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The interaction between ac spin-polarized electrical currents and a domain wall initially trapped on a notch
in a thin Permalloy nanostrip is investigated by micromagnetic modeling as well as a one-dimensional model
that considers the wall as a rigid object. A systematic study of the depinning transition from the notch is carried
out in the frequency domain for several static magnetic fields and ac’s, both at zero and at room temperature.
Due to the resonant amplification of the domain wall oscillations, both the depinning current and the static
magnetic field can be significantly reduced with respect to the dc case, and even at room temperature the
probability of the domain wall depinning abruptly changes in a narrow frequency range. These observations
suggest a low-operation and highly selective mode for further spintronic devices based on domain walls. On
the other hand, our analysis is also used to estimate the effective value of the nonadiabatic parameter by direct
comparison with recent experiments.
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I. INTRODUCTION

Since the appearance of the pioneering works by
Berger1–3 and Slonczewski,4,5 considerable progress has been
made in understanding current-induced domain-wall �DW�
dynamics in ferromagnetic strips.6–14 The key mechanism is
the spin torque from a spin-polarized current passing through
a DW, where the spin of the itinerant conduction electrons
couples to the local spatial gradient of the magnetization.
Two forms of spin torque have been proposed so far: Adia-
batic ��=0�,6,7 and nonadiabatic ���0�, where � represents
the ratio between nonadiabatic and adiabatic torques.6–10 The
adiabatic case is expected to dominate for wide DWs, where
the electron spin can adiabatically follow the slowly varying
local spin direction as it goes through the DW. As the elec-
tron spin rotates, it exerts a torque on the DW normal to its
plane of magnetization. If the spatial gradient in local mag-
netization across the DW is too large �thin DWs�, a finite
mistracking angle may develop between the electron spin
and the local magnetization. This can result in spin-flip scat-
tering of the electrons, and nonadiabatic pressure on the
wall.8 Without the action of an external magnetic field �Be
=0�, the adiabatic torque due to static currents �dc� is not
able to drive sustained DW motion except for very large
currents �ja�. On the contrary, the nonadiabatic spin-transfer
torque produces a force directly on the DW for static currents
even in the absence of an external magnetic field. It has been
shown that the adiabatic term is largely responsible for the
initial DW velocity, while the nonadiabatic term controls its
terminal velocity.9

Several experimental observations15–19 indicate that both
adiabatic and nonadiabatic effects should be present in some
proportion for DWs with finite width. However, the exact
value of the nonadiabatic parameter � is nowadays difficult
to compute from first principles, and therefore, a study of the
DW depinning from a notch as a function of the applied
current ja and the magnetic field Be might help us to ascer-

tain the magnitude of � by direct comparison between experi-
ments and simulations.14 Apart from pure fundamental inter-
est, the analysis of the current-induced DW depinning is also
of great technological relevance for designing novel domain-
wall-based storage devices such as the Racetrack Memory.20

The functionality of these spintronic devices requires the
ability to control DW depinning, which can be achieved if
sufficiently large static external magnetic fields and dc’s ja
are applied with a duration in the nanosecond scale.21–26 It
has been observed that the DW depinning occurs only at zero
or low magnetic fields if the static density current �dc� ex-
ceeds a threshold in the order of 10 A /�m2.14,24 Due to Joule
heating,15 such high current densities are impractical for
spintronics applications,24 and therefore it is crucial to find
ways of reducing this threshold value.

The first experimental evidence of the low-current opera-
tion due to the resonant DW motion induced by oscillating
currents was carried out by Saitoh et al.27 They estimated the
value of the effective DW mass by detecting its resonant
motion in a semicircular Permalloy strip. Motivated by this
observation, Tatara et al.28 and then He et al.29 studied the
response of a pinned DW inside of a parabolic potential sub-
jected to the action of ac in ferromagnetic films in the
xy-plane with easy axis z perpendicular anisotropy. Using a
deterministic one-dimensional description, they showed that
the DW depinning occurs at a density current, which is lower
than the dc case if the frequency is tuned close to the pinning
frequency. Other experimental confirmation of this theoreti-
cal prediction was done by Thomas et al.30 Using a train of
current pulses with zero rise and fall times, they measured
experimentally the probability of DW depinning from a
notch in a straight strip at room temperature, and showed that
the DW depinning can be efficiently achieved if the lengths
and separations of the pulses are tuned to the characteristic
pinning period. More recently, Bedau et al.31 have evaluated
the DW depinning from a notch in a Permalloy ring under
static magnetic fields and sinusoidal ac’s as a function of the
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frequency of the injected current. They observed a dip in the
depinning field when the frequency of current matches the
resonance frequency.

In the present paper, the DW dynamics induced by oscil-
lating ac’s, and also assisted by static magnetic fields, is
systematically investigated in the frequency domain from a
theoretical point of view. In Sec. II, DW dynamics induced
by oscillating spin-polarized currents is analyzed by means
of full micromagnetic modeling. Based on these micromag-
netic results, the deterministic DW depinning is theoretically
described in Sec. III by using a linearized one-dimensional
model �1DM� which, in addition to the static forces, takes
also into account the time-varying forces induced by the os-
cillating current as a function of its frequency. In order to get
a more realistic description, the effect of thermal fluctuations
has been also included in the analysis, and the probability of
DW depinning is evaluated at room temperature in several
cases. In Sec. IV, the experimental results by Bedau et al.31

are fitted to the rigid approach, and the magnitude of the
effective nonadiabatic parameter is deduced. A brief sum-
mary of the main conclusions is given in Sec. V.

