
Observations outside the light cone: Algorithms for nonequilibrium and thermal states

M. B. Hastings1,2

1Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
2Kavli Institute of Theoretical Physics, University of California, Santa Barbara, California 93106, USA

�Received 16 January 2008; published 9 April 2008�

We apply algorithms based on Lieb-Robinson bounds to simulate time-dependent and thermal quantities in
quantum systems. For time-dependent systems, we modify a previous mapping to quantum circuits to signifi-
cantly reduce the computer resources required. This modification is based on a principle of “observing” the
system outside the light cone. We apply this method to study spin relaxation in systems started out of equi-
librium with initial conditions that give rise to a very rapid entanglement growth. We also show that it is
possible to approximate time evolution under a local Hamiltonian by a quantum circuit whose light cone
naturally matches the Lieb-Robinson velocity. Asymptotically, these modified methods allow a doubling of the
system size that one can obtain as compared to a direct simulation. We then consider a different problem of
thermal properties of disordered spin chains and use quantum belief propagation to average over different
configurations. We test this algorithm on one-dimensional systems with mixed ferromagnetic and antiferro-
magnetic bonds, where we can compare to quantum Monte Carlo, and then we apply it to the study of
disordered, frustrated spin systems.
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I. INTRODUCTION

Matrix product and density-matrix renormalization group
�DMRG� methods provide one of the most powerful ways of
simulating one-dimensional quantum systems. In addition to
ground state properties,1 they have been extended to thermal
and open systems2 and dynamical problems.3 The reason for
the success of these algorithms is that in many cases the
appropriate quantum state can be well approximated by a
matrix product state, giving a very compact representation of
the state of the system.

In some cases, we even have theorems that quantify the
accuracy of matrix product states. For ground states of local
quantum systems with a gap, the ability to represent ground
states as matrix product states follows from bounds on the
entanglement entropies.4 Related results are available for
thermal systems5,6 and for nonequilibrium states obtained by
starting with a factorized state and evolving under a local
Hamiltonian for a time t; in the first case, the bond dimen-
sion needed to get a good matrix product approximation to
the desired state exponentially scales in �, while in the sec-
ond case, it scales exponentially in t.7 The two results5,7 are
constructive proofs, which give an algorithm to find the ma-
trix product state. All of these constructive proofs rely
heavily on Lieb-Robinson �LR� bounds.8–11

In contrast to these constructive proofs, the matrix prod-
uct algorithms used in practice are variational: they involve
optimizing over different matrix product states to find the
best one. This works well because in many practical cases
the entanglement grows much more slowly than the upper
bounds set by theory. For example, systems described by
conformal field theory have an entanglement entropy grow-
ing only logarithmically with system size,12 while the area
law bound4 gives no useful result for these systems due to
the absence of a gap. Similarly, for many initial conditions,
evolution under a local Hamiltonian gives an entanglement
entropy growing only logarithmically in time13–15 while the
theoretical upper bound gives an entanglement entropy
growing linearly in time.16

In this paper, we argue that there are many situations in
which algorithms based on Lieb-Robinson bounds are the
best technique. We first look at the case of time evolution in
systems out of equilibrium. Here, there are initial conditions
for which the entanglement entropy is known to grow lin-
early in time,17 in accordance with conformal field theory
predictions.18 Roughly speaking, logarithmic entropy growth
tends to occur in cases where we can divide the chain into a
small number of subchains such that the initial state is an
eigenstate of the Hamiltonian on each subchain; for example,
starting an XXZ spin chain in a state in which all the spins on
the left half of the chain are up and all the spins on the right
half of the chain are down leads to a logarithmic entropy
growth.15 On the other hand, the linear entropy growth tends
to occur in cases where the initial state differs from an eigen-
state of the Hamiltonian on every subsystem of the full spin
chain. For example, starting an XXZ spin chain in an initial
condition in which the spins alternate between up and down
�a Néel state, the ground state when the Ising term is the only
term in the Hamiltonian� leads to a linear entropy growth.17

For a system with linear entropy growth, matrix product
methods will require a bond dimension growing exponen-
tially in time to obtain accurate results. At this point, both
variational matrix product and constructive, Lieb-Robinson-
based methods require resources growing exponentially in
time. The question, then, is how to obtain the smallest expo-
nential. To some extent, the Lieb-Robinson-based methods
�such as Ref. 7 and the methods below� are the “worst case”:
the bond dimension depends on theoretical upper bounds for
arbitrary local Hamiltonians, while the matrix product meth-
ods can adaptively find better representations. On the other
hand, there are some disadvantages to matrix product meth-
ods. To get a rough idea of the resources required, let us
consider a system of N spins, each of spin 1 /2, with a local
Hamiltonian. The simplest algorithm to simulate this system
for a time t involves writing down the initial condition in
some basis and then directly simulating it �we discuss below
different methods for doing this�, which requires resources to
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scale as 2Nt using sparse matrix methods. A matrix product
algorithm can avoid truncation error for this system by using
matrices with a bond dimension of 2N/2.19,20 However, the
algorithm must then perform singular value decompositions
and eigenvalue calculations, which takes a time that scales as
the cube of these matrices and, hence, of order 23N/2, which
is slower. Of course, the matrix product methods are really
only useful if they are able to represent the system with a
smaller bond dimension. In this case, though, even if such a
representation exists, the algorithm must find it, and this can
pose a problem. The algorithm for a simulation of nonequi-
librium systems depends on breaking the time evolution into
a series of small Trotter steps; if the Trotter steps are too
long, this can lead to Trotter error, while if they are too short,
the truncation error can grow rapidly: even if there is a good
state, the algorithm may not find it.15

We can use this scaling of the difficulty with N to get an
idea of the scaling of computation effort with time, using a
Lieb-Robinson bound on the group velocity, vLR. Suppose
we wish to compute the expectation value of a local observ-
able, such as a spin on a site, at a time tf, starting from a
factorized state at time t=0. The number of spins in the past
light cone of this spin is 2vLRt, and the Lieb-Robinson
bounds imply that the effect of spins outside the light cone is
exponentially small. Thus, it suffices to simulate only the
dynamics of the N=2vLRtf +O(log���) spins closest to the
given spin in order to compute the expectation value to an
accuracy �. This requires an effort scaling exponentially in
time as t222vLRt. Similarly, if the entanglement entropy grows
linearly in time, the matrix product methods also require an
effort scaling exponentially in time.

