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We present results of numerical simulations for driven vortex lattices in the presence of a random disorder
at zero temperature. We show that the plastic dynamics of vortices display dissipative chaos. Intermittency
“routes to chaos” have clearly been identified below the differential resistance peak. The peak region is
characterized by positive Lyapunov exponents, which are characteristic of chaos, and low frequency broad-
band noise. Furthermore, we find a low fractal dimension of the strange attractor, which suggests that only a
few dynamical variables are sufficient to model the complex plastic dynamics of vortices.
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I. INTRODUCTION

The physics of periodic structures in a random pinning
potential has significantly improved these past few years. In
particular, an elastic approach to the static problem has
brought conclusive results in many situations.1–5 When
driven over the random medium, the fast moving periodic
structure is able to absorb dislocations that eventually appear
at intermediate velocities.6–8 In their elastic approach, Gi-
amarchi and Le Doussal9 showed that a nonlinear static dis-
order persists in the direction transverse to motion even at
high velocity. They therefore concluded that the moving lat-
tice is a moving glass and not a moving crystal. As in the
static case, in three dimensions and a weak disorder, the
relative transverse displacements only logarithmically grow
above a given length scale. The moving glass is therefore
characterized by a quasi-long-range order with perfect topo-
logical order and rough static channels in which “particles”
are flowing. In the case of a point disorder, such a moving
structure is called a moving Bragg glass. Dislocations be-
tween the channels are expected for a stronger disorder or in
two dimensions, creating decoupled channels, and the result-
ing moving glass is called a moving transverse glass. It is
characterized by a smecticlike order, which is transverse to
the direction of motion. However, the question of the stabil-
ity of the fast moving phase is still controversial.10 In the
particular case of a correlated disorder, which is created, for
example, by heavy ion irradiation in type II superconductors,
the vortex moving structure is a moving Bose glass,11 which
is characterized by a transverse critical force and a diverging
tilt modulus due to the localization effect arising from the
columnar pins. This feature, which is specific to a correlated
disorder, results in the so-called dynamical transverse Meiss-
ner effect that has been confirmed in numerical
simulations.12

In the case of a strong point disorder or intermediate ve-
locities, dislocations are likely to appear and plastic defor-
mations should be considered. In conventional superconduct-
ors, the vortex experiments show plasticity close to the
melting line, i.e., in the peak effect region. In this region of
the phase diagram, the shape of the current-voltage I-V curve
is modified and displays a peak in the differential resistance
dV /dI curve.13,14 Furthermore, the voltage noise measure-
ments increase by several orders of magnitude in this

region.14,15 Recent studies explain the peak effect with the
important role of surface pinning or surface barriers that lead
to nonuniform current flow in the sample.16 In numerical
simulations, the plasticity is observed when the pinning is
not too weak, leading to a filamentary depinning made of
plastic flow around pinned regions.7,8,17 In this case, the in-
termediate velocity regime is accompanied by a change in
curvature in the velocity-force curve, which generates a peak
in the derivative curve. This is similar to the peak in the
differential resistance curve obtained in the peak effect re-
gion of type II superconductors. In such plastic phases, to-
pological defects proliferate in the vortex lattice, and a com-
plex and apparently very disordered dynamics of vortices
grows in size. It is therefore clear that these regimes cannot
be described by an elastic approach. The theoretical under-
standing of plastic depinning and plastic flows remains an
open problem. Different coarse-grain models �where the Lar-
kin domains are the degrees of freedom� are developed to
describe plastic deformations �see Ref. 18 and references
therein�. In particular, Marchetti et al.19 showed the existence
of a tricritical point, which separates continuous depinning
transitions at a weak disorder from discontinuous depinning
transitions with hysteresis at a strong disorder. These mean
field results agree with the vortex simulations of Ref. 20.
However, numerical studies of a phase slip model21 suggest
the absence of hysteresis at the thermodynamic limit. In an-
other numerical phase slip model, the plastic depinning for a
strong disorder appears to be a continuous transition.22

The theoretical approach of plastic flows is difficult due to
their intrinsic complexity. However, we recently showed23

that a natural approach in terms of dissipative chaos gives
new understanding of the vortex plasticity. In particular, a
low-dimensional dynamics has been evidenced for Nv=30
vortices. In the present paper, we show the pertinence of the
chaotic approach for larger systems, but, more importantly,
we show that the low fractal dimension of the chaotic attrac-
tor remains unchanged despite a much higher dimensional
phase space.

