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Superconducting �SC� phase transitions in strongly type-II superconductors in the Pauli paramagnetic limit
are considered within the framework of the Gorkov–Ginzburg–Landau approach in the lowest Landau level
approximation for both s- and d-wave electron pairings. Simple analytical expressions for the quadratic and
quartic coefficients in the order parameter expansion of the SC free energy are derived without relying on
gradient or wave number expansions. The existence of a changeover from continuous to discontinuous SC
phase transitions that are predicted to occur in the clean limit is shown to depend on the dimensionality of the
underlying electronic band structure but to be independent of the type of the electron pairing. Such a change-
over can take place in the quasi-two-dimensional �2D� regime below a critical value of a three-dimensional–
two-dimensional �3D-2D� crossover parameter. In the 3D limit, wherein the normal to SC phase transitions are
of second order and the SC phase is spatially modulated along the field direction, the transition line to a
uniform SC phase is of first order and is usually very close to the normal to SC transition line.
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I. INTRODUCTION

In recent years, a number of unusual superconducting
�SC� states have been discovered in different materials.1

Most of these materials are strongly type-II superconductors,
possessing highly anisotropic or even quasi-two-dimensional
�2D� electronic structures. Of special interest in the present
paper are SC materials that show peculiar clean-limit fea-
tures at high magnetic fields and low temperatures, notably
the recently discovered family of heavy-fermion compounds
CeRIn5 �R=Rh, Ir, and Co�2 and some of the organic charge
transfer salts of the type �BEDT-TTF�2X.3,4

The heavy-fermion compound CeCoIn5, for example,
which is believed to be an unconventional �d-wave�
superconductor5 similar to the high-Tc cuprates, exhibits the
highest Tc ��2.3 K� among Ce-based heavy-fermion com-
pounds. This material is characterized by exceptionally
strong Pauli paramagnetic pair breaking6,7 due to its ex-
tremely large electron effective mass and small Fermi veloc-
ity, which could lead to discontinuous �first-order� SC phase
transitions at sufficiently high magnetic fields.8–10

Recently, Bianchi et al.11 observed a changeover of the
second-order SC phase transition to a first-order transition in
specific heat measurements performed on this material as the
magnetic field is increased above some critical values for
both parallel and perpendicular field orientations with respect
to the easy conducting planes. A similar effect was very re-
cently observed by Lortz et al.12 in the nearly 2D organic
superconductor �-�BEDT-TTF�2Cu�NCS�2 but only for a
magnetic field orientation parallel to the SC layers, where the
orbital �diamagnetic� pair breaking is completely suppressed.
Under these conditions, the usual �uniform� SC state is ex-
pected to be unstable with respect to the formation of a non-
uniform SC state, as predicted more than 40 years ago by
Fulde and Ferrel13 and by Larkin and Ovchinnikov14

�FFLO�. The corresponding SC order parameter is spatially
modulated along the field direction with a characteristic
wave number q, whose kinetic energy cost is compensated

by the Pauli pair-breaking energy. The critical temperature,
TFFLO, for the appearance of the FFLO phase is found to be
equal to 0.56Tc. At the corresponding tricritical point, the
normal �N�, the uniform, and nonuniform SC phases are all
met.

The possibility of a changeover to first-order transitions
can effectively be investigated within the Ginzburg–Landau
�GL� theory of superconductivity since for the uniform SC
phase �i.e., for q=0� the coefficient �usually denoted by �� of
the quartic term in the GL expansion changes sign at a tem-
perature T�, which coincides with TFFLO.15 The identity of T�

with TFFLO is peculiar to the clean limit of a superconductor
with no orbital pair breaking. In conventional s-wave super-
conductors, electron scattering by nonmagnetic impurities
shifts TFFLO below the critical temperature T�,16 allowing dis-
continuous phase transitions at temperatures TFFLO�T�T�,
since �following Anderson’s theorem� � is not influenced by
nonmagnetic impurities. In superconductors with an uncon-
ventional electron pairing, wherein � is strongly affected by
nonmagnetic impurity scattering, the situation is reversed,
i.e., T��TFFLO.16

The interplay between orbital and spin depairing in a pure
s-wave isotropic 3D superconductor was first discussed by
Gruenberg and Gunther,17 who conjectured �i.e., without pre-
senting any result for the coefficient �� that for T�0.56Tc,
the N-SC transition is of the second order, whereas at lower
fields there should be first-order transitions to a uniform SC
phase. Houzet and Buzdin18 essentially confirmed this pic-
ture by exploiting order-parameter and gradient expansions
in the GL theory to find that T��TFFLO, so that at tempera-
tures T��T�TFFLO, there are second-order transitions to ei-
ther the Larkin–Ovchinnikov �LO� or the Fulde–Ferrel �FF�
phase. It should be noted, however, that the orbital effect was
treated there by using gradient expansions, which is a strictly
valid approximation only at very low magnetic fields.

