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A variational calculation for vortex penetration is presented. Variational trial functions for the Meissner state
are combined with variational functions for a vortex near the surface. The latter is based on Clem’s trial
solutions for a vortex in bulk, which were adapted to include surface effects through consideration of an image
vortex. Three variational parameters are considered, corresponding to the effective coherence length of the
vortex, the effective penetration length for the Meissner currents, and the value of the order parameter at the
surface. The results show that the last two variational parameters are independent of vortex position. Explicit
calculations are presented for several � values. The energy barrier for vortex penetration is shown to be in good
agreement with full numerical calculations of the Ginzburg–Landau equations. We consider the variation of the
magnetic flux carried by a vortex as it gets inside the superconductor, and agreement with known experimental
and theoretical results is obtained. The model was extended to calculate the force between two vortices, and the
results show that the force goes to zero as the pair comes close to the surface. This result can be of interest for
the study of the melting of the vortex lattice and for vortices confined in mesoscopic superconductors. The
variational approach can be very helpful for intermediate � values when numerical calculations become
computationally demanding because it provides manageable expressions for all physically relevant quantities.
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I. INTRODUCTION

The behavior of a vortex near the surface of a supercon-
ductor has been the subject of several recent papers.1–6

Semianalytical results have been known since the
Bean–Livingston7 model was formulated and simple calcula-
tions were made from the London model by de Gennes.8

Among other properties, these calculations give the charac-
teristics of the surface barrier for vortex penetration. The
geometrical surface barrier in superconducting thin films has
been considered for high-Tc superconductors in Refs. 1 and
2. While the Bean–Livingston barrier is of energetic origin,
the geometrical barrier is strongly dependent on sample
shape. The surface barriers are also very important in meso-
scopic superconductors.3–6 Interesting results pertaining to
the ac magnetic properties of mesoscopic superconductors
have been obtained from numerical calculations based on the
finite-difference method in Refs. 5 and 9.

On the other hand, variational calculations are known to
provide manageable and accurate results in many different
physical problems. In other applications of the Ginzburg–
Landau �GL� equations, variational calculations are known
to give good agreement with exact results. In some cases,
variational calculations have preceded exact or numerical
calculations. Such is the case for surface superconduc-
tivity,8,10 the mixed state in type II superconductors,11 and,
more recently, superconducting micronetworks.12

In this paper, we present a variational approach to the
solution of the GL equations for a vortex near the surface of
a superconductor, starting from Clem’s variational ansatz13

for a vortex in bulk. In this form, we are able to compare the
variational results to the full numerical calculations. Vortices
appear in the presence of an externally applied field, which
also induces Meissner currents. For this reason, it is neces-
sary to variationally model both aspects of the behavior of a
superconductor. The Clem ansatz has also been used recently

in the context of mesoscopic superconductors in Ref. 14.
The paper is organized as follows: In Sec. II A, we

present a variational description of the Meissner state, and
the variational solution is compared to the full numerical
results of the GL equations in Sec. II B. In Sec. III, Clem’s
ansatz for a single vortex in a bulk material is adapted to
describe a vortex near the surface of a superconductor and is
combined with the description of the Meissner state. In Secs.
III A and III B, we present the results of the variational cal-
culations including these three parameters: the penetration
length for the Meissner currents, the order parameter at the
sample surface, and the coherence length for the vortex size.
It turns out that the first two parameters are independent of
the vortex position. The results of the variational calculation
are compared to the full numerical results, particularly for
the energy barrier for �=2 and �=3. Quite reasonable agree-
ment between both methods is obtained for both � values. In
Sec. IV, the model is extended to calculate the force between
two vortices as a function of their distance to the surface. We
show that the interaction force goes to zero as the pair ap-
proaches the sample surface. Finally, in Sec. V, we give our
conclusions.

II. DESCRIPTION OF THE MEISSNER STATE

In this section, we propose a variational model to describe
the Meissner state of a semi-infinite sample. In Sec. II A, we
obtain an approximate solution of the GL equations valid at
low magnetic fields when depletion of the order parameter at
the sample surface is small. By using this approximate solu-
tion, we propose a variational model to describe the Meiss-
ner state at higher values of the field. In Sec. II B, the varia-
tional solution is compared to the full numerical results of
the GL equations.