The outline of this paper is as follows. In Sec. II, we
describe our numerical model for line vortices in type II
superconductors. In Sec. III, we show the transition to chaos
followed by the vortices in the plastic phase in detail. Section
IV characterizes the chaotic phase itself, which is evidenced
in a wide range of driving force around the differential resis-
tance peak. Positive Lyapunov exponents, broad-band noise
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at low frequency, and fractal dimension of the strange attrac-
tor are analyzed in detail. The crucial conclusion of a low-
dimensional dynamics is explained, and the influence of the
number of degrees of freedom and dissipation is discussed in
Sec. V.

II. NUMERICAL MODEL

We consider Nv Abrikosov vortices driven over a random
pinning background in the �x ,y� plane. At T=0, the over-
damped equation of motion of a vortex i in position ri reads

�
dri

dt
= − �

j�i

�iU
vv�rij� − �

p

�iU
vp�rip� + FL, �1�

where rij is the distance between vortices i and j, rip is the
distance between the vortex i and the pinning site located at
rp, and �i is the two-dimensional �2D� gradient operator act-
ing in the �x ,y� plane. The viscosity coefficient is �, and
FL=FLx̂ is the Lorentz driving force due to an applied cur-
rent. The vortex-vortex pairwise repulsive interaction is
given by a modified Bessel function,

Uvv�rij� = 2�0AvK0�rij/�L� ,

and the attractive pinning potential is given by

Uvp�rip� = − �pe−�rip/Rp�2
.

In these expressions, Av and �p are the tunable parameters,
�L is the magnetic penetration depth, and �0= ��0 /4��L�2 is
the energy per unit length. We consider periodic boundary
conditions of �Lx ,Ly� sizes in the �x ,y� plane. All of the
details about our method for computing the Bessel potential
with periodic conditions can be found in Ref. 24. A Runge–
Kutta algorithm for molecular dynamics simulation is used
for Nv=30, 270, and 1080 vortices in a rectangular basic cell
�Lx ,Ly�= �5,6�3 /2�n�L, where n=1, 3, and 6, respectively.
We choose the same density of pinning centers as the vortex
density. We consider the London limit �=�L /	=90, where 	
is the superconducting coherence length. 	 appears in the
inner cutoff, which removes the logarithmic divergence of
K0�r /�L� at r→0 �see Ref. 24�. The average vortex distance
a0 is set to a0=�L, and Rp=0.22 �L, �=1, and Av=2.83

10−3�L. We compute different pinning strengths of �p /Av
�0.05, �p /Av�0.35, and �p /Av�1.05, which correspond to
a maximum pinning force of Fmax

vp �0.2F0, Fmax
vp �1.4F0, and

Fmax
vp �4F0, respectively, where F0=2�0Av /�L is a force de-

fined by the Bessel interaction. The driving force applied
along a principal vortex lattice direction x is slowly varied
from 0 up to a value far from the critical Lorentz force along
x.

The successive regimes we observe are pinned configura-
tions where all vortices have zero velocity, followed by plas-
tic channels flowing through pinned regions. The successive
depinnings of the pinned regions result in a complex plastic
phase of interconnected flowing channels. Finally, coupled or
decoupled channels mostly aligned with the driving force
appear in the high driving phase.

III. INTERMITTENCY “ROUTE TO CHAOS”

We first begin with the transition to chaos �often called
routes to chaos in dynamical system theory� that we observe
for vortices in a very short applied force range below the
differential resistance peak. In particular, we show the results
we obtain for Nv=30 vortices and for the pinning strength of
�p /Av�0.35. In Fig. 1�a�, we show the typical longitudinal
velocity of the vortex center of mass Vx

c.m.�t� that we measure
in time for a given Lorentz force FL=1.116
10−3

�0.3943F0. Vx
c.m.�t� shows time intervals where the motion

is almost periodic �laminar phases� and interrupted by cha-
otic bursts displaying large erratic velocity fluctuations. The
almost periodic motion corresponds to a plastic channel
flowing through pinned regions, and the instability gives way
to a chaotic burst where all vortices are moving erratically.
Later, the system goes back to the almost periodic regime
with pinned vortices and moving vortices that temporarily
synchronize their motion. Again, the instability gives way to
another chaotic burst, and so on. Therefore, such signal
Vx

c.m.�t� shows intermittency, which may be one of the three
known scenarios to drive a dissipative system from period-
icity to chaos.25,26 In the case of intermittency, the dynamical
system has a stable limit cycle below the intermittency
threshold Ft, whereas for F→Ft