II. MICROMAGNETIC SIMULATIONS

The system under study consists of a thin Permalloy strip
with Ly �Lz=60�3 nm2 cross section where two notches
�15 nm long and 6 nm wide� are symmetrically placed on
both edges of the strip. A computational region of Lx
=1.2 �m in length, with the notch placed in the center, was
discretized by means of a standard finite-difference scheme
using cubic computational cells of �x=3 nm in side. Figure
1 depicts the equilibrium state of the DW at rest. The sign
criteria for the positive fields and electrical density currents
are also included in Fig. 1. Starting from this initial state, the

dynamics of the local magnetization M� �r�� under the action of

static magnetic fields B� e=Beu�x and spin-polarized electrical
density currents j�app�t�= japp�t�u�x, both of them spatially uni-
form and directed along the strip axis �x-axis�, is described
by the extended Landau–Lifshitz–Gilbert equation as derived
from a quantum mechanical model by Zhang and Li,9

dM�

dt
= − �0M� � H� ef f +

�

Ms
�M� �

dM�

dt
� + bJ�t��u�x · ��M�

−
cJ�t�
Ms

M� � �u�x · ��M� , �1�

where �0 is the gyromagnetic ratio, � is the Gilbert damping

parameter, Ms is the saturation magnetization, and H� ef f is the
effective field, which includes exchange, self-magnetostatic
and external field contributions.13 The last two terms on the
right side of Eq. �1� represent the adiabatic and the nonadia-
batic spin-transfer torques, respectively.9 The coefficients
bJ�t� and cJ�t� are given by bJ�t�= japp�t�

�BP

eMs
and cJ�t�

=�bJ�t�, where �B is the Bohr magneton, P the spin polar-
ization factor of the current, and e	0 the electron’s electric
charge. The coefficient � is a dimensionless constant describ-
ing the degree of nonadiabaticity between the spin of con-
duction electrons and the local magnetization.8 Typical Per-
malloy parameters were considered: saturation magnetization
Ms=860 kA /m, exchange constant A=13 pJ /m, damping
�=0.02, and polarization factor P=0.4. All numerical details
of our micromagnetic code can be found elsewhere.13

In the present work, time-varying electrical density cur-
rents in the form japp�t�= ja cos�2
f jt� are applied along with
static magnetic fields Be� f�t�. Typical micromagnetic re-
sults of the pinned regime are shown in Fig. 2. The ampli-
tude of applied density current is ja=1.25 A /�m2, and three
different frequencies are considered: f j =0 �dc case, black-
thick lines�, f j =1.5 GHz �red-thin lines�, and f j =2.5 GHz
�blue-dash lines�. The DW position is micromagnetically
computed as x=

Lx

2 �mx�, where �mx� represents the
x-component of the averaged magnetization over the compu-
tational region. Top graphs in Figs. 2�a� and 2�b� depict the
temporal evolution of the DW position x�t� excited by the
mentioned currents in absence of external field Be=0 for
both perfect adiabatic ��=0� and nonadiabatic ��=0.04�
cases, respectively. On the other hand, bottom graphs of
Figs. 2�c� and 2�d� show the current-induced DW dynamics
assisted by a static magnetic field of Be=2 mT for �=0 and

FIG. 1. �Color online� Schematic representation of the simulated
geometry. The local magnetization configuration in absence of ex-
ternal field and current is depicted along with the direction and sign
criteria for the external field Be=�0He and the applied current ja.

FIG. 2. �Color online� Micromagnetic results for the DW posi-
tion x�t� in pinned regime. A current in the form japp�t�
= ja cos�2
f jt� is applied with fixed amplitude ja=1.25 A /�m2 and
three different frequencies: f j =0 �dc case, black-thick solid lines�,
f j =1.5 GHz �red-thin solid lines�, and f j =2.5 GHz �blue dash
lines�. The DW dynamics at zero field �Be=0� is depicted in top
graphs �a� and �b� for the perfect adiabatic limit ��=0� and finite
nonadiabatic corrections ��=0.04�, respectively. The corresponding
DW oscillations assisted by a static field of Be=2 mT are repre-
sented in bottom graphs �c� and �d�.
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�=0.04, respectively. For dc’s �f j =0� �see black-thick lines
in Fig. 2�, the DW position x�t� develops damped oscilla-
tions, which attenuate in time as due to the damping, and the
wall finally reaches a new terminal equilibrium position
�x����. The external force exerted by both the dc and the
static field, is balanced by the restoring force derived from
the pinning potential of the notch. At zero field, the DW
position x�t� returns to the initial state in the perfect adiabatic
limit ��=0, Fig. 2�a��, whereas a positive displacement is
observed if nonadiabatic corrections are considered ���0,
Fig. 2�b��. Only in the presence of a positive magnetic field
�Fig. 2�c�� the terminal DW position is displaced to the right
in the perfect adiabatic case. The characteristic frequency
fN,�M of the damped oscillations was computed from the
Fourier transform of the x�t�,13 and a sharp peak is observed
at fN,�M 	2.5�0.1 GHz independently of �.

A more interesting DW dynamics can be excited by ac’s
�f j �0�. As it is shown in Fig. 2, after a short transient time,
the DW position x�t� reaches stationary regime and oscillates
with constant amplitude at the same frequency �f j� as the ac
japp�t�. The oscillations of x�t� are symmetrical with respect
to the center of the notch at zero field �see Figs. 2�a� and
2�b��. An analogous behavior is observed in the presence of a
static field Be=2 mT �see Figs. 2�c� and 2�d�� but now the
center around which the DW oscillations take place is dis-
placed to the right as due to the external field driven force.
For finite nonadiabatic corrections ��=0.04�, the amplitude
of the stationary DW oscillations is slightly increased with
respect to the perfect adiabatic case ��=0�, but most impor-
tantly, in both cases the amplitude of the DW oscillations is
resonantly amplified when the frequency f j of the current
coincides with the natural frequency of the pinning potential
of the notch fN,�M.14 This is an important observation for
further technological applications, because it indicates that
the DW depinning can be achieved by means of much more
smaller currents than in the dc case if the frequency of the ac
becomes close to the characteristic frequency of the system.

For a more detailed description of the micromagnetic re-
sults, we focus our attention on the zero field �Be=0� and
perfect adiabatic ��=0� resonant DW oscillations driven by
an ac of ja=1.25 A /�m2 and f j =2.5 GHz. Two complete
periods �T=0.4 ns� of the stationary regime are depicted in
the left panel of Fig. 3 corresponding to the shaded interval
in Fig. 2�a�. The instantaneous applied current is represented
in Fig. 3�a�. The temporal evolution of the DW position x�t�
and velocity v�t�= �x

�t are depicted in Fig. 3�b�. In order to
quantify the current-induced DW distortion, the temporal
evolution of the normalized DW width33 to its static value
��t� /�0 is also monitored in Fig. 3�c�. Snapshot images of
the spatial distribution of the magnetization my�r��
=My�x ,y� /Ms are collected in right panels at five different
instants: �d� t=4.3 ns, �e� t=4.4 ns, �f� t=4.5 ns, �g� t
=4.6 ns, and �h� t=4.7 ns from top to bottom, respectively.
In this stationary regime, the DW position x�t� oscillates at
the same frequency and in phase with the applied current
japp�t� �see Figs. 3�a� and 3�b��. As it is shown in Fig. 3�b�,
the DW velocity v�t� also oscillates with the same current
frequency f j but it is advanced a quarter of a period �T /4
=0.1 ns� with respect to both japp�t� and x�t�. That is, the
DW position x�t� and the applied current japp�t� are maxi-

mum or minimum when the DW velocity v�t� is null, and
vice versa. On the other hand, the DW width ��t� �Fig. 3�c��
oscillates twice faster than the DW position x�t�.