A. Variational model for the Meissner state

By writing the order parameter as �= fei�, we obtain the
following expression in normalized units for the difference
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between the free energies of the normal and superconducting
states �Gs−Gn�:

Gs − Gn =� �− f2 +
1

2
f4 +

1

�2 ���f�2 + ��� − �A�2f2�

+ �B − Ha�2�d3r . �1�

Lengths r are scaled in units of the zero temperature pen-
etration length ��0�, the externally applied magnetic field Ha
and B also in units of �2Hc�0�, the vector potential A in units
of �2��0�Hc�0�, the order parameter � in units of ��, the
current J in units of ��

2 e� /m�, and velocities in units of
� /2m��0�.

The GL equations become

1

�2�2f = f	 f2 +
1

�2 ��� − �A�2 − 1
 , �2�

� 	 � 	 A = f2	��

�
− A
 . �3�

We assume a semi-infinite medium subjected to a mag-
netic field parallel to the superconductor-vacuum interface.
We choose the x̂ axis perpendicular to this interface and take
the ẑ direction parallel to the applied field B=Bz�x�ẑ.

Equations �2� and �3� must be complemented with the
appropriate boundary conditions at the sample surface,
which when separated into its real and imaginary parts, im-
ply ���f���s=0 and ��u���s=0, where the first relation indi-
cates that the slope of the order parameter perpendicular to
the surface must be zero at the surface, whereas the second
implies that the velocity of the superconducting electrons
�u= ���−�A�� has no component perpendicular to the sur-
face. For a semi-infinite sample with no demagnetizing ef-
fects, the condition �B�s=Ha, where Ha is the externally ap-
plied field, also applies at the surface.

In this configuration, the order parameter depends only on
x, f = f�x�. Moreover, �	B has only a nonvanishing compo-
nent, ��	B�y =�zBx−�xBz=−�xBz�x�ŷ. From Eq. �3�, we
then have A=Ay�x�ŷ.

In the London gauge, the order parameter is real and we
can eliminate the phase � in the GL equations. In this geom-
etry and specific gauge, Eqs. �2� and �3� become

1

�2

d2f

dx2 = f�f2 − 1� + �Ay�2f , �4�

d2Ay

dx2 = f2Ay , �5�

with the following boundary conditions: ��df /dx��x=0=0 and
�B�x=0= ��dAy /dx��x=0=Ha.

An approximate solution of these equations at low fields
can be found by assuming f�x�= f�−
�x�, with �
�x��� f�. In
the present normalization, f�=1; thus, we can write the so-
lution to Eq. �5� when 
�x�→0 as

Ay � − Hae−x. �6�

In the following, we assume that at low fields for f�x�
�1, the vector potential can be conveniently approximated
by a variational expression of the following form:

Ay = − �MHae−x/�M , �7�

where �M is a variational parameter. As will be the case for
the other two variational parameters to be introduced later,
�M is a field and temperature dependent parameter.

By using Eq. �7� and f�x�=1−
�x�, in a first approxima-
tion, Eq. �4� becomes

1

�2

d2


dx2 = 2
 − Ha
2�Me−2x/�M . �8�

By solving Eq. �8� with the boundary conditions
�d
 /dx�x=0=0 and �
�x→�=0, we obtain the following ex-
pression for the depletion of the order parameter:


�x� =

0

���M − �2�
���Me−2x/�M − �2e−�2�x� , �9�

where 
0 is the value of 
�x� at the sample surface,


�0� = 
0 =
Ha

2��M

2���M + �2�
. �10�

This relation is complemented by the expression for the mag-
netic field Bz�x�,

Bz�x� = Hae−x/�M , �11�

which follows at once from Eq. �6�. Both 
�x� and Bz�x�
depend on the variational parameter �M, which can be ob-
tained by minimizing the Gibbs free energy �Eq. �1��.

In Eq. �9�, 
0 is related to �M through Eq. �10�. The ap-
proximation is more accurate the lower the magnetic field is,
i.e., when 
0�1. In the above equations, we have only one
variational parameter, which is �M. An alternative possibility
is to consider 
0 as a second variational parameter to obtain
a more accurate description of the Meissner state up to mag-
netic fields close to the vortex penetration field Hp. We have
followed this second procedure in this paper.