+, the dynamical regime is
intermittent with apparently periodic oscillations interrupted
by large fluctuations. The amplitude and duration of these
large fluctuations are almost the same from one fluctuation to
the other, and they depend little on the force. When F→Ft

+,
these fluctuations become increasingly rare and completely
disappear below the threshold. Therefore, the mean fre-
quency of the chaotic bursts goes to zero at the transition, but
not the amplitude nor their duration. The intermittency route
to chaos has several characteristics and may be classified
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FIG. 1. �Color online� Intermittency route to chaos characteris-
tics observed for Nv=30 vortices and for a pinning strength of
�p /Av�0.35: �a� part of the time evolution of the longitudinal ve-
locity Vx

c.m.�t� obtained for FL=1.116
10−3. One sees laminar �i.e.,
periodic� phases interrupted by chaotic bursts of large erratic veloc-
ity fluctuations. �b� Distribution of the laminar phase durations of
Vx

c.m.�t�. Both plots indicate type II intermittency �see text�.
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mainly into three types �I, II, and III� depending on the way
the limit cycle loses stability. In general, a trajectory in phase
space is linearly stable if all the eigenvalues �called the Flo-
quet multipliers� of the Floquet matrix have a magnitude
smaller than 1, and loses stability if one of them leaves the
unit circle in the complex plane.26 A crossing by the �+1�
value on the real axis generates a saddle-node bifurcation
and gives type I intermittency. The crossing by �−1� on the
real axis generates a subcritical subharmonic bifurcation and
gives type III intermittency, whereas type II intermittency is
observed above a subcritical Hopf bifurcation and corre-
sponds to a crossing of the Floquet multiplier by two conju-
gate complex values. To determine the type of intermittency
corresponding to Fig. 1�a�, we first measure the distribution
of the laminar �i.e., periodic� phase durations for a given
value of the applied force. Figure 1�b� shows such distribu-
tion obtained for the Vx

c.m.�t� displayed in Fig. 1�a�. Such
distribution is qualitatively very different from the one ob-
tained for weaker pinning ��p /Av�0.05, corresponding to
Fmax

vp �0.2F0, as shown in Ref. 23�, and characteristic of type
I intermittency. The very different shape of the distribution
we observe here for �p /Av�0.35, in particular, the long tail
for large durations, cannot be attributed to type I intermit-
tency but is expected for type II or type III intermittency. A
possible way to discriminate between these two possibilities
is to enlarge the signal Vx

c.m.�t� at the end of the almost peri-
odic intervals, i.e., just before the chaotic bursts. Since type
III intermittency is associated with a period doubling bifur-
cation �crossing by the �−1� value of the Floquet multiplier�,
the chaotic burst is expected to appear just after the increase
of a 1/2 subharmonic oscillation at the end of the laminar
intervals. Such a behavior is clearly not observed in the sig-
nal Vx

c.m.�t� displayed in Fig. 1�a� and is confirmed by a
power spectrum analysis. We therefore conclude that type II
intermittency is the route to chaos followed by Nv=30 vor-
tices in a rather strong pinning ��p /Av�0.35�.27 Since type I
intermittency was observed for a weaker pinning ��p /Av
�0.05�,23 we therefore show that the pinning strength may
change the nature of the bifurcations that are brought into
play.

IV. CHAOS

We now turn to the chaotic phase itself, which occurs in a
large force range above the very narrow intermittency range.
For the study of chaos, we now concentrate on a larger sys-
tem size of Nv=270 vortices flowing over a random medium
made up of Np=270 pinning centers. We present the results
for a pinning strength of �p /Av�1.05.

A. Differential resistance

Figure 2 displays the differential resistance curve Rd
=dVx

c.m. /dFL. The shape is very similar to the differential
resistance curve obtained in the peak effect region of type II
superconductors.13,14 It shows a peak corresponding to the S
shape of the velocity-force curve. In numerical simulations,
this peak indicates plasticity in the vortex flowing. Above the
main peak in Fig. 2 appears the so-called fingerprint phe-

nomenon already observed in experiments.13,14 This anomaly
corresponds to the depinning of the last pinned vortices. Our
study shows that for various system sizes and various pin-
ning strengths, the plasticity of the filamentary vortex flow
indicates chaotic dynamics. Chaos begins close to the bottom
of the differential resistance peak where the intermittency
route to chaos is observed and ends just above the fingerprint
phenomenon.

