
Shock-front broadening in polycrystalline materials

J. L. Barber* and K. Kadau
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

�Received 18 December 2007; published 9 April 2008�

We analyze a model for the evolution of shock fronts in polycrystalline materials. This model is based on the
idea of Meyers and Carvalho �Mater. Sci. Eng. 24, 131 �1976�� that the shock velocity anisotropy within the
polycrystal is the most important factor in shock front broadening. Our analysis predicts that the shock front
width increases as the 1 /2 power of the front penetration distance into the crystal. Our theoretical prediction is
in plausible agreement with previous experimental results for the elastic precursor rise time, and it should
therefore provide a useful shock width estimate. Furthermore, our theoretical framework is also applicable to
other problems involving front propagation in heterogeneous media.
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It has been observed experimentally that a shock front
propagating through a polycrystalline solid, in which each
grain has a different crystallographic orientation of the same
material, will increase in width over time.1,2 This broadening
has a significant effect on the postshocked state of the
material,3 and may occur via a number of mechanisms, in-
cluding scattering at grain boundaries, and, in strong shocks,
plasticity effects. Meyers and Carvalho4,5 proposed a model
in which the sole contributor to front broadening in elastic
shocks is the shock speed anisotropy between differently ori-
ented grains within the polycrystal. This anisotropy causes
different regions of the shock front to propagate at different
speeds.

This model was originally studied via simulations using a
very simplified representation of a polycrystal.4,5 In this
work, we trace the mathematical consequences of the model
for a more realistic polycrystalline topology and provide a
shock width estimate for a wide variety of materials. After an
outline of the assumptions of the model, we perform a proba-
bilistic analysis of the resulting dynamics, followed by a
comparison of our theoretical predictions with simulations of
the model itself and with experimental data from the litera-
ture.

Suppose that the polycrystal occupies a D-dimensional
domain, where D is kept arbitrary for generality. We define
the +x axis as the direction of shock propagation and collec-
tively label all transverse coordinates as y �see Fig. 1�. The
initially flat front starts at x=0, and each point on the shock
front propagates into the bulk of the solid independently,
with a velocity in the +x direction. This generates a set of
distinct rays, distinguished by their transverse coordinates y.

The propagation speed along an arbitrary ray is given by
the function v�x ,y�, the statistics of which depends on the
distribution of shock speeds and the geometry of the grains.
Suppressing y dependence for conciseness, the time required
for a point on the shock front to reach x is
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where 1 /c= �1 /v	 is the mean inverse shock speed. Here,
�…	 represents an average over both the distribution of shock
speeds and the stochastic geometry of the grains. The inte-

grand 1 /v�x��−1 /c in Eq. �1� is a mean-zero random field.
We define its spatial correlation function as ��x ,x��

��1 /v�x�−1 /c��1 /v�x��−1 /c�	.

Our two major assumptions are statistical isotropy and
that the shock speeds in different grains are independent. The
former implies that ��x ,x��=���x−x���, whereas the latter
implies that ��x��0 for all x. If, in addition, the grains are
convex �as in a Voronoi lattice�, then ��x� will be monotoni-
cally decreasing in x. Under these assumptions, it can be
proven6 that for large x the integral in Eq. �1� converges in
distribution to
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where Z is a standard normal random variable. In the large-x
limit, Eq. �1� can therefore be written as

ct = x + �2a�1/2x1/2Z , �3�

where a
c2�0
�dx��x� has units of length. Equation �3� can

be inverted to obtain the random x coordinate of a point on
the shock front as a function of t,

x = ct + aZ2 + �a/2�1/2Z
2aZ2 + 4ct . �4�

We define the average shock front position and shock front
width as x̄
�x	 and �x
2��x− x̄�2	1/2, respectively. From
Eq. �4�, it follows that, to leading order in t, these are

x̄ = ct , �5�

�x = �8act�1/2. �6�
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FIG. 1. Schematic representation of the polycrystal, with several
shock front profiles from a 2D model simulation.
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In order to render these expressions scale invariant, x̄ and
�x should be expressed in terms of the average grain size, of
which several definitions exist. In experimental work, a sec-
tional diameter dsec is often used, defined as the diameter of
a circle of area equal to the average area of sectional grains
in a cross section of the polycrystal. Also in use experimen-
tally is the mean chord length dch, defined as the mean length
of chords generated by the intersections between grain
boundaries and a random line. In this work, we use the mean
caliper length dca from stochastic geometry, which is defined
as the mean length of a grain’s projection onto a random
line.13

Eliminating t between Eqs. �5� and �6� and dividing both
sides by dca yields the relation

�x

dca
= A� x̄

dca
�1/2

, �7�

which is scale invariant in the grain size, and where

A 
 �8c2

dca
�
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is the dimensionless anisotropy coefficient. Equations �7�
and �8� are the most general results of this work. Note that
Eq. �7� is consistent with a power-law fit to molecular dy-
namics �MD� simulation data,7 which found �x /dca�dca

� ,
with ��−1 /2.