To determine the variational parameters, we must find the
extremum of G

LzLy
given by Eq. �1�, which can be written as

G
LzLy

= �
0

�

dx	− f2 +
1

2
f4 +

1

�2 ���f�2 + u2f2�

+ �

0

�

dx�B�x� − Ha
2� , �12�

where u is the velocity of the superconducting electrons, u
= ���−�A�. In the London gauge, u is proportional to A,
u=−�A; therefore, we have

ux = 0,

uy = − ��MHae−x/�M . �13�

The free energy �Eq. �12�� can be evaluated by using Eqs.
�9�, �11�, and �13� for f�x�=1−
�x�, B�x�, and u, respec-
tively. The minimization of the free energy allows us to ob-
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tain �M and 
0, which completes the variational description
of the Meissner state.

B. Full numerical time dependent Ginzburg–Landau solution

We compare the variational solutions to the results ob-
tained from full numerical solutions of the time dependent
GL equations,15–17

��

�t
=

1

�2 ��− i�A�2� + �1 − ���2�� , �14�

�A

�t
=

1

��
	 Im�����− i�A���

�
− � 	 � 	 A
 . �15�

Time is in the unit of a characteristic normalization time �
=�2 /D, where D is the electronic diffusion constant. �� is the
normalized conductivity, ��= �4��2 /c2���. The other quan-
tities were normalized as in the previous section.

To solve Eqs. �14� and �15�, we have used the standard
finite-difference discretization scheme.15 The order param-
eter and vector potential are defined at the nodes of a rect-
angular mesh �r= �I ,J��. In our simulations, we have as-
sumed a sample that is semi-infinite in the x direction and
infinite in the y , z directions, and we have assumed that the
magnetic field is applied along z. The problem is then re-
duced to two dimensions because we can neglect all deriva-
tives along z. The symmetry of the problem implies that for
all mesh points, AI,J= �AxI,J ,AyI,J ,0� and BI,J= �0,0 ,BzI,J�,
where BzI,J = ��	A�z= ��xAyI,J −�yAxI,J�. The link variables
U�I,J =exp�−ı�h�A�I,J���=x ,y� are introduced in order to
preserve gauge invariance in the discretization.

In this geometry, the discretized forms of Eqs. �14� and
�15� are

��

�t
=

UxI−1,J
�

�I−1,J − 2�I,J + UxI,J�I+1,J

��x�2

+
UyI,J−1

�
�I,J−1 − 2�I,J + UyI,J�I,J+1

��y�2

+ �1 − ��I,J�2��I,J, �16�

�AxI,J

�t
=

1

��
	 Im�UxI,J�I,J

� �I+1,J�

�x
−

BzI,J − BzI,J−1

y

 , �17�

�AyI,J

�t
=

1

��
	 Im�UyI,J�I,J

� �I,J+1�

�y
+

BzI,J − BzI−1,J

x

 , �18�

where x and y are the mesh widths. �� was chosen as
equal to unity, as in Ref. 15.

The dynamical equations must be complemented with the
appropriate boundary conditions for both the order parameter
and the vector potential. We have imposed periodic boundary
conditions in the ŷ direction, i.e.,

��x,y� = ��x,y + Ly� ,

Ax�x,y� = Ax�x,y + Ly� ,

Ay�x,y� = Ay�x,y + Ly� ,

and semiperiodic boundary conditions in the x̂ direction,
where one side of the superconductor is in contact with the
vacuum at x=0, implying

�„��− iA��…��x=0 = 0,

�B�x=0 = Ha.

At x=L, we impose the conditions that are obtained at
x=�,

����2�x=Lx
= 1,

�B�x=Lx
= 0.

By choosing a value much larger than �, Lx=24� for Lx, we
have obtained accurate results for a sample semi-infinite in x̂.