Our main result in this paper is the light-cone quantum
circuit algorithm, which is an application of the Lieb–
Robinson bound that allows us to simulate the evolution of
local observables with resources growing asymptotically
only as Nt2vLR by some statistical sampling. This allows
twice as large systems as the direct method. We analyze the
entropy growth in these systems and argue that matrix prod-
uct methods are also less efficient for long time simulation.
We apply the light-cone quantum circuit algorithm then to
the problem of spin relaxation in spin chains started in the
Néel state. The physical idea behind the light-cone quantum
circuit algorithm is as follows: to find the state of a given
spin at a time tf, we only have to track the dynamics within
the past light cone of the spin. For times t close to zero, the
past light cone includes roughly 2vLRtf spins but, at these
early times, the entanglement is small and, hence, the com-
putational effort is less. For times t close to tf, the past light
cone includes a few spins and, hence, is easier to simulate.

The paper is organized as follows. We first derive the
light-cone quantum circuit algorithm. We then apply it to
spin relaxation and we study oscillations of the central spin,
decay of the envelope of the oscillations, and also seemingly
random oscillations of the central spin in chains where
boundary effects become important. We then derive a related
quantum circuit method, the corner transfer quantum circuit,
which may be useful for studying the evolution of global
observables in highly entangled nonequilibrium states.

We then turn to a different problem, presenting one other
application of the Lieb-Robinson methods, using the quan-

tum belief propagation algorithm21 to study thermal states in
disordered systems. The quantum belief propagation algo-
rithm explicitly constructs a matrix product state for a ther-
mal quantum system. While it manipulates operators, rather
than states, and thus can be computationally expensive, it has
other advantages. It has no Trotter error, which makes it fast
and accurate at high temperatures: it can obtain quantities
such as the susceptibility peak to higher accuracy by using
fewer resources than methods such as transfer matrix
DMRG,22 although at low temperatures it breaks down, with
the resources required scaling exponentially with the tem-
perature. In this case, the exponential scaling with the tem-
perature is again related to a linear relationship between a
time scale, in this case �=1 /T, and a length scale. It can be
applied to random systems, where transfer matrix DMRG
cannot be used because of a lack of translation invariance. A
good test of variational matrix product2 methods on this kind
of system is lacking, so we cannot compare them here. We
apply the quantum belief propagation algorithm to two ran-
dom systems, one without frustration, where we can compare
to quantum Monte Carlo, and one with frustration, where
Monte Carlo methods are not applicable.

II. QUANTUM CIRCUIT METHODS

In this section, we present the various quantum circuit
methods. We begin by reviewing previous work and then we
derive the light-cone quantum circuit algorithm and apply it
to a problem of spin relaxation. We then use previous results
on the entanglement entropy growth to estimate the compu-
tational resources required for different approaches to this
problem and, finally, we present the corner transfer quantum
circuit method, an extension which allows access to global
quantities.

A. Background

To understand our algorithm, we first review the ideas in
Ref. 7, which give a construction of a matrix product opera-
tor approximation to the time evolution operator, exp�−iHt�,
using resources exponential in t. We consider a local Hamil-
tonian

H = �
i

hi, �1�

where each i acts on sites i , i+1. This Hamiltonian obeys a
Lieb-Robinson bound: given any operator O that has support
on a set of sites X, the operator exp�iHt�O exp�−iHt� can be
written, with exponentially small error, as an operator acting
on the set of sites i within a distance vLRt of X, where vLR is
the Lieb-Robinson group velocity.

To simulate the system for a time t, we divide the system
into blocks of length l, where l is slightly larger than 2vLRt
�the error in the approximation will be exponentially small in
l−2vLRt�. We then let H=H0+H�, where H0 is the sum of the
Hamiltonians on each block and H� is the Hamiltonian con-
necting the blocks as follows:

H0 = �
k

�
i=kl+1

i��k+1�l−1

hi, �2�
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H� = �
k

hkl, �3�

where the sum ranges over integers k.
We then write

exp�− iHt� = �T exp�− i�
0

t

exp�− iH0t��H� exp�iH0t����
�exp�− iH0t� , �4�

where T denotes that the exponential is time ordered. The
operator exp�−iH0t� is equal to the product 	kUk, where Uk
is a unitary operator acting on sites kl+1, kl+2, . . . ,kl:

Uk = exp�− i �
i=kl+1

i��k+1�l−1

hit� . �5�

Using the Lieb-Robinson bounds, we can approximate
exp�−iH0t��hkl exp�iH0t�� by an operator hkl�t��loc,
which has support on sites kl− l /2+1, . . . ,kl+ l /2−1
for 
t�
� t and for l�vLRt. Then the operator
T exp�−i�0

t exp�−iH0t��H� exp�iH0t�� can be approximated
by a product 	kVk, where

Vk = T exp�− i�
0

t

hkl�t��loc� . �6�

The key in this construction is that the intervals
kl− l /2+1, . . . ,kl+ l /2−1 do not overlap for different k’s.
This construction expresses the time evolution as a quantum
circuit:

exp�− iHt� � 	
k

Vk	
k

Uk. �7�

The support of the operators Uk and Vk and the circuit is
shown in Fig. 1.

Precise error bounds can be given by using Lieb–
Robinson bounds for the error in Eq. �7�. To get an
error of order � in the propagator �7�, we only need to take
l=2vLRt+O(log�N /��). In what follows, we will not make
detailed error estimates, since Lieb-Robinson error estimates
are fairly simple and are, by now, standard in the literature.
When we say that it suffices to take a length scale “of order”
vLRt to obtain an approximation to a given local quantity, we
mean that by taking the length scale vLRt+O(log�N /��), we
can obtain an error of order � in the state. When we are
computing expectation values of local quantities to obtain
an error of order �, we need a length scale
vLRt+O(log�vLRt /��), so that the error bound does not de-
pend on N in this case.

Suppose we want to apply the quantum circuit procedure
to compute the time evolution of some state �0. For simplic-
ity, let �0 be a factorized state �later we will discuss the case
where �0 is a matrix product state both in this procedure and
by using our algorithm, and we find that using the idea of
“observation” discussed below the case of matrix product
state initial conditions presents no additional difficulty�. The
operator Uk is an operator acting on 2l sites. Any such op-
erator can be written as a matrix product operator with a
bond dimension equal to 42l/2=22l.19 This maximum bond

dimension is achieved halfway across the interval of length
2l, while at any point a distance d from one of the ends of the
interval, the bond dimension is only 2d, as shown in Fig. 1.