In order to simplify the determination of the anisotropy
coefficient, we make the additional assumption that each
grain’s shock speed is statistically independent of the grain
geometry. Then, � decomposes as

��x� = �o�D�x� , �9�

where �o
��1 /v−1 /c�2	 and �D�x� is the probability that
two points in the D-dimensional polycrystal a distance x
apart fall within the same grain. It can be shown6 that
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where �ch is the standard deviation of the intersectional
chord lengths mentioned in the definition of dch. For a three-
dimensional �3D� �two-dimensional �2D�� Poisson–Voronoi
lattice �PVL�, �ch=0.400n−1/3 �0.433n−1/2�. Given Eqs. �9�
and �10�, the anisotropy coefficient becomes
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. �11�

In addition to an expression for the front broadening �x,
this model also predicts the correlation in the shock front
position x�y , t� in the direction y lateral to the shock front.
Restoring the explicit y dependence, we define the shock
front correlation function as

C��y − y��,t� 

��x�y,t� − x̄�t���x�y�,t� − x̄�t��	

��x�t�/2�2 . �12�

It can be shown6 that for large t,
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Equations �7�, �8�, �11�, and �13� are predictions for large
t. We can also derive expressions for the behavior of the
shock front in the limit of small t. In this limit, the penetra-
tion distance of ray y at time t is given approximately by
x�y , t�=v�y�t, where v�y� is the shock speed profile at y=0.
From this, it follows that

dx

dca
=

2�v
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, �14�

where v̄ and �v are, respectively, the mean and standard
deviation of the distribution of shock speeds within each
grain. Furthermore, for small t, the shock front correlation
function C�y , t� will be identical to �D�y�, since v�y� corre-
lates in the same way as grain membership.

It should be noted that, in practice, there is some ambigu-
ity in the meaning of the average �¯	, which is used for
calculating c, �o, and A. We make use of two different inter-
pretations of this average, which we call “average 1” and
“average 2.”

Average 1. In Refs. 4 and 5, it is noted that for a crystal
with cubic symmetry, 100, 110, and 111 are the only direc-
tions in which purely longitudinal acoustic waves are pos-
sible. These move with speeds u100, u110, and u111, respec-
tively. In this average, we consider only the shock speeds in
these three directions, which are given probabilities propor-
tional to their multiplicity factors �6, 12, and 8, respectively�.
We obtain estimates for these three shock speeds in two
ways. First, in the 3D acoustic—or weak shock—limit via
the expressions u100=
C11 /
, u110=
�C11+C12+2C44� /
,
and u111=
�C11+2C12+4C44� /
, where the C are the elastic
stiffnesses of the material and 
 is the mass density.4 Second,
for moderate shock strengths, from the plateau elastic precur-
sor wave speeds in single-crystalline MD simulations of Fe
in Ref. 8.

Average 2. In reality, the orientation of grains within a
polycrystal is not solely restricted to the three mentioned
above. For an arbitrary orientation, one can use the elastic
equations for the propagation of acoustic waves in an inho-
mogeneous medium to find the shock speed u��� in an arbi-
trary direction.6 By assuming that grain orientations are uni-
formly distributed on the unit sphere, we can calculate c, �o,
and A.

The values of c, �o, and A calculated using the acoustic
properties of several materials via each of these two averages
are given in Table I. Note that the calculation of A assumes a
PVL.

In order to verify the steps leading to the theoretical pre-
dictions above, we have performed several direct simulations
of the model itself. A 2D PVL was generated by selecting a
number of grain centers randomly and uniformly throughout
a rectangular domain. The shock front speed within each
grain was randomly selected as one of three velocities, with
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weights 6, 12, and 8, as described above. Other than the
anisotropy coefficient, which was 0.153, the precise numbers
used are of little importance, since the expressions we have
derived are scale invariant. A number of points on the shock
front starting at x=0 were propagated in the +x direction
according to this random velocity field. Some representative
front profiles at various penetration depths from a small 20
�10 grain simulation are shown in Fig. 1. In order to im-
prove the statistics to allow comparison with our predictions,
we also performed a larger 20�2560 grain simulation. Re-
sults for �x /dca vs x̄ /dca, as well as for C�y� are compared to
the theory in Fig. 2. The shock width obeys Eq. �7� nearly
perfectly at late times and �although it is difficult to discern
in the figure� Eq. �14� at early times. Also, as predicted,
C�y , t� agrees with 	2D�y� for large t and �2D�y� for small t.