C. Comparison between the variational solution and the full
Ginzburg–Landau numerical results

Figure 1 shows a comparison between the variational and
full numerical results for the order parameter and for the
magnetic field in the Meissner state. Both quantities are cal-
culated along a direction perpendicular to the sample surface
and for �=2. The size of the numerical sample is described
by Lx=24� and Ly =16�. It is seen that the variational de-
scription is quite accurate, even when Ha is near Hp, the field
of first vortex penetration �see Figs. 1�c1� and 1�c2��. The
numerical simulations obtain Hp=1.13Hc; this value coin-
cides with the results of Ref. 18, which is also a one-
dimensional calculation. In a two-dimensional sample, this
result would be obtained for a perfect surface that induces a
uniform depletion of the order parameter along the surface
�see Ref. 19 for a complete discussion�. When a defect20 or
thermal fluctuations17 induce the nucleation of a vortex, the
value of Hp diminishes.

III. CLEM’S VARIATIONAL SOLUTION
NEAR A SURFACE

Originally developed for electrostatics and fluid dynam-
ics, the image method was envisaged to automatically satisfy
the boundary conditions in a given problem. It has found
applications in several fields of physics described by linear
equations, wherein the superposition principle is valid. In
such cases, the method provides the exact solution by adding
the fields produced by the real charge and by the image
charges.

Since the GL equations are nonlinear, care must be exer-
cised in applying the method. To perform a variational cal-
culation in the present case, we must physically construct
acceptable trial functions for the order parameter and cur-
rents.

Clem’s13 variational calculation allows us to determine
the order parameter, field, and current for a vortex in an
infinite superconductor. In order to use this solution for a
vortex close to the superconductor-vacuum interface, we
must first consider a vortex placed at a generic point �x0 ,y0�
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in a bulk superconductor. We introduce the following auxil-
iary variables:

��x0,y0;x,y� = ��x − x0�2 + �y − y0�2,

R�x0,y0;x,y� = ��x − x0�2 + �y − y0�2 + �v
2. �19�

Here, �v is a variational parameter of the same order of mag-
nitude of the coherence length. Clem’s variational ansatz for
the order parameter takes the form

fvor�x,y� =
��x0,y0;x,y�
R�x0,y0;x,y�

. �20�

This allows the exact solution of the second GL equation,
giving, respectively, for the field and current

Bz =
1

��v

K0„R�x0,y0;x,y�…
K1��v�

,
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FIG. 1. Shown is a comparison of the order parameter and the magnetic field, in the variational approximation and in the numerical
calculation, for �=2 and for different values of the applied field. We see that even in �c1� and �c2�, when H is near the field of first
penetration, the variational description is quite accurate.
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j� =
1

��v

��x0,y0;x,y�
R�x0,y0;x,y�

K1„R�x0,y0;x,y�…
K1��v�

, �21�

where K0�x� and K1�x� are modified Bessel functions.
As we saw above, the boundary conditions at the sample

surface require the order parameter to have a zero slope
there. A second requirement is that no current should flow
across the sample surface,

df�x,y�
dx


x=0

= 0,

�Jx�x,y��x=0 = 0, �22�

Both conditions can be satisfied by considering the combined
effect of the vortex located at the point �x0 ,y0� plus an image
vortex, which is located at the point �−x0 ,y0�. The currents in
the image vortex must rotate in the opposite sense to the ones
in the real vortex. The order parameter for the image vortex
would be

f im�x,y ;x0,y0� =
��x,y ;− x0,y0�

���x,y ;− x0,y0�2 + �v
2

. �23�

To construct the variational order parameter for the
vortex–image vortex pair, we can simply take the product

F�x,y ;x0,y0� = fvor�x,y ;x0,y0� 	 f im�x,y ;− x0,y0� . �24�

This assumption guarantees the vanishing of the order pa-
rameter at each vortex core and also of the normal slope at
the surface,

dF�x,y�
dx


x=0

= 0.

When the vortex is placed far enough from the surface, Eq.
�24� tends to the correct limits.

The variational solution for the current requires some
care. A velocity field obtained by adding the current fields for
vortex and image vortex would satisfy the boundary condi-
tion at the superconductor-vacuum interface but would vio-
late the requirement that the current at each vortex core van-
ishes. An alternative is to construct first a compound velocity
field by adding the velocity fields of each vortex. The result-
ing field would also satisfy the boundary condition, with the
advantage that the singularities at each vortex core would be
maintained, very much as is the case for the charge–image
charge pair in electrostatics. The total current field must then
be calculated from this velocity field. To obtain the velocity
distribution for the vortex–image vortex system, we must
consider the sum of the velocities for each of these elements
as follows:

Ux�x,y� = ux�x,y ;x0,y0� − ux�x,y ;− x0,y0� , �25�

Uy�x,y� = uy�x,y ;x0,y0� + uy�x,y ;− x0,y0� , �26�

with

ux�x,y ;x0,y0� = −
1

��v

K1„R�x,y ;x0,y0�…
K1��v�

	
�y − y0�R�x,y ;x0,y0�

�2�x,y ;x0,y0�
,

uy�x,y ;x0,y0� =
1

��v

K1�R�x,y ;x0,y0��
K1��v�

	
�x − x0�R�x,y ;x0,y0�

�2�x,y ;x0,y0�
.

In these expressions, ux�x ,y ;x0 ,y0� and uy�x ,y ;−x0 ,y0�
are the velocity field components of a vortex centered at
�x0 ,y0�, whereas ux�x ,y ;−x0 ,y0� and uy�x ,y ;−x0 ,y0� are the
velocity components of the image vortex centered at
�−x0 ,y0�.

This combination keeps the essential property of having
the correct divergence at each vortex core, and it satisfies the
boundary condition

Ux�0,y� = 0.

In order to obtain the variational current field, we must
combine the velocity field of Eqs. �25� and �26� with the
order parameter for the vortex–image vortex pair given by
Eq. �24�. The total current would thus be

J�x,y� = �F�x,y��2U�x,y� .

It can be seen that this expression satisfies the correct bound-
ary condition as follows:

Jx�0,y� = 0.

The total magnetic field of the vortex-antivortex pair
would be

Bz�x,y� = Bz�x,y ;x0,y0� − Bz�x,y ;− x0,y0�

or

Bz�x,y� =
1

��v
	K0„R�x,y ;x0,y0�…

K1��v�
−

K0„R�x,y ;− x0,y0�…
K1��v�


 .

�27�

To evaluate the free energy given by Eq. �12�, we have to
combine the vortex-antivortex expressions with the contribu-
tions due to the Meissner currents. For the magnetic field and
currents, we assume a superposition principle and simply add
the contributions due to each source. Thus, to obtain the total
magnetic field, we have to add Eqs. �11� and �27�. The ve-
locity of the superconducting electrons u is obtained by add-
ing the vector component given by Eq. �13� and Eqs. �25�
and �26�. For the order parameter, instead, we have to
multiply both contributions, given by Eq. �24� and by the
contribution of the Meissner state, f�x�=1−
�x�, with 
�x�
given by Eq. �9�. The minimization of the free energy allows
us to obtain �v, �M, and 
0, which completes the variational
description of a vortex near a surface.
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A. Steadiness of the variational parameters

To test the steadiness of the variational calculation, we
have studied the change of the variational parameters as a
function of x0, the vortex position. We have also checked the
convergence of these parameters in terms of the size of the
numerical sample. Figure 2 shows the behavior of the three
variational parameters, the vortex size �v, the Meissner pa-
rameter 
0, and �M, as functions of the vortex position for
different sample sizes.

It can be seen in Fig. 2�a� that with an increase in the
sample size, the last two parameters become independent of
the vortex position, which is an indication of the adequacy of
the variational function. On the other hand, the vortex pa-
rameter �v is strongly affected when the vortex moves close
to the surface �Fig. 2�b�� and does not show appreciable
changes with increasing sample size. The value of �v for
large xo coincides with the value obtained by Clem for �
=2 in Ref. 13 ��v=1.15��.

The results of Fig. 2 show that we can obtain the Meissner
parameters 
0 and �M from the Meissner variational calcu-
lation and use them as fixed parameters in the vortex varia-
tional equations. This allows a faster convergence of the so-
lution in the presence of vortices because we only need to
minimize the energy with respect to a single parameter, the
vortex core size �v. We have used this procedure in what
follows.

Our results show good agreement between the variational
calculations and full numerical results both for the energy
barrier, as will be shown in the next section, and for other
quantities, particularly the shape of the vortex near the sur-
face.