As depicted in Figs. 3�d�–3�h�, the DW width is a mini-
mum when the wall is at the center �x=0�, and it reaches a
maximum in the extrema of the DW oscillations x
= �AS,�M, where AS,�M represents the micromagnetically
computed amplitude of the current-induced DW oscillations
in the stationary regime. It is to be noted that the largest
deviation of the DW width ��t� from its static value �0
remains smaller than the 3% even in the resonance. There-
fore, these micromagnetic simulations indicate that the DW
behaves, in good approximation, like a damped harmonic
oscillator forced by an ac.

III. LINEARIZED ONE-DIMENSIONAL MODEL

A. Deterministic case, T=0 K

Our main interest here consists in calculating the thresh-
old depinning amplitude ja of the ac applied current japp
= ja cos�2
f jt�, which produces DW depinning as a function
of the frequency f j in the presence of static field Be=�0He.
Due to the large number of amplitudes ja, frequencies f j, and
fields Be that have to be evaluated, the analysis requires a lot
of computational effort if it is carried out by means of full
micromagnetic simulations. The problem becomes inacces-
sible if, as it is desirable for getting more realistic results, the
effect of thermal fluctuations needs to be taken into account.
Due to these computational limitations, and in order to get a
further understanding on how the DW depinning from the
notch depends on �Be , ja , f j�, a rigid one-dimensional de-
scription will be adopted in the rest of the discussion, which
allows us to systematically analyze the influence of thermal
effects in the DW depinning process with manageable com-
putational effort.

The 1DM was originally introduced to describe the deter-
ministic field-driven motion of DWs,32 and it has been re-

FIG. 3. �Color online� Micromagnetic details of the stationary
regime reached for Be=0, ja=1.25 A /�m2, �=0, and f j =2.5 GHz
corresponding to the shaded interval in Fig. 2�a�.
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cently extended to include spin torque7–10,28,29 and thermal
effects.13,14,34 The linearized version of the 1DM assumes
that �i� the DW width remains constant independently of the
field and the current ��0=21.14 nm�,33 and �ii� the tilt angle
between the magnetization and the easy plane �xy-plane� is
very small.12 Both of them are fulfilled in our case. There-
fore, in the absence of thermal fluctuations, DW dynamics
can be described by the following deterministic equation:

�1 + �2�mw
d2x

dt2 = Fp�x� + Ff + Fe,s + Fe,d, �2�

where mw=
2��0LyLz�

�0
2�Nz−Ny��0

is the effective DW mass being Ny and
Nz the transverse demagnetizing factors.35 A value of mw
=5.25�10−25 kg is obtained for the DW at rest. The terms
on the right hand side of Eq. �2� are the different contribu-
tions to the total force acting on the DW. The first one, Fp�x�,
is the spatially dependent restoring force derived from the
pinning parabolic potential Vpin�x� associated with the notch.
Based on the micromagnetic characterization done in Ref.
14, the pinning force is given by

Fp�x� = −
�Vpin�x�

�x
= 
− KNx ��x� 
 LN�

0 ��x� � LN� ,
� �3�

where KN is the elastic constant of the notch, which was
computed from the slope of the linear behavior of the elon-
gation as a function of the field-driven force, yielding a value
of KN=1.3�10−4 N /m. The natural frequency of the one-
dimensional free harmonic oscillator is therefore given by

fN= 1
2



KN

mw
=2.5 GHz, in good agreement with the micro-

magnetic simulations. The length of the pinning potential,
LN=16 nm, was deduced by fitting the depinning threshold
field obtained micromagnetically.14

The second one, Ff, is the friction force, which is propor-
tional to the DW velocity v= dx

dt and the damping parameter
�,

Ff = − ��mw�d�1 +
�N

2

�d
2 ��dx�t�

dt
= − b

dx�t�
dt

, �4�

where �d=�0Ms�Nz−Ny� is the angular frequency of magne-
tization oscillations around the demagnetizing field inside the
wall, and �N=2
fN.

The last two terms on the right hand side of Eq. �2� rep-
resent the static �Fe,s� and dynamical �Fe,d� contributions to
the external driving force. The static driving force Fe,s has
two contributions: one related to the external magnetic field
He=Be /�0, and the other relative to the applied current ja,

Fe,s = FH,s + Fj,s = mw�d��0�0He − cJ� . �5�

The time-varying contribution Fe,d to the external driving
force has also two contributions associated with the time
variation of the field and the current, respectively, and it is
given by

Fe,d = FH,d + Fj,d = mw���0�0
�He�t�

�t
− �1 + ���

�bJ�t�
�t

� .

�6�

In the present analysis, we restrict our attention to the
case of static applied fields, and therefore,

�He

�t =0 is consid-
ered in Eq. �6�.

The deterministic analytical solution for Eq. �2� describ-
ing the temporal evolution of the DW position x�t� inside of
an infinite harmonic potential well is presented in the Appen-
dix. It is easy to verify that the analytical solution �Eq. �A1�
with Eqs. �A2� and �A4�� leads to the same features of the
micromagnetic trajectories for the DW oscillations depicted
in Fig. 2. In order to compare the 1DM predictions with
former micromagnetic observations ��M� of the previous
section, the amplitude of the DW oscillations as a function of
the frequency f j is depicted in Fig. 4 for three different am-
plitudes ja of the ac in the pinned stationary regime. Both
models predict the same stationary behavior, but the ampli-
tude is slightly overestimated by the 1DM with respect to the
micromagnetic results ��M� for frequencies close to the
resonance. The inset of Fig. 4 shows the difference AS,1DM
−AS,�M for three different frequencies. As it is observed, the
discrepancies between the 1DM and the micromagnetic
��M� simulations increase linearly with the amplitude ja of
the applied current, and they are more significant for fre-
quencies close to the resonance. These discrepancies are due
to the fact that the 1DM does not take into account the
change in the DW width, which increases with ja. Neverthe-
less, even in the resonance the deviations of the DW width
with respect to its static value are very small �	3%, see Fig.
3�c��, and therefore, the 1DM appears to describe well accu-
rately the essential resonant behavior of the DW oscillations
around the notch.

