Comment on "Spin- and charge-ordering in oxygen-vacancy-ordered mixed-valence $Sr_4Fe_4O_{11}$ "

P. Adler

Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany (Received 2 November 2006; published 30 April 2008)

In a recent paper, Vidya *et al.* [Phys. Rev. B **74**, 054422 (2006)] investigated the structural, electronic, and magnetic properties of mixed-valence $Sr_4Fe_4O_{11}$ by spin-polarized electronic-structure calculations. The crystal structure of this oxygen-vacancy-ordered perovskite contains square pyramidal $Fe(1)^s$ and distorted octahedral $Fe(2)^o$ sites. Only one of the sublattices is magnetically ordered below $T_N \sim 230$ K. Vidya *et al.* claimed that their calculations unambiguously show that the formal Fe^{3+} ions reside in the square pyramidal and the Fe^{4+} ions in the octahedral sites, in contrast to the previous assignment by Hodges *et al.* [J. Solid State Chem. **151**, 190 (2000)]. In addition, Vidya *et al.* implied that rather the Fe^{4+} than the Fe^{3+} sublattice is magnetically ordered. In this Comment, it is pointed out that the structural and Mössbauer data clearly favor the assignment of Hodges *et al.* and are in disagreement with the results of Vidya *et al.* The Mössbauer spectra evidence that it is the Fe^{3+} sublattice which is magnetically ordered.

DOI: 10.1103/PhysRevB.77.136401

PACS number(s): 75.50.Ee, 71.20.Ps, 78.20.Ci

The oxygen-deficient perovskite-type ferrate Sr₄Fe₄O₁₁ (SrFeO_{2.75}) with formally 50% Fe^{4+} and 50% Fe^{3+} ions has found interest due to its peculiar electronic and magnetic properties.¹⁻⁵ It is generally accepted that the crystal structure of Sr₄Fe₄O₁₁ reveals two crystallographically distinct sites $Fe(1)^s$ and $Fe(2)^o$, where $Fe(1)^s$ and $Fe(2)^o$ are square pyramidal and distorted octahedral sites, respectively.⁶ Most remarkably, the Mössbauer spectra¹⁻⁴ and powder neutron diffraction studies⁵ have shown that only one of the sublattices is magnetically ordered below $T_N \sim 230$ K, whereas the other remains disordered down to 4 K. In order to derive the magnetic structure, it is of crucial importance to relate correctly the iron charge states with the respective crystallographic sites. This issue has led, however, to considerable controversy. Whereas Hodges et al.⁶ concluded from bondvalence sum calculations that the Fe4+ sites reside in the $Fe(1)O_5$ and the Fe^{3+} sites in the $Fe(2)O_6$ units, Schmidt et al.⁵ criticized this assignment and favored the opposite distribution of charge states. In a recent work, Vidya et al. investigated the structural, electronic, and magnetic properties of Sr₄Fe₄O₁₁ by spin-polarized electronic-structure calculations and claimed that their "theoretical results show unambiguously that Fe atoms with the square pyramidal environment have a lower oxidation state than that in the octahedral coordination"7 which would support the suggestion of Schmidt et al. Furthermore, Vidya et al. challenged the conventional interpretation of the Mössbauer spectra¹⁻⁴ and suggested that the magnetic hyperfine sextet seen at low temperature rather corresponds to magnetically ordered Fe⁴⁺ than Fe³⁺ sites. In this Comment, we reconsider the structural and Mössbauer data of Sr₄Fe₄O₁₁ and emphasize that they clearly favor the assignment by Hodges et al., but are in disagreement with the theoretical calculations of Vidya et al. Accordingly, the discussion of the magnetic structure presented in Ref. 7, which is based on the incorrect charge assignment, is misleading.

We have already pointed out recently⁸ that the correct charge assignments for $Sr_4Fe_4O_{11}$ can be derived by considering the bond distances and comparing them with related compounds. The average Fe-O distance d_{Fe-O} for the Fe(2)^o sites is 2.01 Å (4×2.044 Å, 2×1.937 Å), which compares