B. Quality of the variational solution of a vortex
near a surface

As we did in Sec. II for the Meissner state, in this section
we compare the variational solutions for a vortex near a sur-
face to the results obtained from the full numerical solutions
of the GL equations. However, in the present case, the com-
parison needs to be more carefully done. In the variational
calculation, the position of the vortex at a given point, x0, is
fixed and the energy must be minimized in order to find the
variational parameters. Due to the forces exerted by the
Meissner currents, such a configuration is unstable in the GL
case. The difficulties in pinning an isolated vortex at position
x0 are not solely related to the time dependent equations that
we are using to find the equilibrium configurations. In a time
independent approach, the system also tends to the equilib-
rium configuration that for a field larger than the field of first
vortex penetration �Hp� is a vortex at position x0→�.

In order to overcome this difficulty and to calculate the
energy of a vortex located at x0, we pin the vortex by using
a square numerical seed of size d=� for the order parameter.
The use of a pinning seed poses the problem of the distortion
of the order parameter around the vortex core, which affects
the evaluation of the free energy. We reduce this side effect
by introducing a seed that has the same shape as a vortex in
bulk. The solutions of the numerical equations then converge
toward a stable state containing a vortex pinned at position
x0. We move the seed in steps given by the spatial discreti-
zation, allowing the system to relax to a new stable solution
at each new position of the seed. Our choice of pinning seed
allows a good comparison to the variational solution of a
vortex at position x0. A similar procedure was used in Ref. 6,
wherein by fixing the phase of the order parameter, it was
possible to pin and move vortices near a surface.

Figure 3 shows a comparison between the profiles of the
order parameter obtained from the variational method and
from the full numerical simulations of the GL equations. The
figures are for x0=2.9� and Ha=0.70Hc. As we see from
Figs. 3�a� and 3�b�, the description obtained from the varia-
tional model is quite accurate, although some qualitative dif-
ferences are apparent. This is a typical feature of variational
calculations, wherein generally a better agreement is ob-
tained for the energy calculation than for the field properties.

In Fig. 4, we show a comparison between the variational
calculations and numerical results for the energy barrier as a
function of the vortex position and for different values of the
applied magnetic field. The maxima of the energy as a func-
tion of the vortex position for fields lower than Hp generate
the energy barrier for vortex penetration. The energy barrier
can be defined as the energy difference between the value at
the maximum and the value at the surface, =G�xmax�
−G�0�. By increasing the magnetic field from Ha=0.42Hc
�Fig. 4�a�� to Ha=0.70Hc �Fig. 4�c��, it is seen that the en-
ergy barrier decreases and, finally, almost disappears near
Ha=0.85Hc, as shown in Fig. 4�d�. At the same time, the
maximum moves closer to the surface.

It is seen that even when Ha is near Hp, the variational
description is quite accurate �see Figs. 4�c� and 4�d��. These
results should be compared to those shown in Fig. 3 of Ref.
13, wherein it is seen that the energy of the vortex line quite
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accurately coincides with the full GL numerical results in a
wide range of � values.

For �=2, the field of first penetration obtained turns out to
be Hp=1.04Hc, which is a value lower than the one obtained
in Sec. II for the Meissner state �Hp=1.13Hc�. In the full
numerical simulations, this is a consequence of the symmetry
breaking produced by the pinning center we have used; while
in the variational approach, the symmetry is already broken
by the nature of the solution we have imposed.

In Figs. 4�c� and 4�d�, the energy differences between
both approaches are higher near the surface, x0�0. This is a
consequence of the increase in the force that the Meissner
currents exert on the vortex. In the full numerical approach,
this means a higher difficulty in pinning a vortex at position
close to x0�0. In any case, the energy differences are always
lower than 0.05%.

Figure 5 shows a similar comparison to that in Fig. 4 in
the case of �=3. As can be seen from Figs. 5�c� and 5�d�,
when Ha is near Hp, the variational description remains as
accurate as in the previous case. The maxima of the energy
as a function of the vortex position for fields lower than Hp
generate the energy barrier for vortex penetration. By in-
creasing the magnetic field from Ha=0.42Hc �Fig. 5�a�� to
Ha=0.68Hc �Fig. 5�c��, the energy barrier decreases and, fi-
nally, almost disappears near Ha=0.8Hc, as shown in Fig.
5�d�. For �=3, the field of first penetration turns out to be
Hp=0.91Hc.