B. Lyapunov exponents

An unambiguous signature of chaos is given by at least
one positive Lyapunov exponent illustrating the sensitive de-
pendence on initial conditions �SDICs�, which is a property
only of chaotic attractors. Starting from two neighboring ini-
tial conditions on the chaotic attractor, the two corresponding
trajectories in phase space will diverge exponentially fast
from one another while still staying on the chaotic attractor.
The Lyapunov exponents are the inverse of the characteristic
times of this exponential divergence. Therefore, to compute
the maximal Lyapunov exponent �, one has to compute the
distance d�t� between two initial neighboring trajectories on
the chaotic attractor. Since we integrate Nv first order differ-
ential equations of motion �Eq. �1��, the phase space is de-
fined by the 2Nv vortex coordinates and the distance d is
defined by

d2�t� = �
i=1

Nv

��Xi�t� − X̃i�t��2 + �Yi�t� − Ỹi�t��2	 ,

where Xi�t�=xi�t�−xc.m.�t�, Yi�t�=yi�t�−yc.m.�t�, X̃i�t�= x̃i�t�
− x̃c.m.�t�, and Ỹi�t�= ỹi�t�− ỹc.m.�t�. In these expressions,
�xi ,yi� and �x̃i , ỹi� are the vortex i coordinates, and
�xc.m. ,yc.m.� and �x̃c.m. , ỹc.m.� are the respective coordinates of
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FIG. 2. �Color online� Differential resistance Rd=dVx
c.m. /dFL

obtained for Nv=270 vortices and for a pinning strength of �p /Av
�1.05. The main peak close to FL=0.01 indicates the S shape of
the velocity-force curve, and the so-called fingerprint phenomenon
is observed between FL=0.02 and FL=0.03. As indicated by dotted
lines, chaos is measured between FL=0.006 and FL=0.03, as shown
in Fig. 3.
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the center of mass. The tilde notation �x̃ , ỹ� refers to the
second trajectory generated by the neighboring initial condi-
tion. Figure 3�a� displays two examples of the time evolution
of d that we typically find in the region of the differential
resistance peak. It clearly shows an exponential divergence
d�e�t of the distance between two trajectories starting with
an initial distance of 10−12 between them �see the green
curve�. The slope therefore defines the positive maximal
Lyapunov exponent �, which is characteristic of chaotic dy-
namics. When the distance d becomes comparable to the size
of the chaotic attractor, a saturation effect in the growth of
d�t� naturally appears. Furthermore, Fig. 3�a� shows that, for
the same driving force, changing the initial distance between
the two trajectories �see the orange curve� does not change
the maximal Lyapunov exponent � �within the error bars� nor
the length scale dc below which the exponential divergence
is observed, so that both � and dc appear as characteristic
quantities of the intrinsic chaotic dynamics of the vortex sys-
tem. Figure 3�b� displays the evolution of � that we measure
in the chaotic region. In the same graph, we plot the differ-
ential resistance curve Rd=dVx

c.m. /dFL. The shape of the
Lyapunov curve closely follows the differential resistance
curve. In particular, a peak simultaneously appears with the
differential resistance peak in the Lyapunov curve, and a
shoulder at FL�0.2 indicates the fingerprint phenomenon
shown in Fig. 2. The maximal Lyapunov exponent is, in
some sense, a measure of the degree of chaos since the

higher the Lyapunov exponent �, the faster the divergence of
two chaotic trajectories. Therefore, Fig. 3�b� shows that
chaos is fully developed at the differential resistance peak.
Furthermore, the shoulder in the Lyapunov curve close to
FL=0.020 indicates that the decrease in chaos above the dif-
ferential resistance peak simultaneously slows down with the
fingerprint phenomenon, which confirms the idea of the de-
pinning of the last pinned vortices.

C. Low frequency noise

Many experiments in type II superconductors have mea-
sured large excess noise, particularly in the peak effect
region14,15 or close to the first order transition where the
vortex lattice melts in the vortex liquid phase,29 and very few
show transverse noise measurements.30 However, the origin
of the excess noise remains an open question since several
mechanisms are proposed. In numerical simulations, the dif-
ferential resistance peak and excess noise originate from a
plastic flow of vortices. We analyze plasticity in terms of
chaos and, in particular, we argue that the low frequency
broad-band noise measured in the differential resistance peak
region is a signature of the SDIC property, which is charac-
teristic of chaos since it implies the loss of memory for the
chaotic system.