Once the pinned oscillations have been described, we fo-
cus on the analysis of the DW depinning predicted by the
1DM. The general solution �A1� with Eqs. �A2� and �A4�
describes the temporal evolution of the DW position inside

FIG. 4. �Color online� Amplitude of stationary DW oscillations
as a function of the frequency of the oscillating current �f j� for Be

=0 mT, and �=0. Micromagnetic results �AS,�M, represented by
dots� are compared with 1DM predictions �AS,1DM, represented by
lines�, which are given by Eq. �A6� for three different values of ja.
The inset depicts the stationary amplitude differences between 1DM
and �M values for three different frequencies as a function of ja.
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an infinite harmonic potential well from a linearized one-
dimensional point of view. Taking into account the finite
length LN of the parabolic potential induced by the notch, the
critical depinning curves can be computed by evaluating the
general solution �A1� with Eqs. �A2� and �A4�, and the DW
depinning takes place at a given time if x�t��LN.

We first compute the depinning field as a function of
�� , f j , ja�. Due to the characteristic time describing the tran-
sient regime tT=2mw /b is small �tT=0.68 ns�, a first ap-
proach can be done by neglecting the transient regime
�t�T�. In such a case, the condition for DW depinning is
given by the stationary part �xS�t�� of the general solution
�see Eq. �A4��. Taking the maximum value of the stationary
DW position �xS�t��max equal to the length of the pinning
potential LN, �xS�t��max=xeq,H+AS=LN, we obtain the follow-
ing expression for the stationary depinning field
Bdep,S�� , f j , ja�=�0Hdep,S as function of the nonadiabatic pa-
rameter �, and both the amplitude ja and the frequency � j
=2
f j of the injected current,

Bdep,S��, f j, ja� = Bdep
ja=0 + �0���, f j�ja, �7�

where Bdep
ja=0 represents the depinning field in the absence of

current,

Bdep
ja=0 =

KNLN

�LyLz�2Ms
, �8�

and the dependence of Bdep,S�� , f j , ja� on both � j =2
f j and �
is enclosed in the function ��� , f j�,

���, f j� =
1

�0�0

�BP

eMs
�N

2
 �2 + �1 + ���2� j
2

�d
2

��N
2 − � j

2�2 + � b

mw
�2

� j
2

.

�9�

The stationary critical depinning field given by Eq. �7�
represents the minimum field required to depin the DW from
the notch for given values of �, f j, and ja. The stationary
depinning fields Bdep,S�� , f j , ja�=�0Hdep,S for DW depinning
are plotted by solid lines in Fig. 5�a� as a function of the
frequency f j of the injected current for a constant density
current of ja=1 A /�m2, and several values of the nonadia-
batic parameter �. For combinations of Be and f j below
�above� each curve of Fig. 5�a�, the DW remains pinned in
�is depinned from� the notch. The critical curve separates the
pinned �denoted as “P”� from the depinned �“D”� phase. The
stationary depinning field Bdep,S�� , f j , ja� monotonously de-
creases with increasing �, and it depicts a dip at the reso-
nance frequency �f j = fN�. The same analysis was also carried
out by evaluating the general solution �A1�, which not only
takes into account the stationary regime �A4�, but it also
includes the transient dynamics given by Eq. �A2�. The ob-
tained depinning fields Bdep�� , f j , ja� are depicted by dots in
Fig. 5�a�.

As in the stationary case, the depinning field Bdep�� , f j , ja�
depicts a pronounced dip at the resonance frequency, and it
decreases with increasing � in the whole frequency range.
The inset of Fig. 5�a� represents the difference Bdep,S−Bdep as

function of f j for several values of �. In the dc case �f j =0�,
the stationary depinning field �Bdep,S� prediction overesti-
mates the depinning field with respect to the general solution
�Bdep� because the stationary criterion does not take into ac-
count the initial velocity v�0�=−

bJ�0�
1+�2 due to the adiabatic

term. On the other hand, the stationary depinning field
�Bdep,S� becomes equal to the general case �Bdep� at the reso-
nance �f j = fN�, and both of them depict the same dependence
on the nonadiabatic parameter �, which is given by Eq. �7�.
Figure 5�b� illustrates the dependence of Bdep,S�� , f j = fN , ja�
on the nonadiabatic parameter � for several values of the
applied density current. For ja=0.75A /�m2, Bdep,S=Bdep
=4.5 mT in the perfect adiabatic limit, and it slightly de-
creases for 0
�
�. Bdep,S starts to decrease stronger when
� approaches 5�, and it becomes zero for �	12�. As ja
increases, the critical curve moves toward smaller values of
both Bdep,S and �.

We now focus on describing the depinning current
as a function of �� , f j ,Be�. From the stationary depinning
criterion ��xS�t��max=LN�, the stationary depinning current

FIG. 5. �Color online� �a� Critical depinning field Bdep�� , f j , ja�
=�0Hdep as a function of the frequency f j for a constant amplitude
of the density current ja=1 A /�m2, and several values of the nona-
diabatic parameter � predicted by the 1DM. Solid lines represent the
stationary depinning field Bdep,S�� , f j , ja� computed from Eq. �7�,
whereas dots correspond to the depinning field including both the
transient and stationary regimes Bdep,�� , f j , ja�. The inset shows the
difference Bdep,S−Bdep as a function of the frequency f j. �b� Depin-
ning field as a function of the nonadiabatic parameter � at resonance
�f j = fN� for several values of the current ja. The critical curves
separate the pinned �denoted as P� from the depinned �D� phase.
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jdep,S�� , f j ,Be� can be expressed in terms of the depinning
field at zero current Bdep

ja=0 as

jdep,S��, f j,Be� =
1

�0���, f j�
�Be − Bdep

ja=0� . �10�

The stationary depinning current jdep,S�� , f j , ja� required to
depin the DW from the notch are plotted by solid lines in
Fig. 6�a� as a function of the frequency f j of the injected
current for a constant field of Be=1 mT, and several values
of the nonadiabatic parameter 0
�
4�. For combinations
of ja and f j below �above� each curve of Fig. 6�a�, the DW
remains pinned in �is depinned from� the notch. The station-
ary depinning current jdep,S�� , f j ,Be� decreases with increas-
ing �, and it depicts a dip at the resonance frequency �f j
= fN�. The dots in Fig. 6�a� show the frequency dependence
of critical depinning current jdep when the transient dynamics
is taken into account. As in the stationary case, the depinning
current jdep�� , f j ,Be� decreases with increasing �, and it also
depicts a dip at resonance. As it is observed in the inset of
Fig. 6�a�, which depicts jdep,S− jdep versus f j, the stationary
criterion significantly overestimates the depinning current

with respect to the full solution for f j =0. However, both
jdep,S and jdep are equal at resonance. Figure 6�b� shows the
dependence of jdep,S on � at the resonance for several values
of the static field Be.

