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Using a fully three-dimensional numerical treatment of the Ginzburg–Landau �GL� theory, we study super-
conducting and magnetic properties of submicron superconducting spheres. Systematic analysis is performed
for different radii of the sphere and different constituent materials, i.e., with different GL parameter �. The
distribution of the magnetic field in and around the sample is calculated, and its repercussions on magnetom-
etry measurements are discussed. Furthermore, we demonstrate a unique feature in the magnetization curves
that can distinguish multi- from giant-vortex states.
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I. INTRODUCTION

Recent advances in nanofabrication techniques will en-
able fast preparation and experimental studies of truly three-
dimensional �3D� mesoscopic superconductors.1–3 It is al-
ready known that quantum confinement in thin mesoscopic
superconductors, imposed by the sample geometry, has im-
portant consequences on both vortex matter and critical
properties of the sample. In such essentially two-dimensional
�2D� superconductors with sizes comparable to the penetra-
tion depth � and coherence length �, numerous works have
been done over the past decades, theoretically by Schweigert
and Peeters,4,5 Palacios6,7 solving nonlinear Ginzburg–
Landau equations, and Buzdin and Brision8 using the image
method within the London approximation and also experi-
mentally by Moshchalkov and co-workers,9,10 Geim et
al.,11,12 and Kanda and co-workers.13,14 The effect of the ge-
ometry of the sample on superconductivity has also been
thoroughly investigated.15–21 However, sample geometry was
a two-dimensional quantity in the latter studies, as the super-
conducting order parameter was always uniform along the z
axis. This is obviously not the case in three-dimensional
samples �e.g., sphere�, where the slanted angle of the sample
sides with respect to the applied magnetic field plays a sig-
nificant role. Therefore, those earlier theories based on the
2D London approximation become incapable, and until now,
no corresponding theory approximation is proposed for 3D
cases. So the Ginzburg–Landau study of the interplay of the
applied magnetic field and 3D distribution of the Cooper-pair
density is the first important objective of this paper.

In previously studied thin mesoscopic samples,5 two fun-
damental kinds of vortex states were theoretically predicted:
�i� the multivortex state with a spatial arrangement of single
vortices �each carrying one flux quantum� and �ii� axially
symmetric giant-vortex state, where several vortices coalesce
into a single core, containing multiple flux quanta. The exis-
tence of those vortex states in superconducting disks was
recently verified in an experiment using the multiple-small-
tunnel-junction method.13 However, the definition of giant-
and multivortex states becomes more complicated if the
problem is extended to the third dimension, especially in
more complicated sample geometries, where vortices are ex-
posed to a complicated 3D interaction with the sample

boundary. In previous work,22 a breakup of the vortex struc-
ture in a 3D mesoscopic wire with a constriction was pre-
dicted. A giant vortex nucleated in the widest part of the wire
and split into a smaller and/or individual vortices near the
constriction. Here, we study the vortex states in spherical
mesoscopic samples �with different radii�, and elsewhere for
different material properties �i.e., Ginzburg–Landau param-
eter ��, which fine tune the vortex-vortex interaction.23

The understanding of the effects of the true three dimen-
sionality of the studied system is not only important for the-
oretical purposes but also for experiment as well. In transport
measurements, it now becomes crucial where to attach cur-
rent and/or voltage leads to the sample. Similarly, in magne-
tometry, the exact position of the placed Hall probe above
the sample is much more important than for thin 2D samples.
In this work, we partly address the latter issue and calculate
the stray field around the sample �thus in 3D�, the magnetic
moment of the sample as a whole, as well as the response of
the Hall bar as a function of its position and size.