The same holds for Vk, and so the maximum product of
bond dimensions across any bond is 22l �a slightly worse
estimate of 24l was found for this construction in Ref. 7,
since the fact that the bond dimension may vary with posi-
tion was not taken into account�.

There are several problems, however, with implementing
the above method in practice, and it is these problems that
we overcome with our methods: the light-cone quantum cir-
cuit method and the corner transfer quantum circuit method.
The first method is most appropriate for computing local
quantities �such as a spin or energy expectation value�, while
the second method is most appropriate for finding a good
global approximation to the ground state.

The first problem is that operator equations of motion are
computationally expensive in practice. To this end, we will
modify the procedure to deal only with state vectors, rather
than operators. The second problem is that the velocity of the
quantum circuit does not obviously match the Lieb–
Robinson velocity in the following sense: given arbitrary op-
erators Uk and Vk, supported as described above, the product
	kVk	kUk can propagate information by a distance of 2l in
each time step. Since l is roughly vLRt, this means that such
a quantum circuit could have an effective velocity of roughly
2vLR. Of course, the operators Uk and Vk are not arbitrary
operators, but still we would like to fix this problem; we will
show how to do this with the corner transfer quantum circuit
method below, which also leads to improved estimates on the
maximum matrix product state dimension needed.

However, the real problem with this method is that it does
not lead to any improvement over a naive simulation when it
comes to computing local observables. The main problem we
consider in this section is the following: we start a spin chain
at time t=0 in a factorized state �0 and then evolve it under
a local Hamiltonian to a final time tf, at which point we wish
to compute some local observable, such as Si

z, the
z-expectation value of spin i. By the Lieb-Robinson bounds,
we can approximate Si

z�t� by considering only a subchain of
the full chain: we consider only sites i− l , . . . , i+ l, where l is

4

1 2 3 4 5 6 7 8 9 10 11 12

U U U1 2 3

4 16 4

V1 V2
44 16

4 16 4 4 16 4 4 16

FIG. 1. Support of the operators Uk and Vk and the quantum
circuit for N=12 and l=4. The small numbers at the bottom of
operators Uk and Vk represent the bond dimensions required to rep-
resent these operators as matrix product operators; their maximum
product across any bond is 16=4l/2.
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slightly larger than vLRtf. We then define �� to be the appro-
priate factorized state on this subchain and evolve �� for a
time tf using the Hamiltonian H� acting on the subchain.
We then compute ���
exp�iH�tf�Si

z exp�−iH�tf�
���. Using
sparse matrix methods to compute the time evolution of ��,
this requires a computational effort of order l22l, which
scales as 22vLRtf. The quantum circuit method discussed
above would also require simulations on intervals of length
2l and, hence, lead to no improvement when computing this
local quantity.

B. Light-cone quantum circuit algorithm

We now show how to reduce the computational effort to
an amount of order 2vLRtf, which allows the time scale to be
twice as large, by combining Lieb-Robinson bounds with
statistical sampling. While we focus on this section on start-
ing in a factorized state, later we will discuss the case of
starting in a matrix product state.

We now derive our algorithm, which we call the light-
cone quantum circuit method, as it avoids keeping track of
certain degrees of freedom outside the light cone by making
certain observations to reduce the computational effort. We
first define a subchain of length 2l+1 and an initial state ��
on that subchain as above. We label the sites in the subchain
by −l , . . . ,0 , . . . , + l. We let H� be the Hamiltonian on the
subchain and we write

H� = HL + HR + HB, �8�

where HL acts on the left half of the chain �sites −l , . . . ,−1�,
HR acts on the right half of the chain, and the boundary
Hamiltonian HB acts on sites −1,0 ,1. Thus, �HL ,HR=0. We
define HM to act on the middle half of the chain: it is sup-
ported on sites −l /2, . . . , + l /2 �we pick l even for simplic-
ity�; see Fig. 2.

Using the Lieb-Robinson bounds in the same way as in
the quantum circuit method above, we can approximate the
time evolution for a time ti= tf /2 by

���tf/2� = exp�− iH�tf/2���

� exp�− iHMtf/2�exp�− i�HM − HB�tf/2

�exp�iHLtf/2exp�iHRtf/2��. �9�

Note that the decomposition �9� is only good for times of
order tf /2. We wish to compute the expectation value of S0

z ,
or any other observable on site 0, at time tf. Again, by using
the Lieb-Robinson bounds, the expectation value of this is
approximately equal to

����tf/2�
exp�iHMtf/2�O exp�− iHMtf/2�
���tf/2�� .

�10�

Combining Eqs. �9� and �10� and our use of the Lieb–
Robinson bounds to approximate the expectation value of O
on the full chain by its expectation value on the subchain, we
have

��0
O�t�
�0� � ��̃
O
�̃� , �11�

where

�̃ = exp�− iHMtf/2���

� exp�− iHMtf�exp�− i�HM − HB�tf/2

�exp�iHLtf/2exp�iHRtf/2��. �12�

The operator HM −HB is a sum of two operators, HL� and HR� ,
where HL� acts on sites −l /2, . . . ,−1 and HR� acts on sites
+1, . . . , + l /2. Therefore,

�̃ = exp�− iHMtf/2���

� exp�− iHMtf��exp�iHL�tf/2exp�− iHLtf/2�

��exp�iHR�tf/2exp�− iHRtf/2���. �13�

Equation �13� is not yet useful computationally, since it
will require an effort of order ltf2

2l to compute the evolution
of the state ��. We now describe the light-cone quantum
circuit method to compute the expectation value: first, write

�� = �L � �C � �R, �14�

where �L and �R are states on the left and right halves of
the chain, and �C is a state on the center site. We compute
the states

�L� = �exp�iHL�tf/2exp�− iHLtf/2��L �15�

and

�R� = �exp�iHR�tf/2exp�− iHRtf/2��R, �16�

which require an effort of order ltf2
l. Next, we introduce

a complete orthonormal basis of states on the sites
−l , . . . ,−l /2−1, which we label 	L�
�, and another complete
basis of states on sites l /2+1, . . . , + l, labeled 	R�
�. Then
we decompose �L� and �R� as