The results of former Fig. 5�a� (Fig. 6�a�) describe the
frequency dependence of Bdep �jdep� on � under constant cur-
rent ja=1 A /�m2 �under constant field Be=1 mT�. The top
graphs of Fig. 7 show the frequency dependence of Bdep for
four values of the current ja, and for both �a� �=0 and �b�
�=0.04, respectively. These results were obtained from the
general solution given by Eq. �A1� with Eqs. �A2� and �A4�,
as described in the Appendix. For combinations of Be and f j
below �above� each curve of Fig. 7, the DW remains pinned
in �is depinned from� the notch. The critical depinning field
Bdep�� , f j , ja� decreases as the amplitude of the ac is in-
creased in the whole frequency range. DW depinning can be
achieved with a minimum field of 3.4 mT ��=0� at the reso-
nance frequency for ja=1 A /�m2. As it is shown, the mini-
mum depinning field slightly decreases to 3.1 mT if � in-
creases to 0.04. If ja=2 A /�m2, the minimum depinning
field almost vanishes in a narrow frequency range around the
resonance �2.4 GHz� f j �2.7 GHz, for �=0�. This depin-
ning range of frequencies becomes wider if ja is further aug-
mented, as it is clear from Figs. 7�a� and 7�b� for ja
=3 A /�m2 and ja=4 A /�m2.

The critical depinning current jdep�� , f j ,Be� as a function
of the frequency f j is shown in the bottom graphs of Fig. 7
for �=0 �c� and �=0.04 �d�, respectively. Four different val-
ues of the external field Be are depicted. As it was expected,
the depinning threshold current decreases as the static field is

FIG. 6. �Color online� �a� Critical depinning current
jdep�� , f j ,Be� as a function of the frequency f j under constant field
Be=1 mT, and several values of the nonadiabatic parameter � pre-
dicted by the 1DM. Solid lines indicate the stationary depinning
current jdep,S�� , f j ,Be� computed from Eq. �10�, whereas dots corre-
spond to the depinning current jdep�� , f j ,Be� including both the tran-
sient and stationary regimes. The inset show the difference jdep,S

− jdep as a function of f j. �b� Depinning current as a function of the
nonadiabatic parameter � at resonance �f j = fN�. The critical curves
separate the pinned �denoted as P� from the depinned �D� phase.

FIG. 7. �Color online� Critical depinning curves as computed
from the 1DM at zero temperature. In the top panels, the critical
depinning fields Bdep�� , f j , ja� as a function of the frequency f j for
several values of the applied current ja are depicted in �a� and �b�
for �=0 and �=0.04, respectively. In the bottom ones, the critical
depinning currents jdep�� , f j ,Be� as a function of the frequency f j

are depicted in �d� and �d� for �=0 and �=0.04, respectively, for
several values of the external field Be. Each critical curve represents
the minimum field �top graphs� or current �bottom graphs� needed
to depin the DW from the notch as a function of the frequency, and
they separate the pinned �denoted as P� from the depinned �D�
phase.
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increased in the whole frequency range. Due to the amplifi-
cation of the DW oscillations, the threshold values of both
Bdep �Figs. 7�a� and 7�b�� and jdep �Figs. 7�c� and 7�d�� are
significantly reduced with respect to the dc case when the
frequency of the ac f j matches the resonance frequency fN.
For instance, if the applied field is fixed to Be=1 mT with
�=0, the minimum depinning density current is 1.5 A /�m2

in resonance, which represents a reduction by a factor of
more than 5 as compared to the dc case �see Fig. 7�c��. These
deterministic phase diagrams suggest different experimental
procedures to manipulate pinned DWs by using the concept
of the resonant amplification with low currents. For example,
a fixed amplitude of ja=2 A /�m2 is enough to promote the
DW depinning just if the frequency of the current is properly
chosen �see Figs. 7�a� and 7�b��, and the velocity of the sub-
sequent DW free propagation can be controlled by different
static external fields.

B. Thermal effects, T=300 K

The results of the previous subsection were computed at
zero temperature. They provide a reasonably accurate de-
scription of measurements made at low temperatures. How-
ever, most of the experiments are done at room temperature
T=300 K where thermal effects are important. In order to get
more realistic insight of the depinning process, thermal fluc-
tuations are included in the 1DM formalism through the ad-
dition of a random thermal force Ft�t� on the right side of
Eq. �2�. Ft�t� is uncorrelated in time and obeys a purely
Gaussian distribution with zero average value and variance
2D1D �Ref. 13�:

�Ft�t�� = 0, �11�

�Ft�t�Ft�t��� = 2D1D��t − t�� . �12�

The factor D1D represents the strength of the thermal
force, which was derived from the fluctuation-dissipation
theorem,13

D1D = �0LyLzMs
2�KBT

�0�0
. �13�

Finite temperatures introduce fluctuations in the system,
and therefore the deterministic behavior described in the
former subsection becomes stochastic. With the aim of de-
scribing how thermal fluctuations at room temperature �T
=300 K� modify the deterministic DW depinning, stochastic
equation �2�, which includes Ft�t� on the right hand side, is
numerically solved by means of a fourth-order Runge–Kutta
scheme imposing an initial velocity of v�0�=−

bJ�0�
�1+�2� .

8,13 The
temporal evolution of the DW is evaluated during a fixed
temporal window of tw=100 ns, and the probability of DW
depinning PD is determined as a function of the static mag-
netic field Be, the amplitude ja, and the frequency f j of ap-
plied current by computing 25 stochastic realizations for
each set of parameters �Be , ja , f j�.