Our present work is not only a continuation but also a
considerable extension of the existing studies of spherical
superconductors. In Ref. 24, vortex matter in a superconduct-
ing sphere was studied using an approach based on the linear
Ginzburg–Landau �GL� theory. However, this approach is
limited to extreme type-II superconductors, and the local
magnetic response of the sample was completely neglected.
Vortex patterns in superconducting shells were studied in
Ref. 25, where no demagnetization effects were taken into
account. Reference 26 dealt with the effects of the chosen
boundary condition on the vortex patterns in mesoscopic
thick disks and spheres, but still remaining in the �→�
limit. Within the same limit, finite size mesoscopic cylinders
and asymmetric spheres were studied in a tilted magnetic
field.27 In the present work, we study superconducting
spheres with magnetic screening fully accounted for �for dif-
ferent �� within the Ginzburg–Landau formalism solved on a
3D grid. Therefore, both the superconducting order param-
eter and the local magnetic field are calculated self-
consistently in 3D space.

The paper is organized as follows. In Sec. II, we introduce
the theoretical model. In Sec. III, we present the phase dia-
gram for all vortex states as a function of the sample size and
applied magnetic field. The importance of the chosen super-
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conducting material �with different Ginzburg–Landau param-
eter �� for the vortex behavior is studied in Sec. IV. The
simulations of the magnetic response of the sample are
shown in Sec. V, where the assumed finite size of the Hall
bar in magnetometry measurements is taken into account. In
Sec. VI, we summarize our findings.

II. THEORETICAL FORMALISM

In what follows, we consider superconducting spheres
characterized by their radius R, and GL parameter �=� /�,
where � and � are coherence length and penetration depth,
respectively. We assume all considered samples to be im-
mersed in an insulating medium and exposed to a uniform

magnetic field H� = �0,0 ,H�. To numerically treat this system,
we follow the numerical approach of Schweigert and
Peeters.4 First, using dimensionless variables and the London

gauge div A� =0 for the vector potential A� , we rewrite the
system of two coupled GL equations in the following form:

�− i�� 3D − A� �2� = ��1 − ���2� , �1�

− �2�3DA� = j�3D, �2�

where

j�3D =
1

2i
��*�� 3D� − ��� 3D

* �� − ���2A� �3�

is the density of the superconducting current induced by the
sample in response to the applied field. Here, the distance is
measured in units of the coherence length �, the vector po-
tential in c� /2e�2=��2Hc, and order parameter is scaled to
its value in the absence of the magnetic field. Equations �1�
and �2� are then discretized on a uniform cubic grid using the
link variable approach,28 in Cartesian coordinates with typi-
cally five grid points per �, and solved in a finite-difference
scheme. Equation �2� is solved using three-dimensional fast
Fourier transform in a method similar to the known proce-
dures for solving the Poisson equation �see, e.g., Ref. 29�.

In our calculations, the superconducting order parameter
satisfies the Neumann boundary condition,

��− i�� 3D − A� �����=R� = 0, �4�

while the external applied vector potential has the symmetric
form,

A� x = − 1
2Hye�x, A� y = 1

2Hxe�y, A� z = 0. �5�

Additional constriction is that the resulting �total� vector po-

tential must decay to zero �A� =0� far away from the super-
conductor.

To find the different vortex configurations, which include
all stable states �thus the lowest energy ground state and the
higher energy metastable states�, we search for the self-
consistent solutions of Eqs. �1� and �2�. If we simulate a
field-cooled experimental situation, we initiate the calcula-
tion from randomly generated initial conditions �for a zero-
field-cooled situation, we start from ��1 in the whole

sample�. Then, we slowly change the applied magnetic field
and recalculate each time the superconducting state. In such
a way, we are able to trace back and forth all found vortex
states in the whole region of their stability. For each vortex
configuration, found at different applied fields, we calculate
the Gibbs free energy �in units of F0=Hc

2 /4	� as

F = V−1�
V

�2�A� − A� 0� · j�3D − ���4�dr� , �6�

where integration is performed over the sample volume V

and A� 0 is the vector potential of the initially applied magnetic
field.