well with $d_{\text{Fe-O}}$ in related Fe³⁺ oxides [for instance, $d_{\text{Fe-O}}$ =2.01 Å in LaFeO₃ (Ref. 9) and SrLaFeO₄ (Ref. 10)]. On the other hand, $d_{\text{Fe-O}}$ is considerably smaller in Fe⁴⁺ oxides (for instance, $d_{\text{Fe-O}} = 1.93$ Å and $d_{\text{Fe-O}} = 1.94$ Å in SrFeO₃ (Ref. 6) and Sr₂FeO₄,¹¹ respectively). The strong structural distortion of the $Fe(2)O_6$ octahedra does not contradict an assignment to Fe³⁺ as structurally distorted Fe³⁺ sites are not uncommon in perovskite-related ferrates [cf. the crystal structures of SrLaFeO₄ (Ref. 10) and $Sr_2Fe_2O_5$ (Ref. 12)]. Therefore, the compressed $Fe(2)O_6$ units are not in favor of a Jahn–Teller effect of Fe⁴⁺. In this case, one rather would expect an elongated octahedron, as has been indeed found in K_2NiF_4 -related phases with nearly isolated Fe⁴⁺O₆ units.^{13,14} As the number of pure Fe⁴⁺ oxides is quite limited, there is indeed no reference compound with square pyramidal FeO₅ units in this oxidation state as has been noticed by Schmidt et al.⁵ Nevertheless, $d_{\text{Fe-O}}=1.86$ Å for the Fe(1)O₅ units in $Sr_4Fe_4O_{11}$ is much smaller than $d_{Fe-O}=1.97$ Å in case of the Fe^{3+} oxide $Sr_3Fe_2O_6$,¹⁵ the crystal structure of which contains FeO_5 square pyramids. Accordingly, relating $Fe(1)^s$ to Fe^{4+} and $Fe(2)^{o}$ to Fe^{3+} as derived by Hodges *et al.*⁶ leads to the expected trends in bond distances, whereas the opposite assignment favored by Schmidt et al.⁵ and Vidya et al.⁷ would lead to unreasonably long Fe⁴⁺-O and short Fe³⁺-O distances, respectively. It is noted that the overall bonding pattern derived from the theoretical calculations in Ref. 7 with more covalent Fe1-O than Fe2-O bonding is rather in agreement with our charge assignment as Fe⁴⁺-O bonding generally is more covalent than Fe³⁺-O bonding. The strongly covalent Fe⁴⁺-O bonding is at the origin of the interesting physics of Fe⁴⁺ oxides which are frequently classified as negative-charge-transfer energy (negative- Δ) materials.¹⁶ Square pyramidal FeO₅ units with very similar bond distances as in Sr₄Fe₄O₁₁ are also observed in the crystal structure of $Sr_8Fe_8O_{23}$.⁶ A consistent description of sample composition, structural data, and the Mössbauer spectra of this oxide is only achieved if the FeO₅ units are associated with Fe⁴⁺ ions.^{6,8}

We now turn to the Mössbauer parameters of $Sr_4Fe_4O_{11}$, which are summarized in Table I, and for comparison data of related oxides, which are given in Table II. In their paper,

TABLE I. Mössbauer parameters (IS: isomer shift vs α -Fe; B_{hf} : hyperfine field; ε : quadrupole interaction parameter; ΔE_Q : quadrupole splitting) of Sr₄Fe₄O₁₁ from Ref. 8. Similar values were reported in Ref. 2.

<i>T</i> (K)	Assignment	IS (mm s ⁻¹)	ε or ΔE_Q (mm s ⁻¹)	$B_{ m hf}$ (T)
4	Fe ⁴⁺ Fe ³⁺	-0.03 0.47	0.35 -0.67	45
295	Fe ⁴⁺ Fe ³⁺	-0.09 0.34	0.32 1.35	

Vidya et al. considered charge assignments based on the Mössbauer isomer shifts (ISs) as ambiguous as the reference standards are not "real standards in the sense that they provide a fixed valence state of Fe."⁷ In fact, relying on absolute values of IS (and $B_{\rm hf}$) may be misleading, but comparison of the trends in related compounds allows definite clues to be drawn and is a well accepted procedure. In case of $Sr_4Fe_4O_{11}$, there is no ambiguity in the assignment of charge states from the Mössbauer isomer shifts. Referring to the 4 K spectrum of $Sr_4Fe_4O_{11}$ (Ref. 8) (or to the 77 K spectrum from Ref. 2), it is evident that the magnetically ordered site with $B_{\rm hf} \sim 45$ T is characterized by IS=0.47 mm s⁻¹. This IS value is typical for Fe³⁺ in such oxides (see Table II) and safely rules out an assignment to Fe⁴⁺. Therefore, the hyperfine pattern at low temperatures is clearly associated with the Fe^{3+} and not with the Fe^{4+} sites as has been implied in Ref. 7. The Fe³⁺ sites are subjected to a large quadrupole interaction in the paramagnetic as well as in the magnetically ordered phase which is in agreement with the pronounced structural distortion of the $Fe(2)O_6$ units. On the other hand, the quadrupole doublet with $IS = -0.03 \text{ mm s}^{-1}$ and a smaller quadrupole splitting suggest electronically rather localized Fe^{4+} ions located in the $Fe(1)^{s}$ sites, which remain magnetically disordered down to 4 K. The calculations of Ref. 7 confirm that the absolute value of the electric field gradient is much larger at the $Fe(2)^{\circ}$ than at the $Fe(1)^{\circ}$ sites. Neglecting differences in the 4s contributions to the chemical bonding between the two coordination environments, it is concluded that the number of d electrons, which shield the *s*-electron TABLE II. Mössbauer ISs vs α -Fe and hyperfine fields $B_{\rm hf}$ for some Fe³⁺ and Fe⁴⁺ oxides at 4 K (*o*, *s*, and *t* refer to octahedral, square pyramidal, and tetrahedral coordination, respectively).