Maps of PD at room temperature are shown in the top
panels of the Fig. 8 for ac’s of constant amplitude ja
=1 A /�m2 as a function of the frequency f j and the static
magnetic field Be. Left panel �a� corresponds to the perfect
adiabatic limit ��=0�, and the right one �b� presents the
nonadiabatic case with �=0.04. In the same manner as in the
deterministic case, the DW is thermally depinned at T
=300 K with minimum field at resonance �f j = fN�, for both
adiabatic and nonadiabatic cases. In both cases, thermal fluc-
tuations significantly reduce the minimum field, which pro-
motes DW depinning as compared to the deterministic case
�see the line with open symbols corresponding to T=0� in the
whole frequency range. At the resonance frequency, the de-
pinning field is significantly reduced as due to thermal fluc-
tuations, i.e., Bdep decreases from 3.4 mT at T=0 to 0.75 mT
at T=300 K in the perfect adiabatic limit, which represents a
reduction of the 78%. A reduction of the 80% in the depin-
ning field is observed for �=0.04 in the resonance as due to
thermal fluctuations. This analysis points out the key role of
thermal fluctuations on the DW depinning. The stochastic
results presented in Figs. 8�a� and 8�b� are in good agreement
with recent experiments: see, for example, Figs. 2�E�–2�G�
in Ref. 3, where the depinning field was efficiently reduced
by means of a train of rectangular current pulses of fixed
amplitude with a duration tuned to the characteristic period
of the DW oscillations.

The bottom panels of Fig. 8 show the probability of DW
depinning PD at room temperature for a constant field of
Be=1 mT as a function of f j and ja of the ac’s. The left panel
�Fig. 8�c�� corresponds to the perfect adiabatic limit ��=0�,

FIG. 8. �Color online� Probability of DW depinning PD at room
temperature T=300 K subjected to static fields Be and ac’s of vari-
ous amplitudes ja and frequencies f j. Adiabatic ��=0� and nonadia-
batic ��=0.04� results are depicted in the left and right columns,
respectively. Top panels �a� and �b� show PD at a constant ampli-
tude of the current of �ja=1 A /�m2� versus magnetic field Be and
frequency f j. Bottom panels �c� and �d� show PD at a constant field
�Be=1 mT� versus ja and frequency f j. Open symbols correspond to
the deterministic depinning curves shown in Fig. 7.
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and the right one �Fig. 8�d�� depicts the results for the nona-
diabatic case with �=0.04. As in the deterministic case, the
depinning current reaches a minimum value at resonance.
For the perfect adiabatic case at resonance �f j = fN�, the criti-
cal depinning current decreases from 1.6 A /�m2 at zero
temperature to 1 A /�m2 at room temperature, which corre-
sponds to a reduction of 37.5%. In the nonadiabatic case, the
critical depinning current decreases from 1.5 A /�m2 at zero
temperature to 1 A /�m2 at room temperature, which corre-
sponds to a reduction of 40%. These percentages are around
half than the one observed for the depinning field under con-
stant amplitude of the current, which indicates that thermal
fluctuations are less important on reducing the critical depin-
ning current under a fixed field.

The frequency dependence of the depinning probability
PD shown in Fig. 8 is presented in more detail in Fig. 9 for a
fixed magnetic field Be=1 mT and two different amplitudes
of the current. As can be observed, the transition from the
pinned state to the depinned one is highly selective in the
frequency domain. In particular, if the amplitude of the cur-
rent is fixed to ja=1.2 A /�m2 �Fig. 9�a��, the DW is de-
pinned with 100% of probability for frequencies in the range
2.4� f j �2.6 GHz, and PD abruptly decreases to 0 if the fre-
quency is reduced �augmented� to 1.9 GHz �3 GHz�. If the
current is increased to ja=2 A /�m2 �Fig. 9�b��, the full
probability depinning range becomes broader, but more im-
portantly, the pinned-depinned transition continues to occur
in a very narrow frequency range. This observation consti-
tutes a relevant prediction for technological applications be-
cause it indicates that the DW depinning can be achieved in
a very selective manner just by tuning the frequency of the
ac.

In order to describe the effect of the temperature on the
DW depinning, we have computed the first value of the ap-
plied field for which the probability of DW depinning is of

100% �PD=1� for each frequency f j and for different tem-
peratures. The results are depicted by means of dots in Fig.
10 for the perfect adiabatic case ��=0� when the amplitude
of the applied current is fixed to ja=1 A /�m2. These dots
present the same features than the stationary depinning field
given by Eq. �7�. Therefore, we can deduce the temperature
dependence of the depinning field in the absence of current
Bdep

ja=0�T� by fitting the stochastic results to Eq. �7�. The re-
sults of these fittings are shown in the inset of Fig. 10, which
indicates that Bdep

ja=0�T� decreases linearly with the tempera-
ture according to Bdep

ja=0�T�=Bdep
ja=0�0�−�T, where Bdep

ja=0�0�
=6.02 mT and �=5.26�10−3 mT /K. Once derived, how the
zero-current depinning field Bdep

ja=0�T� varies with T, we can
straightforwardly use it to estimate the frequency depen-
dence of the depinning field at any temperature under any ja

and �, just replacing Bdep
ja=0 by Bdep

ja=0�T� in Eq. �7�. The same
procedure is also valid for estimating the critical depinning
current by using Eq. �10�.

All previous results show that the most favorable situation
to produce DW depinning under ac electric density currents
and static magnetic fields is achieved at resonance �f j = fN�.
In order to quantify the reduction in the amplitude of the ac
with respect to the dc case, the probability of DW depinning

FIG. 9. Probability of DW depinning PD at room temperature
T=300 K as a function of f j under a fixed static field of Be

=1 mT for two different amplitudes of the applied current: �a� ja

=1.2 A /�m2 and �b� ja=2 A /�m2. Adiabatic ��=0� and nonadia-
batic ��=0.04� results are displayed by filled and open symbols,
respectively.