We compute the power spectrum S��f� of the velocity of
the center of mass V�

c.m.�t�, as defined by

S��f� =
1

t2 − t1

�

t1

t2

dtV�
c.m.�t�exp�i2�ft�
2

,

where �=x or y. Figure 4 shows the typical power spectra
we obtain close to the differential resistance peak. The
broad-band noise at low frequency is obvious and shows the
impossibility of long term prediction. However, the wash-
board frequency f =Vx

c.m. /a0 appears in the power spectra
immediately above the peak of the differential resistance �not
shown�, therefore showing the beginning of temporal order
of the lattice although still chaotic. We shall now compute
the broad-band low frequency noise characteristic of chaos.
Two time scales appear in the region of the differential re-
sistance peak. 1 /�, where � is the Lyapunov exponent, is the
characteristic time above which chaos appears and �diff is the
characteristic time above which diffusive motions are mea-
sured. We compute wx�t�= 1

Nv
�i=1

Nv �Xi�t�−Xi�0��2 and wy�t�
= 1

Nv
�i=1

Nv �Yi�t�−Yi�0��2, with Xi�t�=xi�t�−xc.m.�t� and Yi�t�
=yi�t�−yc.m.�t�. As already found by Kolton et al.,8 we find
wx�t�� t	x and wy�t�� t	y, with exponents indicating normal
and anomalous diffusions. We observe these diffusive mo-
tions for time scales larger than �diff, which varies with the
driving force: a maximum of �diff is found and coincides with
the differential resistance peak. Such diffusive motions have
a clear signature in the power spectra S��f�. Indeed, for very
low frequencies corresponding to time scales larger than �diff,
a colored noise S��f�� f−� appears in the power spectrum
�see Fig. 4�a��. Therefore, to measure the degree of chaos, we
compute the average noises Nx and Ny over the low fre-
quency range 1 /�diff
 f 
�, i.e.,
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FIG. 3. �Color online� Signature of chaos in the plastic phase for
Nv=270 vortices and for a pinning strength of �p /Av�1.05: �a�
semilogarithmic plot of the time evolution of the distance d�t� be-
tween two initial neighboring trajectories in phase space for FL

=0.012. Two different initial distances between neighboring trajec-
tories are shown: 10−12 �green� and 10−6 �orange�. The positive
slope � �see the solid line as guide for the eye� indicates the expo-
nential divergence of d�t�, which is representative of chaos. The
same slope observed up to the same length scale dc, above which
the growth of d saturates, indicates that both � and dc are charac-
teristic quantities of the intrinsic chaotic dynamics. �b� Evolution of
the maximal Lyapunov exponent � �blue circles� with the Lorentz
force, plotted together with the differential resistance curve Rd

=dVx
c.m. /dFL �red triangles�. Each Lyapunov exponent is the aver-

age over 20 couples of initial conditions and the error bars are the
standard deviation.
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N� =
1

� − 1/�diff
�

1/�diff

�

S��f�df ,

where �=x or y, and the Lyapunov exponent � has been
evidenced in Fig. 3. Concomitantly with the differential re-
sistance, Fig. 5 shows the longitudinal Nx and transverse Ny
low frequency noises averaged in this way in the chaotic
region. Again, the shape of the noise curves closely follows
the differential resistance curve. The maximum of the longi-
tudinal noise coincides with the peak of the differential re-
sistance, which confirms that chaos is fully developed at the
peak. Furthermore, anomalies in the low frequency noises
simultaneously appear with the fingerprint phenomenon. Fi-
nally, note that the maximal longitudinal noise level is almost
3 orders of magnitude higher than the level measured at the
end of the chaos region, i.e., just above the fingerprint phe-
nomenon.