To characterize the diamagnetic property of our supercon-
ducting sample, we calculate its magnetization in applied
field. Differently from the thermodynamic expression M
=�F /�H, we define sample magnetization as the expelled
magnetic field from the sample, i.e., as

M� =
	h�
 − H�

4	
, �7�

where H� is the applied magnetic field and h� =rot A� is the
resulting �total� magnetic field. Here, 	 
 denotes averaging
over the particular area �which could be the sample as a
whole, or just a surface area of a magnetic detector, e.g., Hall
probe, at a particular location above the sample�.

III. VORTEX STATES IN A MESOSCOPIC
SUPERCONDUCTING SPHERE

In this section, we will discuss fundamental properties of
the vortex configurations in spherical superconductors.
Knowing that the density of the superconducting Cooper pair
drops to zero inside the vortex core, we show the 3D isoplots
of the low Cooper-pair density inside the sample to best il-
lustrate the vortex configuration. Such plots are shown in
Fig. 1, each with a corresponding plot of the phase of the
order parameter �in the equatorial plane�, for states with vor-
ticities ��a� and �d�� L=2, ��b� and �e�� L=3, and ��c� and �f��
L=4. According to the definition of vorticity in Ref. 4, the
total number of vortex lines trapped in the sample, which can
be deduced from the number of 0→2	 phase, changes along

FIG. 1. �Color online� Three-dimensional 10% isoplots of the
Cooper-pair density in the sphere with radius R=4� for vorticities
�a� L=2 at applied magnetic field H=0.61Hc2, �b� L=3 at H
=0.79Hc2, and �c� L=4 at H=1.14Hc2. �d�–�f� show the correspond-
ing phase contourplots in the equatorial plane of the sample.
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the sample rim in Figs. 1�d�–1�f�. Contrary to the straight
vortex lines in the case of superconducting cylinder and/or
disk, in our sample, vortices are compressed together in the
equatorial plane of the sample, due to the strong screening
�Meissner� currents running along the perimeter; at the same
time, vortices remain perpendicular to the surface of the
sample edge at the point of entry and/or exit, which results in
their strong bowing along the sample �see Fig. 1�.

Even though compressed in the center of the sample, in-
dividual vortices are still clearly separated in both ���2
isoplots and phase contourplots in Fig. 1. We refer to such
vortex state as a multivortex �MV� state in the remainder of
the paper. However, this nomination may become ambiguous
for overlapping vortex lines, which can be expected at higher
fields, and a clear numerical threshold must be established to
differentiate the MV state from a giant-vortex �GV� state. In
Fig. 2, we illustrate the used criterion in our calculation,
where the Cooper-pair density is plotted across the center of
the sample. When a maximal value between found minima of
the Cooper-pair density exceeds 10−5, we regard the found
state as a collection of singularities, i.e., a multivortex state.
Otherwise, the numerical precision may be questioned, and
we assume a single singularity, characteristic of a giant vor-
tex.

The main principle of quantum confinement of vortices in
mesoscopic superconductors follows from the sample size
being comparable to the size of the vortex core. Therefore,
we briefly address the influence of our sphere’s size on the
vortex configurations. In Fig. 3, the free energy curves are
given as a function of the applied magnetic field for a super-
conducting sphere with radii �a� R=3� and �b� R=4�. Differ-
ent energy curves with increasing field correspond to states
with gradually incremented vorticity, starting from the
vortex-free, Meissner phase �L=0�. As can be seen in Fig. 3,
more vortices can be captured in the larger sample before
superconductivity is destroyed. Maximal vorticity is Lmax
=9 for R=4�, compared to Lmax=4 for R=3�. The screening
of the magnetic field is much more effective in the smaller
samples, where the penetration field for vortices is signifi-
cantly larger �in Fig. 3�a�, Hp=0.902Hc2, compared to Hp
=0.45Hc2 in Fig. 3�b��. Namely, a larger superconducting
sphere proportionally expels more magnetic flux in the

Meissner phase, which results in a higher field at the equa-
torial boundary of the sample for a larger sample than for the
smaller ones at the same applied field. Such high magnetic
field around larger samples suppresses superconductivity at
the sample edge and creates weak points that facilitate the
entry of vortices.

