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The scaling behavior of the entanglement entropy in the two-dimensional random transverse field Ising
model is numerically studied through the strong disordered renormalization group method. We find that the
leading term of the entanglement entropy always linearly scales with the block size. However, besides this area
law contribution, we find a subleading logarithmic correction at the quantum critical point. This correction is
discussed from the point of view of an underlying percolation transition, both at finite and at zero temperature.
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The study of novel quantum phases and related quantum
phase transitions is at the forefront of many recent develop-
ments in condensed matter physics. It heavily relies on the
concept of entanglement entropy.

A state ��� of a bipartite system A�B is entangled if it
cannot be accurately described in either subsystem A or B. A
convenient measure of this entanglement is the entropy,
SA=−Tr �A log2 �A, where �A=TrB������. Denote the linear
dimensions of A�B and A as M and L, respectively. An
important question in quantum many-body systems is to
study how SA�L� scales with L in the limit of M→� in
different quantum phases. This question has been extensively
investigated in one dimension.1–7 There, it is now well un-
derstood that for noncritical systems, S�L� saturates to a con-
stant as L→�, whereas in critical systems, a logarithmic
modification stands out as the leading term: S�L�� ln L, and
its coefficient is associated with the central charge of the
related �1+1� conformal field theory �CFT�.7 In higher di-
mensions, it is generally believed that an area law holds at
least for noncritical systems: the entanglement entropy scales
as the area of the boundary between subsystem A and B,
S�L��Ld−1. This has been confirmed by studies on bosonic
harmonic lattice systems.6,8 For critical systems, the area law
is shown to be violated in free fermion systems with a finite
Fermi surface.9–11 However, it still holds for fermionic sys-
tems without a finite Fermi surface10,11 and critical bosonic
systems.11

In d-dimensional system where the area law holds,
S�L�� fsL

d−1. Here, fs is a boundary free energy determined
by the short-distance properties of the system and is hence
not universal. It is thus interesting to wonder about
subleading12 terms in S�L�, where universal coefficients de-
pending only on the model and the topological properties of
the system may appear. For instance, it was recently found
that in two-dimensional �2D� gapped systems, a subleading
constant term in S�L� is related to the topological order.13

Also, for a class of z=2 conformal quantum critical systems
in 2D, a universal logarithmic correction to the area law term
has been found.14 Clearly, the problem is not fully settled.

It is of course also possible to investigate entanglement in
quantum disordered systems. In a series of studies in one-
dimensional �1D� based on strong disorder renormalization
group �SDRG� techniques,17 it was found that for the class of
1D infinite randomness fixed points �IRFPs�, a ln L term in

S�L� is also present.3,15 Similar results were also discovered
for 1D aperiodic systems.16

In this Rapid Communication, we report on our study of
the 2D random transverse field Ising �RTFI� model, and the
numerical calculation of the entanglement entropy using the
SDRG technique. The model is defined on a 2D square lat-
tice with linear dimension M and open boundary condition.
The subsystem A is an L�L square region located in the
center of the square lattice. The Hamiltonian reads

H = − �
�i,j�

JijSi
zSj

z − �
i

hiSi
x. �1�

The Ising coupling Jij and the transverse field hi take random
values drawn from the following box shape distributions:
P�J�=��J�−��J−1�, P�h�= 1

h0
���h�−��h−h0�	.

This model is known to have a quantum phase transition
which is governed by an IRFP.18,19 Here, the critical point is
tuned by h0. Starting from the original Hamiltonian �Eq. �1�	,
the SDRG finds the ground state by successively eliminating
the highest energy degrees of freedom.17,20 At each renormal-
ization group �RG� step, we look for the largest term in the
Hamiltonian; its coupling �or field� is defined as the energy
scale � at this step. As illustrated in Fig. 1, there are two
basic decimation procedures. If �=hi, the local spin is fro-
zen in the eigenstate of Si

x and is eliminated from the system.
The renormalized coupling between its two neighboring
spins at sites j and k is thus Jjk� 
max�Jjk ,JjiJik /hi�. If �
=Jij, the two spins involved respond to the field uniformly
and are combined into a new effective spin �a cluster�. The
local field at this effective spin is hi�=hihj /Jij. Numerically,
the RG is processed until only one cluster is left in the sys-
tem. The ground state then consists of independent clusters
each of which is frozen into a GHZ state: �C�n��= 1

�2
��↑ ��n

+ �↓ ��n�. Since each GHZ state will contribute either 1 �we

FIG. 1. �Color online� Basic RG transformations �see text for
details�. Left: energy scale is a field and right: energy scale is an
Ising coupling.
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take logarithms in base two� to the entropy if it consists of
degrees of freedom in both subsystems A and B, or 0 other-
wise, calculating the entanglement entropy between two sub-
systems is reduced to a pure cluster counting problem: S�L�
is proportional to the number of clusters N�L� that cross the
boundary between the two subsystems. Finally, S�L� is aver-
aged over 105–106 different disorder configurations to en-
sure a sufficient representation of rare realizations.