D. Fractal dimension of the strange attractor and low-
dimensional dynamics

In Secs. IV B and IV C, we characterized the absence of
temporal correlation in the chaotic regime due to the SDIC

fundamental property. We shall now characterize the spatial
correlations within the chaotic regime by computing the di-
mension of the chaotic attractor. The peculiarity of a chaotic
attractor comes from its two properties that seem hard to
reconcile. Trajectories of phase space converge and remain
confined to a bound region �attraction�, although neighboring
trajectories on the attractor separate exponentially fast
�SDIC�. It involves a double mechanism: stretching neces-
sary for the SDIC property, followed by folding required for
confined trajectories to a bound region. Repeated applica-
tions of stretching and folding generate a fractal attractor
whose peculiar properties justify the name strange attractor.
There exist several definitions of a fractal dimension that are
not equivalent and lead to different numerical values for a
given object. The Hausdorff–Besicovitch dimension is prob-
ably the most famous, but rather unworkable in practice. A
more efficient method is to compute the correlation dimen-
sion proposed by Grassberger and Procaccia.31 Consider a set
of very many points �Xi�t� ,Yi�t�	 �see Sec. IV B� on the
strange attractor generated by letting the system evolve a
long time. The correlation dimension � is the exponent of the
power law C������, where

C��� = limm→�

1

m2 �
k,l=1

m

H�� − �kl�

measures the number of couples of points �k , l� on the cha-
otic attractor whose distance �kl is less than �. H�z� is the
Heaviside function. To estimate the correlation dimension �,
we determine the local slope on a log-log plot of C��� de-
fined by

�loc =
d�log10 C����

d�log10 ��
.

� is deduced from the intervals where �loc is constant, i.e.,
where a true power law is measured. Figure 6 displays �loc
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FIG. 4. �Color online� Power spectrum Sx�f� of the longitudinal
noise for Nv=270 vortices and for a pinning strength of �p /Av
�1.05: �a� FL=0.006, below the differential resistance peak. The
lower dotted line corresponds to 1 /�diff, while the higher one cor-
responds to the maximal Lyapunov exponent �. �b� FL=0.009 cor-
responding to the peak of the differential resistance. The dotted line
corresponds to the maximal Lyapunov exponent �. In this case, �diff

is larger than the experimental time window so that 1 /�diff does not
appear in the power spectrum. The chaotic noises Nx and Ny, which
are shown in Fig. 5, are averaged in the range of 1 /�diff
 f 
�. For
FL=0.006, note the colored noise signature Sx�f�� f−� of the diffu-
sion process in the power spectrum for f 
1 /�diff.

0 0.01 0.02 0.03 0.04 0.05

F
L

10
-9

10
-8

10
-7

10
-6

10
-5

Lo
w

fr
eq

ue
nc

y
no

is
es

N
x

an
d

N
y

F
L

0

1

D
iff

er
en

tia
lr

es
is

ta
nc

e
R

d

FIG. 5. �Color online� Nv=270 vortices and for a pinning
strength of �p /Av�1.05: differential resistance �green triangles�,
and longitudinal Nx �red circles� and transverse Ny �blue squares�
low frequency noise averaged in the range of 1 /�diff
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�.
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with respect to log10 � that we obtain for FL=0.008. It
clearly shows a constant value of �loc�1.12 over a limited
range of �. It shows the validity of the power law behavior
C������ in this range. The correlation dimension for FL

=0.008 is therefore ��1.12. Above and below the limited
range where the power law behavior is observed, two re-
gimes that are well known for such correlation dimension
computations exist. Because of the finite number of points
�Xi�t� ,Yi�t�	 defining the strange attractor in our simulations,
the number of pairs �k , l� whose distance is less than � is
small for small values of �, giving therefore poor statistics.
Above the limited range where �loc is constant, � becomes
comparable to the size of the strange attractor, and increasing
� will not add new �k , l� couples. Therefore, C���→1 and
such saturation leads to �loc→0.

The computation of the correlation dimension in the
whole chaotic region, i.e., in the region of the differential
resistance peak, shows the important result that

1 
 � 
 1.5.

This result indicates that in our simulations where the time is
discrete, the chaotic trajectories in phase space remain con-
fined in a subspace with a dimension that is less than 2. Since
the discrete time system can be considered as a Poincaré
section �dimension D−1� of the continuous time system �di-
mension D�, we conclude that the continuous time system of
differential equations �Eq. �1�� has chaotic trajectories con-
fined in a subspace with a dimension that is less than 3. This
is a crucial result since it indicates that the complex plastic
vortex dynamics of very high degrees of freedom is low
dimensional and can be modeled by only three dynamical
variables.

Note that the fractal dimension of the chaotic attractor
that we find is strikingly similar to the fractal dimension of
the vortex channel network in the 2D real space found in
Ref. 32 for different pinning strengths. Such coincidence is
not clear since the link between chaotic trajectories in phase
space and in real space is inaccessible.