Another influence of the confinement can be observed for
larger vorticity. In Fig. 3�a�, penetrating flux lines are
strongly influenced by the proximity of the boundary and are
forced to coalesce into a giant vortex for all vorticities. For
larger samples �e.g., the one in Fig. 3�b��, latter condition is
relaxed, and singly-quantized vortices may remain stable in
the sample. The solid lines in Fig. 3�b� represent the giant-
vortex state, while the dashed lines show the multivortex
state. In general, one notes that multivortex states are ini-
tially formed, as vortices individually enter from the sample
boundary. With increasing field, the screening currents
strengthen at the equator, compressing the vortices together,
which eventually results in the formation of a giant vortex. In
short, MV/GV state transition is a product of the competing
interactions in the system, as individual vortices repulsively
interact with currents at sample edges �inward force�, as well
as with each other �outward force�. As a comparison, the free
energy curves for different vortex states are plotted for a
cylinder in Fig. 4, with the same radius of 4� and height of
5.5� �giving the same volume as the considered sphere�. The
confinement from the curved boundary of the sphere is re-
placed by the relatively “looser” and homogenous ones from
the cylinder. Thus, more vortices can be formed inside the
sample, and multivortex states are preferred to the giant-
vortex states for the same vorticity.

To systematically study the behavior of vortices for dif-
ferent sizes of the superconducting sphere, we varied the

FIG. 2. �Color online� Illustration of the giant-vortex and the
multivortex states for L=2, at applied magnetic fields H=0.81Hc2

and 0.76Hc2, respectively, close to the numerical ambiguity. The
Cooper-pair density is plotted along the sample diameter, where
found minima are taken as singularities of the order parameter.

FIG. 3. �Color online� The free energy curves as a function of
the applied magnetic field for spheres with radii �a� R=3� and �b�
R=4�. Giant-vortex states are indicated by solid curves, while mul-
tivortex states are denoted by dashed curves.
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radius of the sample from 1.0� to 4.6� and recorded the
ranges of applied magnetic field in which each of the vortex
states represented the ground state of the system. Results are
summarized in the phase diagram of Fig. 5 for the Ginzburg–
Landau parameter �=10. Three main parts can be identified
in Fig. 5—the Meissner phase �left bottom�, normal state
�i.e., destroyed superconductivity, top right�, and the mixed
�vortex� state �between the other two�. The upper critical
field of the sample is found to be 1.78Hc2 for R=4.5�, which
is �80% larger than the critical field of bulk samples, and
increases further as the sphere is made smaller �dramatic
increase is found for R
2� �see Fig. 5��.

The vortex state region in the equilibrium vortex phase
diagram is very rich, as the maximal vorticity in the sample
rises to Lmax=13 for R=4.6�. As explained earlier, larger
samples favor the formation of multivortex states, as is in-
deed shown by the shaded area in Fig. 5. Moreover, one
should note that for fixed vorticity and increasing size of the
sample, we find a lower nucleation field for the MV state, but
a higher transition field to a GV state �dashed lines�. Found
transition lines between different L states seem to be mostly
equidistant in the phase diagram, as they should be due to the
flux quantization effects. In addition, the aforementioned

curves have paraboliclike behavior, suggesting their R2 de-
pendence remnant of the flux quantization through the equa-
torial plane of the sample. However, it is apparent that the
L=1 state shows a pronounced stability in comparison with
other states. To illustrate this better, we constructed Fig. 6, in
which the ground-state field-stability region �H is given for
each state as a function of the sphere radius.