The foregoing technique has been applied with success in
the 1D case. The technical difference in 2D is first that the
quantum critical point is not exactly known. To locate it ac-
curately we study the scaling behavior of the average mag-
netization m�M�.21 At the critical field h0

c,

�m�2M�
m�M�

�
h0=h0

c
= 2−xm �2�

is independent of M, where xm is the anomalous dimension
of the bulk magnetization. Our result is given in Fig. 2�a�.
The critical field is estimated to be h0

c =5.37�0.03, with
xm=1.01�0.05, which is consistent with a previous RG
study.22 The entropy S�L� is calculated for various values of
h0. For both critical and noncritical h0, we find that the area
law holds: S�L��aL in the leading term. The result of
S�L� /L for different system sizes at critical h0

c =5.35 based on
106 realizations of random configurations is shown in Fig.
2�b�. At critical the coefficient a=0.089�0.002, and is inde-
pendent of system sizes and the number of realizations.

This conclusion is quite different from the one in a recent
study,23 where a very weak double-logarithmic modification
of the area law in the same model was reported at the critical
point. We find that for small systems the double-logarithmic
fit is reasonable, but that for system size M 	128, S�L� /L
definitely increases slower than ln ln L for L
40, strongly
suggesting S�L��L in the limit of L→�, without modifica-
tion, and that the observation of Ref. 23 is biased by finite
size effects. We also note that our results are largely inde-

pendent of the distribution of couplings, confirming the idea
of universal behavior for S�L�.

Having established the validity of the area law in this
system, it is natural to investigate subleading terms. We thus
consider �S�L�
2S�L�−S�2L�, in which the terms linear in
L exactly cancel. We find in both disordered and ordered
phases that �S�L� saturates to a constant term, indicating
S�L�=aL+c. Meanwhile, at critical, we find that �S�L� scales
linearly as ln L, suggesting

S�L� = aL + b ln L + c , �3�

i.e., a logarithmic correction to the area law. The coefficient
of this logarithmic correction is determined to be b
=−0.019�0.005 through finite-size scaling in Fig. 3�a�. It is
interesting to note that a similar logarithmic correction was
also found in Ref. 14 for a class of conformal critical models
with dynamical exponent z=2. However, there is no reason
to expect that the ln L term we find in the critical RTFI
model has much to do with the one in Ref. 14. This can be
substantiated by calculating the amplitudes of the logarith-
mic term for different geometries, which obey some precise
relations in the case of Ref. 14. As an example, we consid-
ered a cross shape geometry, as shown in Fig. 3�b�. In this
case as well, we can resolve a ln L term in S�L� in addition to
the area law contribution, with the coefficient bcross
=−0.08�0.01. We can then calculate and compare the ratios
in our model, where we obtain bcross /bsquare
4, and in the
conformal quantum critical models, where bcross /bsquare=3
exactly. This implies that the ln L term in S�L� in our model
most probably has a different origin, an unsurprising conclu-
sion since, for the IRFP, z→�.

To better understand the ln L term in S�L� at the IRFP in
the 2D RTFI model, we notice that there is a striking differ-
ence between the model in 2D and in 1D. In 2D, for any
h0�h0

c, there is a finite-temperature phase transition at Tc�h0�
�Ref. 18�: the IRFP in 2D can then be considered as an ex-
tension of this finite-temperature transition right down

FIG. 2. �Color online� �a� Finite-size scaling of magnetization
ratio given in Eq. �2�. �b� Entropy per surface S�L� /L vs ln ln L at
critical field h0

c =5.35. The dashed line is a linear fit in ln ln L scale.
The deviation from ln ln L is clearly seen in systems with
M 	128 for 40
L
80, where S�L� /L scales almost independently
of M.

FIG. 3. �Color online� �a� Scaling plots of �S�L� to reveal the
subleading term of S�L� at critical field h0

c =5.35 for different geom-
etries of subsystem A: a square �in �a�	 and a cross shape �in �b�	.
The dashed lines are linear fits in ln L scale with bsquare=−0.019 and
bcross=−0.08, respectively.
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to T=0. Through the SDRG, the transition to a ferromagneti-
cally ordered phase can be mapped to a percolation transition
in 2D:19 the magnetic transition corresponds to the develop-
ment of an infinite percolating spin cluster during RG. It is
widely expected that this percolation process at the IRFP
�which occurs at energy scale ��=0� is different from the
one at finite temperature since at h0=h0

c, the critical behavior
is controlled by quantum fluctuations. This leads one to think
of the IRFP as a type of “quantum percolation,” with fractal
dimension df =2−xm
1.0. For h0�h0

c meanwhile, the per-
colation takes place at finite energy scale ���Tc in the RG
and is expected to be in the universality class of conventional
classical percolation.19 We have confirmed this picture at fi-
nite energy scale by studying the scaling of the largest active
cluster size during RG. Some numerical results at h0=3.2 are
presented in Fig. 4�a�. The percolation threshold is at
��=ln��0 /���=5.27�0.02, where the extracted exponents
� and � take the values of classical percolation indeed.