�L� = �



A�
�	L�
� � �L�
� ,

�R� = �



A�
�	R�
� � �R�
� , �17�

where �L�
� is some normalized state on sites −l /2, . . . ,−1,
and �R�
� is some normalized state on sites +1, . . . , + l /2.
The states 	L�
� need not be eigenvectors of any reduced
density matrix and the states �L�
� need not be orthogonal to
each other, as Eq. �17� is not a Schmidt decomposition. Thus,
from Eqs. �13� and �15�–�17�,

M

−l −l/2 −1 0 1 l/2 l

HL HR

H’L H’R

H

FIG. 2. Support of the operators HL, HR, HM, HL�, and HR� .
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��̃
O
�̃� = �

L

�

R


A�
L�
2
A�
R�
2E�O,
L,
R� , �18�

where

E�O,
L,
R� = ��L�
L� � �C � �R�
R�

�
exp�iHMtf�O exp�− iHMtf�


��L�
L� � �C � �R�
R�� . �19�

Equation �18� is at the heart of the light-cone quantum circuit
approach. Numerically, we proceed as follows: first, we com-
pute 
A�
L�
2 and 
A�
R�
2 for all 
L and 
R. This requires an
effort of order 2l. We then do a statistical sampling: we ran-
domly pick an 
L and an 
R according to the probability
distributions 
A�
L�
2 and 
A�
R�
2, and we compute the av-
erage E�O ,
L ,
R�. We repeat this procedure many times to
average over different choices of 
L and 
R.

The computational effort required then scales only as l2l,
or roughly t2vLRt as claimed. Asymptotically, this allows
double the time. The time scales linearly in the number of
iterations of statistical sampling, which we denote Nit. How-
ever, if O has a bound operator norm, then E�O ,
L ,
R� has
bound moments, and so by the central limit theorem, the
number of iterations required still scales only polynomially
in the error.

C. Results on nonequilibrium dynamics

We now discuss results from this method as well as some
implementation details. We consider an evolution under the
XXZ Hamiltonian as follows:

H = �
i

�Si
xSi+1

x + Si
ySi+1

y + �Si
zSi+1

z � . �20�

For �=0, this problem can be mapped to free fermions by a
Jordan-Wigner transformation and solved exactly. We use
this as a check on our results later.

We used as a starting point the Néel state, with spins
alternating up and down, and we computed the time depen-
dence of Sz�t� for the central spin. The main numerical effort
is to compute the evolution of a state under a Hamiltonian,
which we did by using a combination of short steps with a
series method. For example, to compute exp�−iHLt��L, we
divide the time t into shorter intervals of time t0 and compute
exp�−iHLt0��L=�L− it0HL�L− �t0

2HL
2 /2!��L+¯, keeping a

fixed number of terms in this series. We then repeat this
procedure �t / t0� times. To obtain negligible error for a chain
of 20 sites with t0=1 would require going to roughly 40th
order for 
�
�1, while for �=2, slightly longer series were
required. A more sophisticated way of doing the time evolu-
tion would be to build a tridiagonal Hamiltonian in the Kry-
lov space spanned by �L ,HL�L , . . . ,HL

k�L for some k, and
then to evolve exactly with this Hamiltonian.23

Another important point of numerical simulation is the
use of symmetries. We can choose the states 	L�
� and
	R�
� to be eigenstates of total Sz. Then, since the state �� is
an eigenstate of total Sz, the state �L�
L� � �C � �R�
R� is
also an eigenstate of total Sz, which allows us to use symme-
tries when computing the evolution of the state. Since most

of the numerical time is consumed by statistically sampling
E�O ,
L ,
R�, we build the sparse matrix for the Hamiltonian
HM in each spin sector once, before doing the sampling, and
then run the sampling.

It is also possible, although we did not implement it, to
take into account reflection symmetry. Since 
L and 
R are
independently chosen, the state �L�
L� � �C � �R�
R� does
not have reflection symmetry. However, if both the Hamil-
tonian HM and the operator O=Si

z have reflection symmetry,
then it is useful to write

�L�
L� � �C � �R�
R� = �S�
L,
R� + �A�
L,
R� ,

�21�

where �S and �A are symmetric and antisymmetric states.
Then,

E�O,
L,
R�

= ���S�
L,
R
exp�iHMt�O exp�− iHMt�
���S�
L,
R��

+ ���A�
L,
R
exp�iHMt�O exp�− iHMt�
���A�
L,
R�� ,

�22�

and so we can statistically sample one of the two terms on
the right-hand side of Eq. �22�. Note that on each iteration,
we randomly chose an 
L and an 
R and then randomly
chose a term in Eq. �22�, rather than repeatedly sampling Eq.
�22�.

As the algorithm is described above, the initial computa-
tion of the states �L�
� and �R�
� depends on the final time.
For each final time t, we have to compute a new set of states
�L�
� and �R�
� and then do the statistical sampling. How-
ever, in fact, we can speed up the algorithm with a slight cost
in accuracy: we fix a given tf and, on each statistical sample,
we compute the state

exp�− iHMtf�
�L�
L� � �C � �R�
R�� �23�

to evaluate the expectation value in Eq. �19�. We then act on
this state with the operator exp�iHMt� for some small t. We
then use this new state to compute an approximation to the
expectation value at time tf −t. We then act on that state
with exp�−iHMt� to compute an approximation to the ex-
pectation value at time tf −2t, and so on. Since the compu-
tational cost of performing the time evolution of a state un-
der a Hamiltonian is proportional to the time evolved, these
additional steps are relatively cheap, for t� tf. There is a
small cost in accuracy: in general, to compute expectation
values at a time t, we can do the initial evolution for a time
ti, and then evolve further for time t− ti. To make the effect of
boundary conditions as small as possible, we would like to
have both ti and t− ti as small as possible, which is why
above we chose to evolve for a time ti= tf /2. However, if
t� tf, then we are not far away from the ideal choice of ti
by initially evolving for time tf /2 and then evolving for time
tf /2−t. We followed this procedure in the numerical work
below, with t=0.25 and taking tf to be spaced with integer
steps using t0=1. This accounts for some of the slight kinks
in the curves after every integer value of t.

The spin-wave velocity of Hamiltonian �20� for ��1 is
given by
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vsw = ��/2�sin���/� , �24�

where cos���=�.24 On the other hand, in the development
above, we used a Lieb-Robinson velocity vLR, where

vLR � vsw. �25�

Using the Lieb-Robinson bounds, we showed that we could
accurately simulate for a time t using length scales l=vLRt.
As mentioned above, we do not give precise error estimates,
but it is not hard to give rigorous estimates of the error.
However, the Lieb-Robinson bound is actually fairly conser-
vative because of Eq. �25� and, thus, in practice length
scales, vswt suffice to get good results.