The found nonmonotonic behavior of �H follows from
initial hampering of the stability region by destruction of
superconductivity. Only after the vortex state is succeeded as
one of the higher vorticities can �H reach its full extent,
which results in the corresponding maximum in all curves
shown in Fig. 6. However, it is most interesting to observe
the location of these maxima with respect to the dashed line
in Fig. 6, which gives �H and R needed for the addition of
exactly one flux quantum to the system. While the maxima
�and the follow-up points� of higher vorticity curves nicely
sit on or just above the curve �0=	c� /2e, the curve for the
L=1 state significantly deviates from the expected values.
The fact that larger flux is needed for the penetration of the
first vortex in the mesoscopic sample is already a known
fact30 �in here considered samples �0→1= �2.5–3.0��0�, but
pronounced stability of the L=1 state with respect to applied
flux ���=2.36�0� is a unique property of spherical super-
conductors, caused by both symmetry and the three dimen-
sionality of the sample. In the single-vortex state, the vortex
line connects the poles of the sphere, ideally placed in the
center of the sample. In such a symmetric configuration, vor-
tex currents ideally compensate the increasing screening cur-
rents, which prolongs further flux entry. In addition, the new
vortex line breaks the existing radial symmetry, and also
causes either shortening or bowing of the first vortex, due to
its new off-center position. All of these processes cost energy
and increase the energy barrier for flux penetration. For simi-
lar reasons, further flux entry �e.g., L=2 to L=3 transition� is
more energetically favorable as �i� distinct weak points are
created for vortex entry �e.g., n weak points between L=n
existing vortices on a ring� and �ii� existing vortices rear-
range in a new configuration while keeping similar self-
geometry.

FIG. 4. �Color online� The free energy curves as a function of
the applied magnetic field for a cylinder with radius R=4� and
height d=5.5�. Giant-vortex states are indicated by solid curves,
while multivortex states are denoted by dashed curves.

FIG. 5. �Color online� The phase diagram for the ground-state
vortex configurations as a function of the applied magnetic field H
and the radius of the superconducting sphere �for �=10�. Different
vortex states are separated by solid curves, while the giant- to mul-
tivortex transitions are denoted by dashed curves. Shaded areas cor-
respond to the multivortex regions.

FIG. 6. �Color online� The ground-state magnetic field range
�H for different vortex states as a function of the sample size.
Hyperbolic dashed curve gives the parameters for which exactly
��=�0 is applied through the equatorial plane of the sample.
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IV. VORTEX BEHAVIOR IN SPHERES OF DIFFERENT
MATERIALS

In previous section, we considered a rather extreme
type-II superconducting sphere, with GL parameter ��10
�for more information, see also Refs. 24 and 26�. However,
very few low-Tc superconducting materials are known to be
of such type, except, e.g., NbSe2, which is also anisotropic
�in high-Tc materials, � is also large, but coupling between
layered structure of the cuprate planes must be taken into
account31�. From a theoretical point of view, the issue of
lower � is rather important, as it means that screening cur-
rents can no longer be marginalized in the data analysis, and
calculation also becomes much more numerically demanding
�i.e., the influence of Eq. �2� in our formalism rises�. When
considering vortex matter, � is one of the crucial sample
properties as it governs the behavior of the vortex-vortex
interaction. Therefore, contrary to thin samples which in
most cases exhibit extreme type-II behavior �where effective
GL parameter is defined as �*=�2 /d, d being the thickness�,
properties of 3D superconducting samples directly depend on
the characteristic lengths of the constituent material. For
comparison, in this section, we consider samples with �

10, with some emphasis on the ��1 case, thus, e.g., nio-
bium spheres.

To begin with, we compare two samples with radius R
=3� and � equal to 10 and 1, respectively. In Fig. 7, the free
energy curves for those samples are plotted versus the ap-
plied magnetic field. One can see that transitions between
successive vortex states move to higher fields when � is
decreased, and the superconducting and/or normal state tran-
sition occurs at somewhat higher applied field. We carefully
studied these features by taking finer steps when changing �
between values of 0.71 and 10. Results are summarized in
Fig. 8, where we show the field ranges of different vortex
states as the ground state of the system. L→L+1 transition
fields obviously increase as � is made smaller, particularly
for �
1.

