the last terms in Eq. �C4� at
high frequencies should be expected, because they represent
the effect of the chiral superconducting state. In the limit
�0 /�→0, the superconducting effects should vanish, be-
cause the low-energy gap �0 cannot affect the high-energy
behavior, as discussed in Sec. V C.

By using Eq. �C5�, the last double-anomalous term in Eq.
�C4� can be written as

S�aa� =
e2

2�dmec
2�

q

I
Bz�q�Bz�− q�

8�
, �C6�

where we restored the dimensional units. Comparing
with the action of a free magnetic field in vacuum
�qB�q� ·B�−q� /8�, we see that Eq. �C6� gives an orbital
paramagnetic contribution to the magnetic susceptibility of
the system. This contribution is small because of the relativ-
istic factor e2 /dmec

2�1 in Eq. �C6�. Given that this term is
nonchiral and small, we do not pay much attention to the
double-anomalous term in the paper.

The first term in Eq. �C4�, which involves the product
EkEl, represents the dielectric susceptibility of the system.
For small q, the term proportional to WkWl can be omitted.

The remaining term proportional to Qkl, when combined
with the action of a free electric field in vacuum
−�qE�q� ·E�−q� /8�, gives the the conventional effective ac-
tion for the electric field in the medium

SE
�c� = −

1

8�
�

q

E�q� · "J · E�− q� , �C7�

where the dielectric permeability tensor "J is given by Eq.
�99�. If we substitute the internal electric field in the form
Eint= iq� into Eq. �C7�, then we can obtain the equation
q ·"J·q=0 for the spectrum of the collective plasma modes,
which is the same as Eq. �46�.

The effective action �C4� is manifestly gauge invariant,
and the charge and current response functions, discussed in
the rest of the paper, can be obtained by taking a variation of
this action. The function R �91� in the denominators of Eq.
�C4� has zeros at the frequencies of the collective modes of
�.64 If it is desirable to directly include the internal Coulomb
interaction in the effective action �rather than by using Max-
well’s equations�, the kernels Q should be replaced by the

kernels Q̃ �33� in Eq. �C1� and R should be replaced by R̃ in
Eq. �C4�.

APPENDIX D: RELATIONSHIP BETWEEN THE POLAR
KERR ANGLE AND ac HALL CONDUCTIVITY

In this appendix, we obtain the equations expressing the
polar Kerr angle in terms of the ac Hall conductivity �see
also Ref. 33�. To simplify the notation, we drop the index �a�
from �xy

�a�.
Let us consider the normal reflection of a linearly polar-

ized electromagnetic plane wave, propagating in the z direc-
tion, from the �x ,y� surface of a Q2D chiral superconductor.
The reflection coefficient 
r
 and the polar Kerr angle �K are
given by the following equations:21


r
 =

n − 1


n + 1


, �D1�

�K =
4�

�
Im

�xy

n�n2 − 1�
, �D2�

where n is the complex refraction coefficient. The refraction
coefficient is obtained from the dielectric susceptibility ten-
sor, which has the general form

"J= "J� � +
4�i

�
�J . �D3�

Here, the conductivity tensor �J is given by Eq. �97�, and "J� �

is the background dielectric tensor, which originates from the
polarizability of the other, nonconducting bands in the mate-
rial. For a plane wave with the electric field polarized in the
x direction, the appropriate component of the conductivity
tensor is �xx. Then, the corresponding refraction coefficient
in Eqs. �D1� and �D2� is
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n2 = "xx = " −
�ab

2

�2 , " � "xx
� � $ 1, �D4�

where we introduced a shorthand notation " . Equation �97�,
derived for an ideal clean superconductor, gives only the
reactive imaginary part �xx� of conductivity and does not con-
tain the dissipative real part �xx� . To keep the presentation
simple, here we discuss only the ideal case with �xx� =0, but
the consideration can be generalized to include �xx� �0. No-
tice also that Eq. �D2� was derived assuming that the off-
diagonal component �xy of the conductivity tensor is much
smaller than the diagonal component �xx.

The refraction coefficient n in Eq. �D4� vanishes at �
=�p, where �p is the so-called plasma edge frequency

�p = �ab/�" . �D5�

Equations �D1�, �D2�, and �D4� have different forms for the
frequencies above and below the plasma edge. For �%�p,
the refraction coefficient n in Eq. �D4� is real, so the reflec-
tion coefficient �D1� is 0� 
r
�1, i.e., the electromagnetic
wave is partially reflected and partially transmitted through
the crystal. The polar Kerr angle �D2� is given by the follow-
ing expression in this case:

�K =
4��2�xy�

�" �2 − �ab
2 ��" − 1��2 − �ab

2 �
, � % �p. �D6�

For frequencies ���p below the plasma edge, the refraction
coefficient n �D4� is imaginary. In this case, the electromag-
netic wave is completely reflected �
r
=1�, and the polar Kerr
angle �D2� is

�K = −
4��2�xy�

��ab
2 − " �2��" − 1��2 − �ab

2 �
, � � �p. �D7�

Equations �D6� and �D7� show that the Kerr angle is de-
termined by the imaginary part �xy� for �%�p and by the real
part �xy� for ���p. This statement becomes approximate
when the dissipative component �xx� is taken into account,
and both the real and imaginary parts of �xy start to contrib-
ute simultaneously to �K. In our theory, �xy� and �xy� are pro-
portional to the real and imaginary parts of the function I���
defined in Eqs. �72� and �73�. The plots of the real and imagi-
nary parts of I��� are shown in Fig. 3, and their asymptotic
expressions are given by Eq. �74�.62

One can notice that the denominators of Eqs. �D6� and
�D7� vanish at certain frequencies, providing resonance en-
hancement of the Kerr angle �K. At the plasma edge fre-
quency �=�p, the square roots in the denominators of Eqs.
�D6� and �D7� vanish. At the frequency �=�ab /�" −1
%�p, the denominator of Eq. �D6� vanishes and �K changes
sign. At this frequency, the reflection coefficient �D1� van-
ishes because n=1 in Eq. �D4�. Of course, in the presence of
�xx� , these singularities will be smeared out.

The optical properties of Sr2RuO4 in the normal state
were measured in Refs. 58 and 59; however, the main inter-
est was in the electric field polarization along the c axis. The
plasma frequencies �ab=4.5 eV and �c=0.32 eV were ob-
tained from the fits of the data as well as the relaxation rate
��0.5 eV. The value " =10 was quoted, but for E 	c. In the
Kerr effect measurements,3 the frequency of the incoming
light was �=0.8 eV. This frequency is clearly below the
in-plane plasma frequency �ab and probably lower than
�p, even for " =10. In this limit, the Kerr angle is given
by Eq. �D7�. However, the effect of the relaxation rate �,
which is comparable with �, should also be taken into
account.
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