We begin by illustrating results for the XY chain, with
�=0. In Fig. 3, we illustrate results from exact simulations
of the XY chain for various sizes. We consider chains having
open boundary conditions with N=35, 51, and 101, and a
chain having periodic boundary conditions with N=36. For
the chains with open boundary conditions, we plot the aver-
age of the central spin as a function of time, while for the
periodic boundary conditions, we plot the average of an ar-
bitrarily chosen spin as a function of time. The large exact
simulations are possible because this chain can be mapped to
free fermions by a Jordan-Wigner transformation. Later we
will present a comparison of these results to light-cone quan-
tum circuit results. For now, we discuss aspects of Fig. 3 that
show the influence of boundary effects. In the range of times,
the chain with N=101 shows no effect of the boundary.
There are oscillations of the spin with frequency � roughly
2, with an envelope decaying as 1 /�t so that

�Si
z� �

1
�t

cos��t + �0� , �26�

for �0��3 /4��. Simulations on longer chains show that as
long as N is less than t /2, the decaying oscillations of Eq.
�26� continue to hold. In regard to the 1 / t1/2 decay of oscil-
lations found here numerically, it is interesting to note a
similar power-law decay found for a different system of free
bosons, where fluctuations about a maximal entropy state

were proven to decay at least as fast as 1 / t1/3.25

For N larger than t /2, the boundary conditions become
important, as one can see in the curves for N=35 and N
=51, which start to show deviations from the N=101 curve
for times roughly 16 and 22, respectively. This is no surprise,
since the distance between the central spin and the boundary
is N /2, and vsw=1 for �=0. We will see later for ��0 that,
in general, boundary effects become important for N /2
= tvsw. Interestingly, periodic boundary conditions offer no
improvement, since the N=36 periodic curve deviates at the
same time as the N=35 open curve.

Another interesting effect is that once the boundary con-
ditions become important, the expectation value shows wild
oscillations, which no longer decrease in magnitude. This
may be a consequence of the fact that the chain is integrable.
It would be interesting to see for a nonintegrable system
whether such oscillations occur or not; the simplest statistical
assumption for a nonintegrable system is that the state at
long times would be a random pure state satisfying the con-
servation laws of total Sz and total energy and, thus, the
expectation value of �Si

z� for any i would show only expo-
nentially small fluctuations about the average spin.

We now consider the application of the light-cone quan-
tum circuit method to this chain. We considered l=18 and
20, and did Nit=1000 iterations of statistical sampling, as
shown in Fig. 4. The results for exact simulations with N
=35 and N=101 are also shown for comparison. We see that
the light-cone quantum circuit method with l=18 is accurate
over the same range of times as the exact simulation with
N=35, while the light-cone quantum circuit method with l
=20 improves on this result. By increasing l from 18 to 20,
we increase the range of times by roughly 2, while increasing
N by 2 would increase the range of times by only 1.

There are statistical fluctuations in the light-cone quantum
circuit results in Fig. 4 due to random fluctuations in
E�O ,
L ,
R� for different choices of 
L and 
R. In Fig. 5, we
plot the rms fluctuation in E�O ,
L ,
R� as a function of time,
sampling this expectation value with the probability distribu-
tion 
A�
L�
2
A�
R�
2. The results in Fig. 4 are an average
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FIG. 3. �Color online� Time dependence of �Sz� for the central
spin as a function of time. Curves are N=101 �black�, N=51 �red�,
N=35 �green�, and N=36 �blue�.
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FIG. 4. �Color online� Time dependence of �Sz� for the central
spin as a function of time for �=0. Exact curves are N=101 �black�
and N=35 �green�. Light-cone quantum circuit curves are l=18
�red� and l=20 �blue�.
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over Nit=1000 samples, so the spread on each data point in
Fig. 4 is equal to 1 /�1000 times the fluctuation shown in
Fig. 5, or roughly 0.005 in the worst case. A very interesting
point is that for t�5, the rms fluctuation is negligible, while
for times t�9, the rms fluctuations are up to their maximum
value, with a sharp bend in the curve �plotted on a log scale�
around t=8 or t=9. This is a consequence of the maximum
spin-wave velocity: the influence of the regions on sites
−l , . . . ,−l /2 and +l /2, . . . , + l takes a time of the order of
l /2vsw to reach the central region. There are sill some fluc-
tuations for t� l /2vsw=9, but they rapidly decay until they
are negligible at very short time.

We then applied the light-cone quantum circuit method to
chains with �=0.5, 1, and 2, as shown in Figs. 6, 7, and 8,
respectively. For comparison, we show an exact simulation
of a chain with N=20. For larger �=0.5 and 1, we still see
decaying oscillations, but the decay is much more rapid than
for �=0. The decay of the envelope is, very roughly, t−1.25

for �=0.5. For �=2, no oscillations are seen. The effects of
statistical noise are much more noticeable, since the magni-
tude of the spin is much less. All simulations were done with

Nit=1000 statistical samples, except for the simulation with
�=0.5, l=22 that had only Nit=250 samples, and the simu-
lations with �=1, l=16 and �=1, l=18 that had Nit
=10 000 and Nit=3000 samples, respectively. The spin-wave
velocity is larger for these chains, so the simulation breaks
down at an earlier time than for �=0; we again see that the
simulations work for

t � N/�2vsw� �27�

or

t � l/vsw, �28�

in the exact and light-cone methods, respectively.