The usefulness of the variational approach can be stressed
by calculating other quantities related to vortices near sur-
faces. One such quantity is the magnetic flux. As early as
1961, Bardeen21 showed that magnetic flux in a supercon-
ducting cylinder can be less than one flux quantum. Later in
Ref. 22, Shmidt and Mkrtchyan, using an extension of the
London model, calculated the magnetic flux for a vortex near
the surface of a semi-infinite sample. They found the follow-
ing functional dependence:

� =� B · da = �0�1 − e−x0� . �28�

We have used the variational model to calculate the mag-
netic flux as a function of the distance to the sample surface,
as shown in Fig. 6. Our results agree quite well with the
functional dependence of Eq. �28�. We note that the fluxoid
quantization

2�

�
n = � +� Js

���2
dl �29�

remains valid, even when � is less than one flux quantum,
due to the contribution of the superconducting currents Js.

Geim et al., using a Hall probe in Ref. 3, experimentally
confirmed the fact that vortices can have less than one flux
quantum in mesoscopic samples. Similar results had previ-
ously been obtained in experiments on bulk samples by
Civale and de la Cruz.23 In Ref. 23, they studied the mag-
netic behavior as a function of temperature of samples with a
constant number of vortices pinned at fixed positions. They
observed that the magnetic flux carried by vortices located
close to the surface increases with decreasing temperature
due to an indirect increase in the distance to the surface when
��T� decreases.

IV. EXTENSION TO TWO VORTICES

The variational model of Clem was previously extended
to describe a flux lattice in Ref. 24, wherein the reversible
magnetization of high-Tc superconductors as a function of
the applied field was calculated. Our formulation can be
straightforwardly extended to the description of two or more
vortices near a surface. In particular, we focus on the case of
two vortices located at a distance x0 from the sample surface
and separated by a distance y0. In order to calculate the in-
teraction force, we first follow the same procedure used in
Sec. III to calculate the variational energy of the system. We
introduce an order parameter, which is the product of Clem’s
variational expressions for the two vortices and the corre-
sponding images. Similarly, the velocities and the total mag-
netic field are obtained by following the procedure described
in Sec. III. Once the energy of the system containing two
vortices is obtained, the interaction force between them can
be calculated from the numerical derivative of the energy of
the system.

We concentrate first on the interaction force between vor-
tices that are away from the sample surface, i.e., for x0→�.
In this case, the image vortices can be omitted from the
calculations because their influence is negligible when they
are far from the surface. In Fig. 7, we show the interaction
force for two cases: Fig. 7�a� is for �=10 and Fig. 7�b� is for
�=2. A comparison is shown with the force calculated within
the London model and also with the formula obtained from
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the long-range asymptotic behavior25,26 within the Ginzburg–
Landau approach. Good agreement between all curves is ob-
tained for distances larger than 0.5� for �=10 and for dis-
tances larger than 2.0� for �=2. It should be noted that in the
case of the London model, the force corresponding to two
vortices FL= �4� /�2�K0�ri−rj� diverges when the distance
between vortices �ri−rj� tends to zero, which in our case is
when y0→0.

The expression for the long-range asymptotic behavior of
the GL model, due to Kramer, is25,26

Fint =
4�

�2 �K0�ri − rj� − K0��2��ri − rj��� . �30�

This expression incorporates a correction due to the overlap-
ping of the vortex cores that induces an attractive component
in the force between vortices. The final result gives a finite
value for the force corresponding to the long-range
asymptotic GL model when y0→0, as can be seen in Figs.
7�a� and 7�b�.
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On the other hand, the attractive contribution in the varia-
tional model results in a zero force for y0=0 when the two
vortices merge in a two-quanta vortex. This configuration is
unstable in a type II superconductor, and a minimal separa-
tion between vortices would result in a repulsive force. An
interaction force decreasing and going to zero for very small
vortex separation is in agreement with previous variational
calculations of the interaction energy between vortices ob-
tained by Jacobs and Rebbi in Ref. 27. As we can see in Fig.
7, the interaction force obtained from the variational model
has a maximum located at y0=0.4� for �=10 and at y0
=1.3� when �=2.