In experimental conditions, the applied magnetic field is
usually gradually ramped up during the measurement �the
so-called sweepup of the magnetic field�. Therefore, the

fields at which each vortex penetrates the sample in experi-
ment are different from the ones shown in Fig. 8. Instead,
they correspond to the very last points of the stability of each
vortex state in the free energy diagram �due to slow field
variation and finite Bean–Livingston barrier, transition to the
state with lower energy is only possible when the vortex state
is no longer stable�. Penetration field Hp obtained in such a
way is plotted as a function of � in Fig. 9. We find similar
behavior as in Fig. 8, as Hp increases with decreasing �. As
a main difference, we observed that fourth vortex cannot
penetrate the sample for �
0.83 when field is swept up,
even when the L=4 state has lower energy than the state with
lower vorticity; instead, we directly find the transition of L
=3 to the normal state. Still, the L=4 state can be recovered
in the reversed regime, when magnetic field is swept down,
when the maximal number of flux quanta is trapped in the
sample after superconductivity nucleates at the equatorial
surface of the sample �i.e., the analog of surface supercon-
ductivity�. Increased Hp for all vortex states for lower � fol-
lows from the characteristic lengths in the sample. By de-
creasing �, we actually decrease the magnetic penetration
length � as the coherence length � is kept constant in the
simulation. Lower � not only decreases the field penetration
in the surface area but also increases the surface energy of
the normal domains in the superconductor, i.e., vortices,
making their nucleation less energetically favorable.

In order to compare the effect of � on the equilibrium
phase diagram, we constructed the H-R phase diagram for
�=1, as shown in Fig. 10. The first difference to note is that

FIG. 7. �Color online� The free energy as a function of the
applied magnetic field for samples with R=3� and �=10.0 �dashed
lines� and 1.0 �solid lines�. The inset zooms in the high-field region
of the diagram.

FIG. 8. �Color online� The ground states with different vortici-
ties, in the H-� parameter space, for a sphere with radius R=3.0�.

FIG. 9. �Color online� The magnetic fields of successive vortex
penetration in the sample of radius R=3.0� as a function of � �for
applied magnetic field gradually swept up�.
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the maximal number of vortices that can be accommodated
by the sample of radius R increases with increasing �. For
example, in a sphere of radius R=4.5�, Lmax=11 for �=1,
while Lmax=12 for �=10. The second important conclusion
is that lower � values disfavor multivortex states. In the
whole investigated H-R region for �=1, only giant-vortex
states were found, compared to the rather large multivortex
area present in Fig. 5. For clarity, in Fig. 11, we show a
direct comparison between two L=3 states found in the
sphere with R=4.0�, but with � equal to 10.0 and 1.0, re-
spectively, both for applied field H=0.90Hc2. In Fig. 11�a�,
the phase of the superconducting order parameter changes
from 0 to 2	 in clockwise direction around each of the three
identifiable vortex singularities �multivortex�, whereas in
Fig. 11�b�, a triple 0→2	 phase change is found around a
single singularity �representing a giant vortex�.

V. MAGNETOMETRY RELATED FEATURES

One of the main properties of the superconductor is its
diamagnetism, i.e., the ability to expel magnetic field when
cooled below the critical temperature. The degree of field
expulsion depends on the sample properties, as well as on the
actual superconducting state of the sample. As a measure of
the sample’s diamagnetism, one can define the resulting
magnetic moment or magnetization of the sample. In thermo-
dynamics, magnetization of a sample in magnetic field is
defined as the derivative of the Gibbs free energy over the