D. Entanglement entropy

From the predictions in Ref. 8 and the numerical work in
Ref. 17, we can compare the difficulty of doing a similar
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FIG. 5. rms fluctuations in E�O ,
L ,
R� as described in the text
as a function of time for l=18.
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FIG. 6. �Color online� Time dependence of �Sz� for the central
spin as a function of time for �=0.5. The exact curve is N=20
�black�. Light-cone quantum circuit curves are l=18 �red�, l=20
�blue�, and l=22 �green�.
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FIG. 7. �Color online� Time dependence of �Sz� for the central
spin as a function of time for �=1. The exact curve is N=20
�black�. Light-cone quantum circuit curves are l=16 �red�, l=18
�green�, and l=20 �blue�.
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FIG. 8. �Color online� Time dependence of �Sz� for the central
spin as a function of time for �=2. The exact curve is N=20
�black�. Light-cone quantum circuit curves are l=18 �red� and l
=20 �green�.
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calculation doing time-dependent DMRG or time evolving
bond decimation. The entanglement entropy is predicted to
grow linearly in time. In Ref. 17, the prefactor of the numeri-
cal growth was determined in a quench of an XXZ chain
from an Ising coupling with �=�0 to an Ising coupling with
strength �1. The prefactor depended on �0 and was largest in
the case of �0=�, the case we have considered here where
the initial condition is a Néel state. There, in a quench to
�0=0, the entanglement entropy �with logarithms taken to
base 2� was observed to grow a little faster than 0.6vswt. This
implies that the minimum size of the bond dimension needed
in a matrix product state is at least 20.6vswt, which requires an
effort going as 21.8vswt. In contrast, the numerical effort re-
quired to directly simulate a chain of length N scales as 2N.
To get accurate results for a time of order t would require
N=2vswt or an effort 22vswt. By using the techniques in the
present paper, the effort can be reduced to the order of 2vswt.

When comparing to Ref. 17, note that there is a difference
in normalization of the Hamiltonian by a factor of 4, but
since the results in Ref. 17 are expressed in terms of the
spin-wave velocity multiplied by time, the time axis is the
same for �=0. For ��0, the time axis in Ref. 17 differs
from the time axis here, since Ref. 17 multiplies the time by
the relevant spin-wave velocity, which is greater than unity.
For �=1, the spin-wave velocity using our normalization is
equal to � /2�1 and, for �=0.5, the spin-wave velocity is
equal to 3�3 /4, so the times in the present paper should be
multiplied by a factor greater than unity when comparing to
Ref. 17.

In Ref. 17, initial conditions were considered other than
just the Néel state. These initial conditions were chosen to be
the ground state of various other XXZ Hamiltonians. As the
initial � was reduced, the entropy growth was found to still
be linear in time, but with a smaller prefactor. Such simula-
tions could still be carried out with our method as follows:
first, use DMRG as done in Ref. 17 to find the ground state
on a long chain. Then, suppose we are interested in a local
observable on a region of length l0. To find how these evolve
a time t after a quench, locate some region of length l0
+2vt in the chain.

We then “observe” the state of the system outside this
region to statistically sample different pure states within the
region, and then evolve the pure states within the region.
This is done as follows. The DMRG ground state can be
written in the form

�0 = �

�

A
�
�L

� � 
�M


�� � 
�R
�� , �29�

where 
�L

� are a set of orthonormal states on the chain to the

left of the region, 
�R
�� are a set of orthonormal states to the

right of the region, �M

� are a set of states �normalized to

unity but not necessarily orthogonal� on the given region of
length l0+2vt, and A
� are a set of amplitudes. We choose an

 and a � according to the probability

P = 
A
�
2, �30�

and then evolve the state �M

� by using our present algo-

rithm. This corresponds to observing the matrix product state
in the basis 
�L


� � 
�R
��. By repeating this statistical sam-

pling many times, we obtain the desired quantities on the
local region. Note that on each iteration, we statistically
sample 
 and � as well as do the sampling above. The sta-
tistical sampling of the state outside the region may be jus-
tified using Lieb-Robinson bounds as before. Further, when a
matrix product state is written in the canonical form, the
bond variables naturally have the orthonormality property
used above to do the statistical sampling, which gives a state
in the form �29�.

In some cases, if the entanglement entropy grows linearly
in time but with a sufficiently small prefactor, it may be
worth using the light-cone ideas above, but doing the initial
evolution for a time ti using matrix product methods instead
of quantum circuit methods, as follows. Suppose the matrix
product methods require an effort t22 ft, for some number f ,
to simulate for a time t. Then, to compute an observable at
time tf, we simulate a subchain of length 2vswtf for a time ti
using matrix product methods. We then statistically sample
states on a smaller subchain of length 2vsw�tf − ti� and per-
form the simulation of that subchain for time tf − ti exactly.
The total effort is then

t2O�2 fti + 22vsw�tf−ti�� . �31�

Choosing ti= tf / �1+ f� to minimize the computational cost,
we find that the cost scales as

t2O�2 f�tf� , �32�

with

f� =
1

f−1 + �2vsw�−1 . �33�

E. Corner transfer quantum circuit method

In this section, we introduce the corner transfer quantum
circuit method. It is primarily of theoretical, rather than prac-
tical, interest. For a calculation of local quantities �such as
the expectation value of a spin on a single site�, the light-
cone method above is less work. However, the corner trans-
fer method does give an approximation to the full wave func-
tion and may be less work than variational matrix product
methods in cases where the entanglement entropy grows rap-
idly.

We now define the quantum circuit that approximates
exp�−iHt�. We define a length scale l��vLRt: the error in our
quantum circuit approximation to exp�−iHt /2� will be expo-
nentially small in l�, while the maximal velocity of informa-
tion propagation for our quantum circuit will be

vmax = vLR + O�l�/vLRt� . �34�

We construct the quantum circuit in two steps, first
by presenting a quantum circuit that approximates
exp�−iHt /2�. We introduce operators Uk that describe the
time evolution under a time-dependent Hamiltonian: each Uk
contains at a time t only the interaction terms that are con-
tained within one of the triangles with a flattened top and
jagged sides surrounded by a dashed line shown in Fig. 9�a�.
That is, we break the time t /2 into n0= �vLR�t /2�� subintervals
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of time at most 1 /vLR. We place the center of the triangles on
sites kl, for k integer, where

l = 2l� + vLRt . �35�

Then we define Uk,n for 0�n�n0−1 by

Uk,n = exp�− i �
i=kl−l�/2−n

i�kl+l�/2+n

hi� t

2n0
�� , �36�

and define

Uk = Uk,0Uk,1Uk,2 ¯ Uk,n0−1. �37�

We then define the operators Vk as follows. We define

Uk,n
L = exp�− i �

i=kl−l�/2−n

kl

hi� t

2n0
�� ,

Uk,n
R = exp�− i �

i=kl

kl+l�/2+n

hi� t

2n0
�� . �38�

That is, Uk,n
L,R represent evolutions under the left or right half

of the triangles in Fig. 9�a�. Then, we define

Vk = exp�− i �
i=�k+1/2�l−l/2+1

�k+1�l+l/2−1
hit

2
�

��Uk,0
R Uk,1

R . . . Uk,n0−1
R �†�Uk+1,0

L Uk+1,1
L . . . Uk+1,n0−1

L �†.