In Fig. 8, we fix the distance y0 between two vortices and
calculate the variation of the interaction force between them
as a function of the distance x0 to the surface. In this case,
the contribution of the image vortices becomes more impor-
tant as the pair approaches the surface. We show the interac-
tion force parallel to the surface �along the line that connects
both vortices� as a function of x0 for �=2 in Fig. 8�a� and for
�=10 in Fig. 8�b�. In Fig. 8�a�, the open squares are for
Ha=0.4 and the closed squares are for Ha=0; in both cases,
we observe a steady decrease in the force between vortices
when the distance to the surface decreases. There is only a
small difference between the forces obtained at different val-
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ues of the applied magnetic field due to the differences be-
tween the Meissner currents induced in each case. The over-
all qualitative behavior is independent of the value of the
distance between vortices y0, as we see in Fig. 8�a� by com-
paring the results for y0=2� and y0=2.5�. In Fig. 8�b�, the
same qualitative behavior is observed for �=10. From Fig. 8,
we can conclude that there is a steady decrease in the inter-
action force between vortices when the distance to the sur-

face decreases and that the force goes to zero when the pair
is close to the boundary.

This result can be understood by considering that the re-
pulsive interaction force between two vortices is screened by
the contribution of the attractive interaction force between
each vortex with the image of the other vortex. In particular,
when x0→0, a vortex and its image are located at approxi-
mately the same position for the other vortex and the inter-
action force goes to zero.

Our results suggest that the vortex lattice is softer in the
direction parallel to the surface in finite samples. It should be
interesting to devise experiments that can explore these prop-
erties. Even when we have calculated the case of a semi-
infinite sample, the same qualitative behavior is expected to
appear in a thin film with vortices parallel to the surface. In
a thin film, vortices are confined by two surfaces and the
image vortices corresponding to both surfaces contribute to
the screening of the vortex interaction forces.

V. CONCLUSIONS

We have shown that Clem’s variational ansatz for a free
vortex can be extended to the description of vortex penetra-
tion. The results show quite good agreement with the full
numerical results both for the energy barrier and for the de-
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scription of the vortex near the surface. The flux carried by a
vortex as a function of its distance to the surface can be
shown to be easily calculated and to coincide with known
results.

We extended the model to calculate the force between two
vortices. When the vortices are far from the surface, the
variational results show good agreement with the London
and long-range GL results for large intervortex distances;
whereas for small distances, the variational model gives van-
ishing forces corresponding to the merging of the two vorti-
ces in a double quantized vortex.28 We also found a steady
decrease in the interaction force between vortices when the
distance to the surface decreases; the interaction force goes
to zero when the pair is close to the boundary.

Our variational approach gives manageable expressions
that can be used to obtain approximations for all physically
relevant quantities. Another advantage of this method is the
lower computational time that it requires, allowing one to
obtain fast and reliable solutions for a vortex near a surface.
The agreement between the variational solution and numeri-
cal calculations shows the usefulness of the former for inter-
mediate � when computations become heavy. For large �,
numerical calculations can be based on the London model
for the magnetic contribution. This description is not accu-
rate at lower � values where a numerical approach to the GL
description is more appropriate. A particular problem arises
at intermediate �, at which the computation within the GL
model becomes very demanding because of the difficulty to
describe both spatial scales with the same discretization. It is
in this range that the variational approach is most welcome.

The method used in this paper can be generalized for
mesoscopic superconductors. However, consideration of
more than one surface in some cases could give rise to infi-
nite images. This difficulty can be overcome by truncating
the infinite series as was done in Ref. 29 for vortex penetra-
tion in a thin film using the London model. In this paper, we
have assumed a semi-infinite medium with no demagnetizing
effects. In this case, the boundary condition for the magnetic
field �B�s=Ha applies at the sample surface. A similar condi-
tion applies for a thin film with the externally applied mag-
netic field parallel to the surface. A thin film is an example of
a mesoscopic system wherein our results can be generalized
in a straightforward manner. However, in general, demagne-
tization effects are important in mesoscopic superconductors
of finite thickness where the boundary condition �B�s=Ha
applies at infinity and not at the sample boundary. Vortices in
mesoscopic superconductors are confined by the sample sur-
face and their interaction with the Meissner currents is very
important, a situation with similarities to the case analyzed in
this work. This opens up interesting questions about the be-
havior of the effective interaction force between two vortex
cores as a function of the distance to the surface in mesos-
copic superconductors.
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