FIG. 10. �Color online� �a� Critical depinning fields at different
temperatures. Open symbols correspond to first field Be at which
PD=1, whereas lines represent the fittings to the stationary depin-
ning field given by Eq. �7�. The results were computed assuming
perfect adiabatic conditions ��=0�, and the amplitude of the ac is
fixed to ja=1 A /�m2. �b� Temperature dependence of the depin-
ning field at zero current �Bdep�T , ja=0��Bdep

ja=0�T�� obtained from
the fittings to the stationary depinning curves.
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at room temperature is depicted in Fig. 11 as a function of ja

and Be. Top panels correspond to the dc case �f j =0�, whereas
the bottom ones were computed by ac’s in the resonance
�f j = fN�. In the dc case, PD is highly sensitive to the nona-
diabatic parameter, and the critical current increases monoto-
nously when the field is reduced. For ac’s at resonance, the
results do not depend very much on the nonadiabatic correc-
tions, and for both adiabatic ��=0� and nonadiabatic ��
=0.04� cases, the critical depinning current decreases linearly
from 1.6 A /�m2 to 0 when Be is increased from
0.05 to 3.85 mT. Therefore, the resonant DW depinning can
be achieved by means of currents significantly lower than the
dc case. This low-current operation has important conse-
quences from a technological point of view because it allows
to prevent unwanted effects due to Joule heating.24 Our re-
sults of Fig. 11 can be also compared with recent experimen-
tal measures by Thomas et al. �see Figs. 3�A�–3�C� in Ref.
30�. Their experiments indicate that even in resonance the
DW remains trapped in the notch at the end of the sequence
of rectangular pulses in the absence of magnetic field. Al-
though the dimensions of the analyzed strip, and both the
shape and size of the notch are quite different from our case,
this observation is qualitatively consistent with our results
for the perfect adiabatic case �see Fig. 11�c��, where a mini-
mum field of 0.05 mT was required to promote the adiabatic
depinning even in the resonance. Apart from this small field
range, which depends on the particular shape and depth of
the notch, the reduction of the depinning current at resonance
predicted by our stochastic 1DM is in good qualitative agree-
ment with the experimental results.

IV. COMPARISON WITH THE EXPERIMENTS:
EFFECTIVE NONADIABATIC PARAMETER

During the revision process of this manuscript, an experi-
mental work, focused on the resonant DW depinning at low
temperature, was published by Bedau et al.31 They experi-
mentally measured the depinning field of a transverse DW as
function of the frequency of the injected current considering
a triangular notch placed between two electrical contacts in a
Permalloy ring �Ms=8�105 A /m, A=1.3�10−11 J /m, �
=0.02, and P=0.7�. Their observations show similar features
to our theoretical results. Therefore, and in order to perform
a quantitative comparison with these data, a straight strip
with the same cross section �200�25 nm2� and similar notch
geometry �a 300 nm wide and 150 nm deep triangular notch�
than in the experiments by Bedau et al.31 has been consid-
ered for the micromagnetic simulations �see Fig. 12�a��. A
31 nm wide transverse wall is deduced when it is positioned
in the center of the notch, which corresponds to an effective
DW mass of mw=1.84�10−23 kg. Assuming that the DW
width does not change during the depinning process with
respect to its value at rest, the experimental values by Bedau
et al. �see the inset of Fig. 2�a� in Ref. 31� can be straight-
forward and accurately fitted to Eq. �7�. The comparison is
displayed in Fig. 12�b�, and from this fitting we obtain an
effective nonadiabatic parameter of �ef f =4.07�0.18. Note
that all material parameters are realistic, and �ef f is the only
fitting parameter here.

The effective nonadiabatic parameter ��ef f =4.07�0.18�
deduced from the fitting of the experimental values is 2 or-

FIG. 11. �Color online� Probability of DW depinning PD at
room temperature T=300 K as a function of Be and ja. Top panels
correspond to dc’s, and the bottom ones were computed for the
resonance f j = fN. Adiabatic ��=0� and nonadiabatic ��=0.04� re-
sults are displayed at T=300 K in the left and right panels,
respectively.

FIG. 12. �Color online� �a� Schematic representation of a trans-
verse DW inside a triangular notch �150 nm high and 300 nm wide�
in a Permalloy strip with rectangular cross section �200�25 nm2�.
�b� Depinning field as a function of frequency for a constant current
density of ja=0.02 A /�m2. The experimental values by Bedau
et al. �Ref. 31� are depicted by black squares, and the red line
represents the fitting of these experimental values to the stationary
depinning field given by Eq. �7� using the following parameters:
Ms=8�105 A /m, A=1.3�10−11 J /m, �=0.02, P=0.7, LN

=400 nm, �0=31 nm, and mw=1.84�10−23 kg. The value of the
elastic constant KN=1.074�10−3 N /m was obtained from Eq. �8�
by using the experimental values for the depinning field in the ab-
sence of current, and the extent of the pinning potential.
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ders of magnitude larger than the predictions done by Zhang
and Li9 and Thiaville et al.,10 where the nonadiabatic param-
eter was estimated to be around 0.04 from �=�ex /�sf, being
�ex the typical s-d exchange time ��ex=� /SJex, with Jex rep-
resenting the exchange interaction energy�, and �sf the char-
acteristic spin-flip time. The origin of this contribution to the
nonadiabatic torque is the finite mistracking angle between
the conduction electron spin and the local magnetization in-
side the wall.9 On the other hand, the theoretical description
of Tatara and Kohno7 puts forward two effects of an electric
current across a DW, called spin transfer and momentum
transfer, respectively. The spin transfer has the same form
than the perfect adiabatic term, and it is expected to be domi-
nant for thick DWs. On the other hand, the momentum trans-
fer enters the integrated DW dynamics similarly to the non-
adiabatic term proposed in Refs. 9 and 10, and it was shown
to be governed by the DW resistance RDW. For the case of
the rigid DW approach, Tatara et al.36 have pointed out that
the nonadiabatic product P� should be replaced by the effec-

tive one P�ef f = P�+ R̃, where R̃=�0e2n�LyLz�RDW /� repre-
sents the dimensionless DW resistivity, and n	a−3 is
the electron density, being a the lattice constant. Considering
a lattice constant of a=0.226 nm �Ms=gS�B /a3	8
�105 A /m, where S	1 /2, g	2�, and �=0.04, we can de-
duce the DW resistance from the estimated value of the ef-
fective nonadiabatic parameter �=4.07, which yields RDW
=0.86 m�. This value is of the same order of magnitude
than the one deduced in the experiments of Saitoh et al.27 for
the resonant DW oscillations driven by ac’s in a different
system. The analysis reveals that the momentum transfer
dominates over the spin transfer, and it also indicates that the
nonadiabaticity is governed by the DW resistance. On the
other hand, it would be also interesting to measure the de-
pinning field as a function of the frequency at different tem-
peratures, which could help us to estimate the temperature
dependence of both the polarization factor and nonadiabatic
parameter. This is far from the scope of this work and it will
be treated elsewhere.