�39�

That is, each Vk “undoes” the evolution in the shaded tri-
angles as shown in Fig. 9�b� and then performs the full evo-
lution in the rectangle bordered by the solid line.

We now approximate

exp�− iHt/2� � 	
k

Vk	
k

Uk. �40�

Using Lieb-Robinson bounds, one can show that the error in
this approximation is

�exp�− iHt/2� − 	
k

Vk	
k

Uk� � O�t�
i

�hi�exp�− O�l��� .

�41�

In the second step of the construction of the corner trans-
fer quantum circuit, we define another approximation to
exp�−iHt /2�. We set

V

1 2 3 4 5 6 7 8

U

U

U1,0

1,1

1,2

A)

B)

C)

U U UV V

FIG. 9. �A� The dashed lines show the region of space-time used in defining operators Uk, with space on the horizontal axis and time on
the vertical axis. Only three such regions are shown, but the pattern repeats over the entire system. We also show this as a quantum circuit
by writing U1=U1,0 ,U1,1 ,U1,2, where each operator U1,n computes the exponential of the Hamiltonian in a given time slice. Construction is
shown for l�=2 and n=3. �B� Action of operators Vk as discussed in text. �C� Iterating many rounds of the corner transfer quantum circuit.

On the bottom row, we label U and V; on the row above, a Ũ sits above each V and a Ṽ above each U.
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Ũk,n = exp�− i �
i=�k+1/2�l−l�/2−n

i��k+1/2�l+l�/2+n

hi� t

2n0
�� �42�

and define

Ũk = Ũk,0Ũk,1Ũk,2 . . . Ũk,n0−1. �43�

Here, the centers of the upward facing triangles in Fig. 9�a�
are shifted by l /2, compared to Eq. �37�. We then define Ṽk
in analogy to Eq. �39� with the centers again shifted by l /2
and approximate

exp�− iHt/2� � 	
k

Ṽk	
k

Ũk. �44�

In Fig. 9�c�, we show multiple rounds of the quantum
circuit. Except for the row of triangles on the top and bottom
boundaries, the quantum circuit looks like diamond-shaped
patches in space-time. They are rotated 45° from the patches
in Ref. 7, justifying the name “corner transfer”; the 45° ro-
tation is the key improvement over Ref. 7, leading to the
bound on information propagation �34�.

III. QUANTUM BELIEF PROPAGATION

In this section, we apply quantum belief propagation to
disordered systems. We begin with a brief review of quantum
belief propagation, focusing on the computational effort re-
quired, and then discuss modifications for disordered sys-
tems. We applied this procedure to two different disordered
systems: one a chain with no frustration, where Monte Carlo
is available for comparison,26 and the other a frustrated spin
system with disorder.27

Quantum belief propagation21 is a method for construct-
ing a matrix product density operator for a thermal state of a
quantum system on a line or other loopless lattice. The algo-
rithm depends on a parameter l0 and the approximation to the
thermal state has the following form in one dimension:

� = �ON−l0+1
† . . . O2

†O1
†��0�O1O2 . . . ON−l0+1� , �45�

where the operators Oi act on sites i , . . . , i+ l0−1 and the
density matrix �0 has the form �0=�0

1,. . .,l0 � 1 � ¯ � 1, with
�0

1,. . .,l0 being a density matrix on sites 1 , . . . , l0. The imple-
mentation of the algorithm depends on tracing out sites, a
process analogous to the observations discussed above. Sup-
pose we wish to compute the partition function. If all of the
Oi are the same, as they would be in a system without dis-
order, then we can consider the completely positive map

� → �tr1�Oi
†�Oi� � 1� , �46�

where tr1�. . .� denotes a trace over the first site, and � is a
density operator on an interval of length l0. We start with this
map at �=�0 and iterate it until we reach the end of the
chain. We then compute the trace of the final � and that of
the partition function. A similar procedure can be applied to
compute expectation values.

The cost of the procedure scales exponentially in l0, as it
requires diagonalizing matrices of dimension 2l0.28 The pro-

cedure is effective down to inverse temperatures

� � l0/vLR. �47�

The physical intuition is that the algorithm keeps quantum
effects only up to a length scale l0. However, as we will see,
the algorithm is capable of keeping track of classical corre-
lations on much longer length scales; this should be no sur-
prise since for classical Hamiltonians, which are the sum of
commuting operators, such as the Ising Hamiltonian H
=�iSi

zSi+1
z , quantum belief propagation exactly reproduces

classical transfer matrix methods that can exhibit correlation
lengths exponentially large in �.

For a disordered system, the operators Oi may vary as a
function of i, but they depend only on the bonds on sites
i , . . . , i+ l0−1. Below, we consider a system in which the
bonds can assume only discrete values; in the first system,
there are 2 ·2�l0−1�/2 different possible choices for the set of
bonds on sites i , . . . , i+ l0−1, while in the second, there are
2l0−1 possible choices. We then use the following algorithm:
first, we precompute the operator O for each possible choice
of bonds. We then randomly generate a configuration of
bonds, and iterate the map �46� above, choosing the appro-
priate O at each step. This requires an effort that scales lin-
early in system size.

Interestingly, the algorithm seems to work better at low
temperatures on disordered systems than on ordered systems.
The reason is probably the following: when deriving the al-
gorithm in Ref. 21, we used Lieb-Robinson bounds with ve-
locity vLR. However, just as in the nonequilibrium case above
where the actual velocity vsw is less than vLR, in these ther-
mal systems, the actual velocity may again be less than vLR.
For systems with disorder, localization effects may further
reduce the velocity and even change the ballistic spreading
of the wave-packet to a slower growth. Interestingly, this
phenomenon is known by different names in condensed mat-
ter, where it is called many-body localization,29 and quantum
information theory, where it is called a Lieb-Robinson bound
for a disordered system.30