Compound	Fe charge state	IS (mm s ⁻¹)	$B_{\rm hf}$ (T)	Ref.
LaFeO ₃	+3°	0.47	56	9
Sr ₂ Fe ₂ O ₅	+3°	0.49	54	17
	+3 ^t	0.29	45	
Sr ₃ Fe ₂ O ₆	+3 ^s	0.48	52	18
SrFeO ₃	+4°	0.15	33	17
Sr ₂ FeO ₄	+4°	0.07	25-33	11
SrLaMg _{0.5} Fe _{0.5} O ₄	+4°	-0.09	18	14

density from the nucleus, is smaller for the $\text{Fe}^{4+}(1)^s$ than for the $\text{Fe}^{3+}(2)^o$ sites, again in disagreement with the results of Ref. 7.

Combing the information from the structural and Mössbauer data, it is deduced that a *G*-type antiferromagnetic spin arrangement occurs, which is driven by the strong antiferromagnetic interactions between the half-filled $t_{2g}^3 e_g^2$ shells of the Fe³⁺ sites in the vertex-sharing Fe(2)O₆ chains. The coupling between the chains is much weaker. As suggested by Gibb² and Hodges *et al.*⁶ the Fe⁴⁺(1)^s spins are subjected to competing magnetic interactions. This leads to rapid spin fluctuations and prevents development of long-range magnetic order of the Fe(1)^s sublattice. Quantum fluctuations even at low temperature in this peculiar magnetic structure with strong antiferromagnetic interactions only in one dimension are the likely origin for the quite small B_{hf} =45 T, which is, however, still much higher than any known B_{hf} value for Fe⁴⁺ oxides.

In summary, the available structural and Mössbauer data evidence that the Fe(1)^{*s*} and Fe(2)^{*o*} sites in the crystal structure of Sr₄Fe₄O₁₁ correspond to Fe⁴⁺ and Fe³⁺ ions, respectively. The Fe³⁺(2)^{*o*} sublattice is antiferromagnetically ordered, whereas the Fe⁴⁺(1)^{*s*} sublattice remains disordered. Accordingly, not the experimentalists have been "mislead to believe that magnetic ordering occurs for Fe³⁺ rather than for Fe^{4+,77} but the theoretical calculations presented in Ref. 7 are not in accord with the experimental observations.

- ¹T. C. Gibb, J. Chem. Soc. Dalton Trans. **1985**, 1455 (1985).
- ²T. C. Gibb, J. Mater. Chem. **4**, 1445 (1994).
- ³Y. Takeda, K. Kanno, T. Takada, O. Yamamoto, M. Takano, N. Nakayama, and Y. Bando, J. Solid State Chem. **63**, 237 (1986).
- ⁴M. Takano, T. Okita, N. Nakayama, Y. Bando, Y. Takeda, O. Yamamoto, and J. B. Goodenough, J. Solid State Chem. **73**, 140 (1988).
- ⁵M. Schmidt, M. Hofmann, and S. J. Campbell, J. Phys.: Condens. Matter **15**, 8691 (2003).
- ⁶J. P. Hodges, S. Short, J. D. Jorgensen, X. Xiong, B. Dabrowski, S. M. Mini, and C. W. Kimball, J. Solid State Chem. **151**, 190

(2000).

- ⁷R. Vidya, P. Ravindran, H. Fjellvåg, and A. Kjekshus, Phys. Rev. B 74, 054422 (2006).
- ⁸P. Adler, A. Lebon, V. Damljanović, C. Ulrich, C. Bernhard, A. V. Boris, A. Maljuk, C. T. Lin, and B. Keimer, Phys. Rev. B **73**, 094451 (2006).
- ⁹S. E. Dann, D. B. Currie, M. T. Weller, M. F. Thomas, and A. D. Al-Rawwas, J. Solid State Chem. **109**, 134 (1994).
- ¹⁰J. L. Soubeyroux, P. Courbin, L. Fournes, D. Fruchart, and G. le Flem, J. Solid State Chem. **31**, 313 (1980).
- ¹¹S. E. Dann, M. T. Weller, D. B. Currie, M. F. Thomas, and A. D.

Al-Rawwas, J. Mater. Chem. 3, 1231 (1993).

- ¹²M. Harder and H. Müller-Buschbaum, Z. Anorg. Allg. Chem. 464, 169 (1980).
- ¹³J. L. Soubeyroux, N. Chevreau, G. Demazeau, M. Pouchard, and P. Hagenmuller, J. Solid State Chem. **51**, 38 (1984).
- ¹⁴G. Demazeau, Z. Li-Ming, L. Fournes, M. Pouchard, and P. Hagenmuller, J. Solid State Chem. **72**, 31 (1988).
- ¹⁵S. E. Dann, M. T. Weller, and D. B. Currie, J. Solid State Chem.

97, 179 (1992).

- ¹⁶A. E. Bocquet, A. Fujimori, T. Mizokawa, T. Saitoh, H. Namatame, S. Suga, N. Kimizuka, Y. Takeda, and M. Takano, Phys. Rev. B **45**, 1561 (1992).
- ¹⁷P. K. Gallagher, J. B. MacChesney, and D. N. E. Buchanan, J. Chem. Phys. **41**, 2429 (1964).
- ¹⁸P. K. Gallagher, J. B. MacChesney, and D. N. E. Buchanan, J. Chem. Phys. **45**, 2466 (1966).