V. CONCLUSIONS

In summary, we have firstly presented a micromagnetic
characterization of the pinned DW dynamics inside a pinning
potential driven by ac’s of several amplitude and frequencies,
and also assisted by a static field. After a short transient
period, the DW reaches a stationary regime describing oscil-
lations with constant amplitude at the same frequency of the
driving current. It was found that this amplitude of the DW
oscillations increases linearly with the magnitude of the ap-
plied current, and it can be resonantly amplified if the driving
frequency approaches the characteristic frequency of the pin-
ning potential. Based on these micromagnetic observations,
the deterministic DW depinning was analytically evaluated
by means of the one-dimensional description, which treats
the DW as a rigid particle inside a parabolic potential well.
This simple description allows us to understand the resonant
amplification of the pinned DW oscillations observed in the
previous micromagnetic analysis. The predictions of the
1DM for the DW depinning were studied in several cases

both at zero and at room temperature. In general, thermal
fluctuations favor the DW depinning with respect to the de-
terministic case, but more importantly, a noticeable reduction
of the required depinning current and field was observed in
the resonance with respect to the dc case. This fact could be
of relevance for technological applications because it shows
that DW depinning is with much more reduced current than
in the dc case, avoiding undesirable effects associated with
Joule heating. The probability of DW depinning changes
abruptly from 0% to 100% in a very narrow range of fre-
quencies at room temperature, which constitutes another rel-
evant result from a technological point of view because it
makes the DW depinning highly selective in the frequency
range. On the other hand, the formalism here developed can
be used to gain understanding of recent experimental results,
and in particular, the effective value of the nonadiabatic pa-
rameter during the depinning process can be inferred. On the
other hand, the temperature dependence of both the polariza-
tion factor and the nonadiabaticity could be deduced by us-
ing the formalism here developed to fit the experimental re-
sults of the depinning process measured at different
temperatures.
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APPENDIX A: ANALYTICAL SOLUTION

Equation �2� is a second-order differential equation de-
scribing the damped DW dynamics driven by the external
forces �5� and �6� inside of a parabolic potential well. The
general solution of Eq. �2� has a transient xT�t� and a station-
ary xS�t� part,

x�t� = xT�t� + xS�t� . �A1�

The homogeneous differential equation of motion is the
remaining equation �2� in the absence of external driving
forces �Fe,s=Fe,d=0�, that is, for Be= japp�t�=0. The transient
solution xT�t� is the solution to this homogeneous differential
equation, which has to be combined with the particular solu-
tion xS�t� and forced to fit the initial conditions of the prob-
lem. The form of this transient solution is that of the free
damped oscillator, which can be underdamped ��b /2mw�2

	�N
2 �, overdamped ��b /2mw�2��N

2 �, or critically damped
��b /2mw�2=�N

2 �. It is easy to verify that for our parameters,
the underdamped condition is fulfilled. Therefore, the tran-
sient part xT�t� can be written as

xT�t� = ATe−�b/2mw�t cos��Tt + �T� , �A2�

where �T is given by

�T =
�N
2 − � b

2mw
�2

�A3�

and AT and �T are arbitrary constants, which depend on the
initial conditions.
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Due to the exponential factor in Eq. �A2�, the amplitude
of the transient oscillations decays very fast, and for suffi-
ciently larger times, the position reaches a stationary regime
consisting of forced oscillations of constant amplitude and
varying in time at the same frequency f j as the ac driving
force. The stationary solution xS�t� is the particular solution
of the inhomogeneous differential equation of motion �Be
�0, japp�t��0�. It is determined by the driving forces �5�
and �6� independently of the initial conditions. Under the
action of static fields Be and oscillating ac’s in the form
japp�t�= ja cos�2
f jt�, the particular solution xS�t� of Eq. �2�
is given by

xS�t� = xeq,H + AS cos�� jt − �S� , �A4�

where � j =2
f j, and xeq,H represents the equilibrium position
reached under static magnetic field, which is given by

xeq,H =
FH,s

KN
=

��0LyLz�2MsHe

KN
. �A5�

AS is the amplitude of forced oscillations in the stationary
regime, and �S represents the phase between the applied cur-
rent japp�t� and the DW position x�t� in the stationary regime.
By imposing the particular solution �A4� in the general equa-
tion �2�, AS and �S can be expressed as

AS = −
1

mw
��0LyLz�

2Ms

�0�0

�BP

eMs
ja
 �2 + �1 + ���2� j

2

�d
2

��N
2 − � j

2�2 + � b

mw
�2

� j
2

, �A6�

�S = arctan
� j� �b�d − �1 + ���mw��N
2 − � j

2�
mw��d��N

2 − � j
2� + �1 + ���b� j

2�� ,

�A7�

where �d=�0Ms�Nz−Ny� is the angular frequency of the
magnetization oscillations around the demagnetizing field in-
side the wall.

Finally, AT and �T are real constants, which have to be
determined from the initial conditions. Based on our micro-
magnetic simulations, the initial DW position and velocity
are x�0�=0 and v�0�=−

bJ�0�
1+�2 , respectively. Imposing these

initial conditions in the general solution �A1� with Eqs. �A2�
and �A4�, the constants AT and �T can be expressed in terms
of the stationary amplitude AS, the stationary phase �S, and
the natural frequency of the transient �T as follows:

�T = arctan
 1

�T
�v�0� − � jAS sin��S�

�xeq,H + AS cos��S��
−

b

2mw
�� , �A8�

AT = −
1

cos��T�
�xeq,H + AS cos��S�� . �A9�

The general solution �A1� with Eqs. �A2� and �A2� de-
scribes the temporal evolution of the DW position inside an
infinite harmonic potential well from a linearized one-
dimensional point of view. Our parabolic potential has a fi-
nite extension given by LN. Except where the contrary is
said, the deterministic depinning curves were computed by
evaluating the general solution �A1� with Eqs. �A2� and
�A4�, and the DW depinning takes place at a given time if
x�t��LN. Once depinned from the notch, the DW freely
propagates with an average velocity given solely by the ex-

ternal field ��v�T� 1
T�0

Tv�t�dt=
�0�0He

� � because the averaged
effect of the oscillating current is zero in a period. In the
particular case of dc’s �� j =0�, �S=0, the stationary ampli-

tude given by Eq. �A6� reduces to AS�f j =0��xeq,j �
Fj,s

KN
,

where xeq,j represents the terminal equilibrium position
reached under dc, which evidently is only no null for finite
nonadiabatic corrections ���0�, in agreement with micro-
magnetic simulations.
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