V. DISCUSSION

The same result 1
�
1.5 was obtained for much lower
degrees of freedom �60 instead of the 540 considered here� in
our previous paper.23 We also checked that for the much
larger system Nv=1080, i.e., 2160 degrees of freedom, the
chaotic trajectories remain bound in a low-dimensional frac-
tal attractor with 1
�
1.5. Therefore, the important result
of a low-dimensional dynamics of the continuous time sys-
tem of differential equations �Eq. �1�� on a chaotic attractor
with a dimension that is less than 3 remains valid whatever
the number of degrees of freedom Ndf is.

Since the system size does not seem to play any role in
the low dimension of the strange attractor, we investigate the
role of dissipation, which shrinks the volumes in phase space
and might influence the dimension of the attractor. Indeed,
the dissipation of a dynamical system is given by the diver-
gence of the flow. Since Eq. �1� is a first order differential
equation of the form ṙ=F�r�, the divergence � ·F of the flow
is not controlled by the viscosity coefficient � but by the
vortex-pin and vortex-vortex force component derivatives
�i��Fi /�xi+�Fi /�yi�. Keeping the same parameters 	, �L,
and Av for the line vortices, we can therefore modify the
dissipation of the flow by modifying the pinning parameters,
e.g., the pinning strength of �p. We therefore computed the
fractal dimension of the chaotic attractor for �p /Av�0.05,
i.e., for a pinning strength that is 20 times less. In this case,
the pinning is low since, while increasing the driving force
for Nv=30 vortices, we observe a clear transition between
chaos �plasticity� and the coupled channel regime that might
be called the moving Bragg glass. Our computations show
that in the chaotic phase, the same result 1
�
1.5 appears.
Furthermore, for the same low dissipative flow where
�p /Av�0.05, and for a much larger system size Nv=1080
vortices, the same result 1
�
1.5 holds. These computa-
tions therefore clearly show that the low fractal dimension of
the chaotic attractor that we measure remains unchanged for
larger system sizes 30
Nv
1080 and/or for lower flow dis-
sipation.

A natural extension of our present study is to analyze the
chaotic dynamics of driven vortices in three dimensions. Pre-
vious three-dimensional �3D� studies33 obtained different dy-
namical regimes depending on the coupling strength between
the planes and the driving force. In particular, it would be
very interesting to compute the fractal dimension of the cha-
otic attractor in the 3D plastic and 3D smectic phases.

VI. CONCLUSIONS

In this paper, we investigated the properties of plastic
flows of superconductor vortices driven over a random me-
dium. We interpreted the plastic dynamics in terms of dissi-
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FIG. 6. �Color online� Local slope �loc with respect to log10���
for FL=0.008 in the case of Nv=270 vortices and a pinning strength
of �p /Av�1.05. A constant value of �loc appears, showing the va-
lidity of the power law C������. The value ��1.12 for the corre-
lation dimension is measured for FL=0.008 in the power law re-
gime. Below and above this regime are two regimes that clearly
deviate from the power law �see the text for details�.
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pative chaos. The link with the differential resistance peak is
established. Chaos begins at the beginning of the peak and
ends after the fingerprint phenomena that occur above the
peak. We first identified the transition to chaos �route to
chaos� in detail. The scenario we have measured in our nu-
merical simulation is the intermittency. Type I and type II
intermittencies occur depending on the pinning strength. We
then studied the chaotic dynamics that occurs in the force
range of the differential resistance peak in detail. Positive
Lyapunov exponents, which are a nonambiguous signature of
chaos, are measured,. A low frequency broad-band noise has
also been evidenced in the chaotic region. Both Lyapunov
exponents and low frequency broad-band noise closely fol-
low the evolution of the differential resistance curve, in par-

ticular, the existence of a peak. Finally, we measured the
fractal dimension of the chaotic attractor. We showed that the
discrete time system in our simulation is confined to a sub-
space with a dimension that is less than 2. We therefore
conclude that the continuous time system of differential
equations �Eq. �1�� is confined to a subspace with a dimen-
sion that is less than 2+1=3. It suggests that the plastic
dynamics of vortices may be described by a model with only
three dynamical variables. We showed that this important
result still holds for systems as large as 2160 degrees of
freedom and also for systems with low dissipation. Our re-
sults give a different understanding of the plastic flow phase
and open additional perspectives for further theoretical stud-
ies of plasticity.
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