A. Results on disordered systems

The first disordered system we considered has the Hamil-
tonian

H = �
i=1

N/2

JS�2i−1 · S�2i + �
i=1

N/2

JiS2i · S2i+1, �48�

where each spin is spin 1 /2, J�0, and Ji=JF�0 with prob-
ability p, and Ji=JA�0 with probability 1− p. This model
has both ferromagnetic and antiferromagnetic couplings
and was proposed to model the compound
�CH3�2CHNH3Cu�ClxBr1−x�3, where the probability
p=x2.31–35 The case considered is J=1 and 
Ji
=2. We per-
formed simulations on this chain with l0=5, 7, and 9 for p
=0.2, 0.4, 0.6, and 0.8, and for l0=5, 7, 9, and 11 for p=0
and 1. For the random cases �p=0.2, 0.4, 0.6, and 0.8�, we
considered chains of 100 000 sites and computed the uniform
susceptibility by the change in partition function in response
to a weak applied field. In this way, the susceptibility was
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self-averaging. For the pure cases, we considered shorter
chains and computed the applied susceptibility by measuring
partition functions as in Ref. 21. The results are shown in
Figs. 10 and 11. For small l0, qualitatively wrong results are
seen at low temperature, with the susceptibility diverging at
low enough temperature. However, as l0 is increased, the
accuracy extends to lower temperature. The difference be-
tween the curves for l0=7 and l9=9 is small for T greater
than roughly 1 /7. In this region also, our data agree well
with Monte Carlo data.

Data were taken over several different �, with a step of
0.25 in �. As in Ref. 21, we set the perturbation A �following
the notation of Ref. 21� equal to �1 /2��hl0−2,l0−1+hl0−1,l0

�
rather than A=hl0−1,l0

.
The second model we considered is27 a model with frus-

tration and disorder, where quantum Monte Carlo results are
not available. The study in Ref. 27 was motivated by experi-
mental studies on CuGeO3 �Ref. 36� and Cu6Ge6O18

−xH2O,37 where second neighbor interactions may be impor-
tant. We were interested in a case where second neighbor
interactions would be very important, so we considered the
Hamiltonian

H = �
i=1

N−1

JiS� i · S� i+1 + �
i=1

N−2

KiS� i · Si+2, �49�

and, in the pure case, we considered Ji=1 and K1=1 /2. This
is a Majumdar–Ghosh chain with a dimerized ground state.
In the disordered case, we chose Ji=0.9 or Ji=1.1, with prob-
ability 1 /2 for either choice �similar results were found for
choosing J=0.75 or J=1.25�. We choose

Ki = �1/2�JiJi+1, �50�

which correlates the second neighbor interaction with the
nearest neighbor interaction, as described in Ref. 26.

We studied l0=5, 7, and 9 with chains of length 19 999. It
is necessary to take such long chains in the pure case to
avoid boundary condition effects, because at low tempera-
tures in the pure system, there is an exponentially increasing
correlation length for dimer-dimer correlations. In Fig. 12,
we first show the results of the specific heat as a function of
� for the pure case, which is computed from the second
derivative of the partition function �probably, a very slightly
more accurate method is to take the first derivative of the
energy as in Ref. 21�. A strong difference is seen between
l0=5 and l0=7 above ��3.25, but the l0=7 and l0=9 curves
are almost identical. This indicates that by going to l0=9, we
have succeeded in converging the specific heat in l0 for
��10.

The uniform susceptibility shows a similar effect. The
pure curves show a large difference between l0=5 and l0
=7 and 9, but only a slight difference can be seen between
l0=7 and 9 and only above �=8. Again, the results seem to
be converged in l0 by going to l0=9 in the range of tempera-
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FIG. 10. �Color online� Uniform susceptibility as a function of
temperature for different p and l0. Top: l0=5 �black�, l0=7 �red�,
and l0=9 �green�. Middle: l0=5 �black�, l0=7 �red�, l0=9 �green�,
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tures we consider. The disordered curves show again that l0
=5 is too small, but for l0=7 and 9, little difference is seen
�except for some small random fluctuations� up to �=10. A
very slightly higher susceptibility is seen in the random case
as compared to the pure case. Finally, we consider the dimer
susceptibility, which is defined by

�dimer = ��� �
i=1

N/2−1

S�2i · S�2i+1 − S�2i+1 · S�2i+2�2� . �51�

This shows a large difference between the pure and disor-
dered cases. The pure cases again show agreement between
l0=7 and 9 and show an increase that gives �dimer /� growing
exponentially in �. The disordered cases show �dimer /� satu-
rating as a function of �.

The saturation of the dimer-dimer correlation function in
the disordered case is no surprise. The disorder locally
breaks the Z2 symmetry between different ordering patterns
of the dimers and is relevant for this one-dimensional sys-
tem. The fact that the uniform susceptibility shows only a
very slight difference between pure and disordered systems
is more surprising; asymptotically, the uniform susceptibility
should decay exponentially in � in the pure system and
should increase as � / log2��� in the random singlet phase.27

IV. DISCUSSION

The main result in this paper is the light-cone quantum
circuit method. We have numerically tested this method on a
free system, with �=0, and on interacting systems with �
�0. We have found decaying oscillations in the expectation
value of the spin. In the future, this technique will be useful
for studying nonintegrable systems to see if they relax to a
thermal state.38

We can study two-dimensional systems by considering
them as wide one-dimensional systems; this allows us to
double the number of spins, but only leads to a factor of �2
increase in the time as compared to a direct simulation. Other

similar quantum circuit methods may be more effective in
two dimensions.

The results using the light-cone quantum circuit method
are, indeed, comparable to those one would find by exactly
solving a system of twice the size, at least for �=0, where
we can compute exactly. Thus, for l=18, we find results
comparable to a system of N=35 or N=37 sites. The com-
putational cost to exactly evolve a given system is roughly
comparable to that required to do an exact diagonalization by
using Lanczos methods on that system: Lanczos methods
and exact evolution both require sparse matrix-vector multi-
plication, but the number of multiplications needed to reach
convergence for the time evolution may be larger than that
needed to reach convergence for ground state properties.
Thus, we expect that sizes around 35 sites, especially given
the low symmetry of the present system, are around the up-
per limit for exact methods now, while we carried the light-
cone quantum circuit method up to l=22. Further, the
asymptotic analysis of time requirements applies also to
memory requirements: the memory requirements of an exact
solution on N sites scale as N2N, while the memory require-
ment of the light-cone quantum circuit method scale as l2l,
so, regardless of what N can be obtained by using an exact
solution, it should be possible to obtain the same l, up to a
difference of a couple of sites, in the light-cone quantum
circuit method. The main additional cost in the light-cone
quantum circuit method is the need to run many times to
obtain statistical samples, but this is a problem that can be
parallelized.
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