In contrast to these papers, Adachi and Ikeda recently
found19 that, in a clean, d-wave, quasi-2D �layered� super-
conductor, the orbital effect always shifts TFFLO below T�. In
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this work, the authors used an order-parameter expansion in
the Gorkov Green’s function approach to the GL theory up to
the sixth order, avoiding the restrictions of gradient expan-
sion by exploiting the lowest Landau level �LLL� approxi-
mation for the condensate of Cooper pairs. Accounting for
impurity scattering destroys the FFLO phase and, in contrast
to the pure paramagnetic situation, somewhat reduces T�.
The effect of SC thermal fluctuations was found in this work
to broaden the discontinuous mean-field transition at T� into
a crossover. The reliance on �FFLO� wave number expansion
and on extensive numerical computations in this work has
saved formidable analytical efforts, leaving, however, inter-
esting questions unanswered. In particular, the origin of the
relative shift of TFFLO below T� by the orbital effect found in
this paper, in contrast to all the earlier studies, remains un-
known.

Houzet and Mineev20 partly clarified the situation by con-
sidering two different models of paramagnetically limited su-
perconductors: a 3D isotropic s-wave superconductor and a
quasi-2D d-wave superconductor under a magnetic field per-
pendicular to the conducting layers. Within their microscopi-
cally derived GL functional approach, which exploited gra-
dient expansions, it was found in the clean limit that for the
former model, T��TFFLO, whereas for the latter model, the
relation is reversed, that is, T��TFFLO. It was not clear, how-
ever, from these findings whether the difference in behaviors
was due to the difference in types of pairing or to the differ-
ence in Fermi surface dimensionalities characterizing the two
models.

In the present paper, we develop a formalism based on
order-parameter expansion within the Gorkov theory for a
strongly type-II superconductor, with both s- and dx2−y2-wave
electron pairings at high magnetic fields, which is suffi-
ciently simple to yield useful analytical expressions for the
SC free energy to any desired order in the expansion. By
exploiting the LLL approximation, the fundamental interplay
between spin induced paramagnetic and orbital diamagnetic
effects at an arbitrary magnetic field is studied, within a
model of anisotropic electron systems covering the entire
3D-2D crossover range, without relying on gradient or wave
number expansions. These advantages enable us to shed a
different light on the yet undecided debate concerning the
order of the SC phase transitions in the presence of a strong
Zeeman spin splitting and to push our investigation into the
unexplored region of very low temperatures, where quantum
magnetic oscillations have been shown to be observable in
the heavy-fermion compounds.21,22

Specifically, it is found that the relevant parameter con-
trolling the relative position of TFFLO with respect to T� is the
dimensionality of the electronic orbital motion in the crystal
lattice, through its influence on the orbital �diamagnetic�
pair-breaking effect. For a 3D Fermi surface �isotropic or
anisotropic�, on which the electron motion along the mag-
netic field direction reduces the cyclotron kinetic energy, the
shift of T� to low temperatures is larger than that of TFFLO. In
this case, the kinetic energy of Cooper pairs associated with
their motion along the field can compensate for the spin-
splitting effect, thus leading to an increase in � and the dis-
appearance of the first-order transition. The corresponding
phase diagram is similar to that suggested in Ref. 17, in

which the N-SC transition is of second order. However, due
to the strong dependence of � and � on the FFLO wave
number q, the SC free energy has a nonmonotonic depen-
dence on q, so that the transition between the nonuniform
and uniform �along the field� SC states is of first order. For
spin-splitting energies that are not too large as compared to
the critical paramagnetic value, the corresponding continu-
ous and discontinuous transition lines are found very close to
each other, so that in the presence of thermal fluctuations
they might be indistinguishable.