applied field.32 In experiments, on the other hand, magneti-
zation of the sample is measured by magnetometery, and it is
taken proportional to the measured voltage on a Hall sensor
of particular size. In other words, the measured magnetiza-
tion equals the amount of flux expelled from the supercon-
ductor through a Hall sensor placed at a particular height
above the sample. For that reason, in this section, we study
the response of such a sensor depending on its size and po-
sition, in applied magnetic field H, using Eq. �7�. For conti-
nuity with previous sections, we consider a superconducting
sphere with radius R=4�, but take for coherence length �
=100 nm, and �=1 �corresponding to Nb sample, at T
=0.8Tc�. We assume square active area of the Hall cross �see
Fig. 12� and consider three different sizes of 160
160,
320
320, and 480
480 nm2 and the measurement heights
of 40, 80, 120, and 160 nm above the sample. In what fol-
lows, we simulate the magnetometry experiments during the
sweep up or down of the applied magnetic field.

The magnetization curve following from the thermody-
namic definition is plotted in Fig. 13�a�, in comparison with
the one obtained using Eq. �7�. Strong hysteretic behavior is
observed due to finite energy barriers for flux entry and/or
exit. One can find that the magnetization in Fig. 13�a� is
much smaller than that in Figs. 13�b� and 13�c�. This is be-
cause of the averaging effects of positive and negative local
magnetization inside the whole 3D sample.

In Fig. 13�b�, we compare the measured signals of the
Hall sensors of different sizes. The curves obtained for larger
sensors, i.e., 320
320 and 480
480 nm2 �dashed and dash-
dotted lines in Fig. 13�b�� behave the same as the magneti-
zation calculated for the sample as a whole in Fig. 13�a�
�since the active area of the sensor is almost as large as the
cross section of the sample�. However, the magnetization
curves qualitatively change for the Hall sensor of size 160

160 nm2 �solid line in Fig. 13�b��. Namely, on the paths
AE and CD, the magnetization decreases as the applied mag-
netic field is increased, contrary to the corresponding parts
of the other curves in Fig. 13�b�. To clearly understand this
feature, we investigate the distribution of the superconduct-
ing condensate and the magnetic field for particular applied
fields, i.e., points A–E in Fig. 13�b�. Figure 14 shows the
magnetic field distribution around the sample ��c� and �d��
�side view and ��e� and �f�� top view� for points A and B,
which reside on the L=2 curve �see the phase contourplots in
Figs. 14�a� and 14�b��. The magnetization curve CD corre-
sponds to the L=4 vortex state, with properties shown in Fig.
15.

FIG. 10. �Color online� The phase diagram for ground-state vor-
tex configurations as a function of the applied magnetic field H and
the radius of the superconducting sphere �for �=1.0�. Areas of sta-
bility of different vortex states in the ground state are separated by
solid curves.

FIG. 11. �Color online� The phase of the order parameter in the
equatorial plane �dark/white color—0 /2	 phase� superimposed on
the 10% 3D isoplot of the order parameter in the sample for a
sphere with radius R=4� at applied field H=0.90Hc2, for �a� �
=10, and for �b� �=1.

FIG. 12. �Color online� Schematic view of a Hall cross �size of
active area a
a� at distance l above a mesoscopic superconducting
sphere with radius R.
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From the phase plots, it is already clear that points B and
D in Fig. 13�b� correspond to the response from the giant-
vortex states, whereas A and C denote the multivortex states.
The distributions of the stray magnetic field that the sample
generates in response to the applied field at points A and B
are plotted in Figs. 14�c�–14�f�. Here, dark �light� color in-
dicates positive �negative� peak of the magnetic field.