These numerical simulations validate our mathematical
results and provide some insight into the dynamics of the
model. Of greater importance, however, is a comparison be-
tween our theoretical predictions and experimental data from

the literature. The two experimental papers we considered
were Arvidsson et al.1 and Jones and Holland,2 which used
samples of polycrystalline aluminum and steel, respectively.

There were a number of difficulties in interpreting the
experimental data, which allowed only a rough comparison
between theory and experiment. The data are given in terms
of rise times for the elastic precursor wave. The elastic wave
speed, which was needed in order to translate these into
shock widths, was given in Ref. 2 as 5857 m /s, but it was
omitted in Ref. 1 As a rough estimate, we used 6400 m /s,
the longitudinal sound speed of Al. We assumed a PVL ge-
ometry for all samples. From the values of dch reported in
Ref. 2, this allowed us to infer that their dca values varied
between 19.1 and 149 
m. In Ref. 1, dca=284 
m.14

Finally, in both Refs. 1 and 2, the rise time is measured as
the time interval between minimum and maximum stresses at
the sample surface, whereas our two-standard-deviation defi-
nition for the shock width implies that we should instead
compare to the interval around the median stress which con-
tains 68.3% of this variation. A graphical analysis of the
stress-time profiles in Ref. 2 indicates that this can be ob-
tained by multiplying the reported rise times by �0.4. We
have adjusted both data sets accordingly.

Comparisons between our theory and the data of Ref. 1
and 2 are shown in Figs. 3 and 4, respectively. Despite many
approximations, including the neglect of grain boundary ef-
fects, there is good consistency between theory and experi-
ment. Shown are the theoretical predictions corresponding to
both average 1 and average 2 using acoustic data. Also
shown are curves corresponding to average 1 using MD data.
The A used in these curves were derived from the data in
Ref. 8 Although these data were obtained from simulated Fe,
the Hugoniot curves of Fe and steel are similar for weak
shocks,9 and it was therefore reasonable to use the resulting
A value with the data of Jones and Holland. Lacking single-
crystal shock speeds for Al, the value of A �average 1, MD�
used in Fig. 3 was arrived at by assuming that the ratio of A

TABLE I. Calculated properties of various materials.

Average 1 �Acoustic� Average 2

c
� m

s �
�0

�10−11 s2

m2 � A
c

� m
s �

�0

�10−11 s2

m2 � A

Fea 6180 10.3 0.0998 6190 4.13 0.0632

W 5210 0.00141 0.000982 5210 0.000690 0.000688

Ta 4140 4.31 0.0432 4130 1.97 0.0292

Cu 4840 19.3 0.107 4840 7.70 0.0776

Ag 3750 22.0 0.0885 3750 9.22 0.0572

Au 3330 9.99 0.0528 3320 4.52 0.0354

Al 6380 0.339 0.0186 6370 0.162 0.0129

K 2370 145 0.143 2380 52.9 0.0870

Pb 2250 52.0 0.0816 2250 22.2 0.0534

Ni 5890 11.8 0.102 5890 4.71 0.0642

Pd 4680 9.76 0.0735 4670 4.23 0.0482

aFor Fe, the plateau elastic precursor speeds given in Ref. 8 yield c=6120 m /s, �0=20.3�10−11 s2 /m2, and
A=0.138 for average 1 �MD�.
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FIG. 2. Front correlation C�y� generated by direct simulation of
the model on a 2D PVL, compared to our early, and late-time theo-
ries. �	3D�y� is shown for reference.� Inset: �x /dca vs x̄ /dca from
the same simulation, compared to theory.
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�average 1, MD� to A �average 1, acoustic� was the same in
Fe and Al.

These results suggest that the analytical theory presented
here successfully describes shock front broadening, yielding
plausible agreement with experimental data, and should pro-
vide a useful estimate of shock front widths for various ma-
terials. In cases where a split two-wave structure is present,
this theory applies to the elastic and plastic waves separately.
Note that, in addition to grain boundary effects, this model
also neglects shear forces that may reduce the independence
between different regions of the shock front, thereby de-
creasing the shock width. This effect may become more pro-
nounced as the front width increases. An interesting avenue
of future work would be the more difficult problem of incor-
porating grain boundary effects into this model, which could
then be compared to MD simulation data for nanocrystalline
materials. This would allow for a quantitative estimate of the

importance of nonscale-invariant effects due to grain bound-
aries, which are proportionally larger at the scales currently
accessible to MD. Lastly, the theoretical framework given in
this work is not specific to shock fronts in polycrystals and
may have other applications to front propagation problems in
which anisotropy and heterogeneity are important factors.
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FIG. 3. Comparison of the Al data by Arvidsson et al. with our
model for each of the three ways of calculating the averages.
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FIG. 4. Comparison of the steel data of Jones and Holland with
our model for each of three ways of calculating the averages.
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