The number of clusters crossing the boundary between
two subsystems can be investigated at these percolation tran-
sitions as well �even though it does not correspond to an
entanglement entropy except when h0=h0

c�. It is easy to see
then that a ln L correction to the area law is expected and
related to conformal invariance, even though it depends on
more complicated parameters than the central charge and the
topology �in contrast to the example in Ref. 14�.

To see this, consider the “baby” case where the subsystem
A takes the geometry of a line interval of length L on the
boundary of the lattice, so the boundary between the two
subsystems is A itself. Now, N�L� is simply equal to the
number of clusters touching A. Its scaling can be studied by
using CFT techniques. For this, consider first the problem on
the upper half complex plane, with A on the real axis. Use
the well known expansion of the partition function of the
critical Q-state Potts model in terms of clusters, or equiva-
lently, dense loops,24

Z = �
P

�QNP, �4�

where every loop gets the same weight �Q. Now, introduce a
boundary condition changing operator25 �BCCO� �y such
that the two point function of � is defined through a sum
similar to the one for Z, but loops touching the boundary
between the two insertions �1 and �2 get a different weight y
instead of �Q,

��y��1��y��2�� =
1

Z � �QNP� y
�Q

�NP
b ��1,�2�

, �5�

where NP
b ��1 ,�2� gives the number of loops touching the

boundary between �1 and �2 located on the real axis. We
expect the two point function to have the following scaling
form:

��y��1��y��2�� � e−f�y���1−�2���1 − �2�−2h�y�, �6�

where f�y� is the boundary free energy induced by the modi-
fied weight on the boundary, and the exponent h�y� is the
anomalous dimension of the BCCO. Now, differentiate the
two point function of BCCOs with respect to the weight y,
then take the limit y=�Q. This leads to

NP
b �L� = aL + b ln L , �7�

where

b = − 2�Q� �h�y�
�y

�
y=�Q

, �8�

and L= ��1−�2�.
With the exact expression of h�y�,26 we obtain

b =
1

2�p
�Q�4 − Q� . �9�

For percolation �Q=1�, bperc=
�3
4� 
0.1378 reproduces an

early result by Cardy.27 However, in Eq. �9�, we generalize
Cardy’s result to general Q, and it is interesting to see that
the ln L term vanishes at Q=0 and Q=4. It is also remark-
able to see that b is related to the derivative of the anomalous
dimension of BCCO, but not the central charge. This ln L
term is also observed in our RG calculation at finite ��. In
Fig. 4�b�, we show the scaling of �N
2N�L�−N�2L� at
��=5.27 for h0=3.2. b is estimated to be 0.15�0.02, which
is in agreement with the analytical result. This further con-
firms that the universality class at finite �� is classical per-
colation. Interestingly, we find numerically for this case that
�b � �0.01 at the quantum critical point, which is consistent
again with the idea of a different universality class when
��→�.

Going back to the original problem where the subsystem
A takes the geometry of a L�L square, we have not derived
a similar analytical result for ordinary percolation. However,
N�L� can of course be calculated numerically. To get better
scaling for large systems, we turn to a direct study of perco-
lation. In Fig. 4�c�, �N data at the percolation threshold are
shown. As well expected, �N� ln L is resolved for both bond
and site percolation, and the coefficient of the ln L term takes

FIG. 4. �Color online� �a� Scaling of the largest active cluster
size Nc during RG shows a signature of classical percolation at a
finite energy scale. �b� Scaling of �N at percolation threshold
��=5.27 for h0=3.2; A is a line interval on the boundary. �c� Scal-
ing of �N at bond �upper� and site �lower� classical percolation
thresholds; A takes the geometry of a square. In �b� and �c�, the
dashed lines are linear fits in ln L scale with corresponding slope b
marked on the plot.
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the same value b=−0.06�0.01, which is in agreement with
the idea that this term is universal. Note that we observe a
negative value of b for subsystem A a square, just as in the
case of the RTFI model. This is opposite to the sign of b in
classical percolation when A is an interval.

The observation of a ln L term in N�L� in percolation
makes the presence of a similar term at the IRFP most likely:
there will in fact always be such a term at energy scale ��.
When this scale is finite, the coefficient b takes the value of
classical percolation, b=−0.06�0.01. However, when
��→0, i.e., at the quantum critical point, quantum fluctua-
tions become dominant, leading to a quantum percolation
belonging to a different universality class. A different b
value, b=−0.019�0.005, reflecting this difference is then
observed.

In summary, we have calculated the entanglement entropy
of a 2D RTFI model by using a numerical SDRG method. In
contrast to what is claimed in a recent paper, we find that the
leading term of the entropy follows the area law and depends
linearly on the block size L in both critical and noncritical

phases. However, a ln L correction to the area law is discov-
ered at criticality. While the presence of this correction may
not have been expected from the entanglement point of view,
it is very natural once the problem is geometrically reformu-
lated. Indeed, the problem of counting clusters touching a
boundary in 2D classical percolation is easily argued to give
rise to sublogarithmic corrections, while the entanglement
entropy in the RTFI model at criticality can be reformulated
as a similar problem but in a different, “quantum percola-
tion” universality class.
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