In the case of the giant vortex �see Figs. 14�d�, 14�f�,
15�d�, and 15�f��, the magnetic field is strongest in the vortex
core. With increasing field, the screening currents flowing
along the sample edges increase and compress the vortex in
the center. Therefore, with increasing field, the Hall sensor
sitting right above the vortex detects more of the screening
field of the Meissner currents, and the measured magnetiza-

tion increases. On the other hand, in the case of the multi-
vortex �see Figs. 14�c�, 14�e�, 15�c�, and 15�e��, the stray
magnetic field has a local minimum in the center of the
sample, between the vortices. In a ring distribution of the
vortices �each with a vortex current circulating around it�, the
current in the central region effectively has the antivortex
direction, thus the same as the screening current at the edge.
With increasing applied magnetic field, vortices are com-
pressed closer together, which now decreases the magnetiza-
tion signal coming from the central antivortexlike currents.
Therefore, if we look back at the AB curve in Fig. 13�b�, we
can conclude that along the AE path, we have a multivortex
state, whereas along the EB path, a giant-vortex state is
formed. For the same reason, the curve found for L=4 state
demonstrates a multivortex state on the shown CD path. To
conclude, the concave shape of the magnetization curves
measured by a comparatively small Hall sensor indicates the
multi- to giant-vortex transition at the inflexion point of the
curve.

That the shown distinction between the giant- and multi-
vortex states in the magnetization curves is not an accidental
property we illustrate further in Fig. 13�c�. There, we show
the magnetization curves measured by the 160
160 nm
Hall sensor placed at different heights above the sample. Of
course, closer proximity of the sensor to the sample is always

FIG. 13. �Color online� The magnetization curves as a function
of the applied magnetic field H. �a� The magnetization of the
sample as a whole, corresponding the theoretical definition from
thermodynamics. �b� Response of the Hall sensors of different size,
placed at 40 nm above the sample. �c� The response of a 160

160 nm2 probe, when placed at 40, 80, 120, and 160 nm above
the sample.

FIG. 14. �Color online� ��a� and �b��. The phase in the equatorial
plane and 3D isoplot of the order parameter in the sample for points
�a� A and �b� B in Fig. 13�b� �showing the MV and GV states for
L=2�. ��c�–�e�� Corresponding field distribution around the super-
conducting sphere for points ��c� and �e�� A and ��d� and �f�� B. Side
view of the sample is shown in �c� and �d�, and top view in �e� and
�f�. In all graphs, only the response field of the superconductor is

plotted �h�s=h� −H� �, changing from negative �light color� to a posi-
tive extreme �dark color�. Sample edge is indicated by the white
dashed line.
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desired, as the signal is more pronounced. However, Fig.
13�c� clearly shows that the features of the magnetization
curves are maintained even for larger separation between the
Hall bar and the superconducting sample. At higher measure-
ment heights, GV-MV distinction is still feasible as long as
the signal does not succumb below the noise level.

VI. CONCLUSIONS

In this work, superconducting and magnetic properties of
mesoscopic superconducting spheres are studied. Full three

dimensionality of the problem is taken into account, and the
two coupled nonlinear Ginzburg–Landau equations are
solved self-consistently on a 3D grid, with demagnetization
effects being fully considered. Found vortex states illuminate
the 3D aspect of the study; although they form structures
essentially similar to the ones found earlier in superconduct-
ing disks, vortices tend to bend in the equatorial plane of the
sphere while remaining perpendicular to the spherical sur-
face of the sample at the points of entry and exit. Vortex
configurations are studied in detail for different radii of the
sample and the equilibrium vortex phase diagram is shown
for a type-II sample. Both giant- and multivortex states are
found. However, multivortex states are found unstable with
respect to lower values of the Ginzburg–Landau parameter �.
In other words, the appearance of multivortex states is not
determined only by the sample size �i.e., confinement� but
also by the choice of the superconducting material. The latter
also influences the magnetic response of the sample, which
we studied considering the known experimental techniques.
In a hypothetic experiment, we calculated the response of a
Hall bar with square active area as a function of its size and
the measurement height above the sample. We found distinct
features of the magnetization curves measured by compara-
tively small Hall probes, which can be used to experimen-
tally distinguish the giant-vortex from the multivortex states.
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