In the quasi-2D limit �i.e., for quasicylindrical Fermi sur-
faces�, the enhanced orbital pair-breaking shifts TFFLO below
T�, which is in agreement with Adachi and Ikeda.19

II. ORDER PARAMETER EXPANSION IN THE
PRESENCE OF SPIN-SPLIT LANDAU LEVELS

Our starting point is an effective BCS-type Hamiltonian
with a dx2−y2-wave pairing interaction similar to that ex-
ploited, e.g., by Agterberg and Yang.16 The conventional
s-wave situation can similarly be worked out and so will not
be presented in detail here. The thermodynamical potential
�per unit volume� for the corresponding d-wave supercon-
ductor, as expanded in the order parameter with nonlocal
normal electron kernels, may be written as

� =
	0

2

V
+ �

m=1

�− 1�m

m
�̃2m�	�R,r�� , �1�

where �̃2m�	�R ,r�� is a functional of the SC order param-
eter, 	�R ,r�, that has a power-law dependence ��	0�2m on
the spatial average amplitude, 	0, of the order parameter, and
V is a BCS coupling constant �given in units of energy

volume�. The corresponding d-wave order parameter de-
pends on both the center of mass �R� and the relative �r�
coordinates of a condensate of electron pairs: 	�R ,r�
=	�R���r�. It should be self-consistently determined from
the corresponding pair-correlation functions. Only stationary
solutions are considered, neglecting quantum and thermal
fluctuations. In addition, the order parameter in the mean-
field approximation is selected as a hexagonal vortex lattice.
Actually, this assumption is not very important since the
second-order term in the order-parameter expansion does not
depend on the vortex lattice structure, whereas the lattice
structure dependence of the quartic term is very weak �see
Refs. 23 and 24�.

For the underlying system of normal electrons, we assume
a simple model of quadratic energy dispersion ��kx ,ky ,kz�
=2�kx

2+ky
2� /2m�+2kz

2 /2mz
� and an anisotropic effective

mass tensor: m��mz
�. A quasi-2D situation is characterized

by a sufficiently large anisotropy parameter �a=�mz
� /m�,

corresponding to an elongated Fermi surface with a Fermi
momentum kF and a Fermi energy �F	2kF

2 /2m�, which is
truncated by the Brillouin zone �BZ� face at kz,max=� /d,
where d is the lattice constant perpendicular to the easy
planes. A parameter determining the dimensionality of the

Fermi surface may be defined by v0=��z,max

�F
, where �z,max

	2kz,max
2 /2mz

� is the maximal value of the electron energy
along the field. Thus, in the 2D limit, kz,max�kF, we have
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v0→0, while the system may be regarded 3D �isotropic or
anisotropic� if kz,max
kF, for which the Fermi surface is con-
tained entirely within the first BZ, namely, for v0=1.

At any order of the expansion �Eq. �1��, the nonlocal elec-
tronic kernel of the corresponding functional �see, e.g., Eqs.
�3� and �5� and Eqs. �25� and �26�� consists of a product of
m=1,2 , . . ., pairs of normal electron Green’s functions in a
constant magnetic field, H=Hẑ �i.e., perpendicular to the
easy conducting layers�, which are written in the form
G↑↓�R1 ,R2 ,���=G0↑↓�R2−R1 ,���g�R1 ,R2�, where the

gauge factor is given by g�R1 ,R2�=e−�i/2aH
2 ��R1
R2�·ẑ, aH

=�c /eH, and the gauge invariant part can be calculated by
the well known expression25

G0↑↓�R2 − R1,��� =
1

2�aH
2  dkz

2�
eikz�Z2−Z1�


�
n

e−�2/4Ln��2/2�
� − �nkz↑↓ + i�� + i sign�����

.

�2�

Here, ��=�kBT�2�+1� /, where �=0,�1, . . ., is the Mat-
subara frequency, �nkz↑=�c�n+1 /2+x2−g /2� and �nkz↓
=�c�n+1 /2+x2+g /2� are the spin-split normal electron en-
ergy levels, �c=eH /m� is the in-plane electronic cyclotron

frequency, x2=�2kz
2	

kz
2

2mz
��c

is a dimensionless longitudinal
�parallel to the magnetic field� kinetic energy, �cg	eH /m0
is the Zeeman spin-splitting energy, � is the impurity scat-
tering relaxation rate, and �=�c�nF+1 /2���F=2kF

2 /2m�

is the chemical potential. The spatial variables are dimen-
sionless in-plane �perpendicular to the magnetic field� coor-
dinates, �=

R2�−R1�

aH
, and longitudinal coordinates: Z1=R1 · ẑ

and Z2=R2 · ẑ.

A. Quadratic term

In the expansion �Eq. �1��, the second-order term, which
describes the SC condensation energy of spin-singlet elec-
tron pairs, propagating from initial �i=1� to final �i=2� co-
ordinates Ri�

ri

2 , is given by

�2 =
	0

2

V
−

1

V0
 d3R1d3R2�̃2�R1,R2�K̃2�R1,R2�

	
	0

2

V
− A0	0

2, �3�

where V0=SLz is the volume of the system. The vertex part,

�̃2, is a product of two order parameters multiplied by the
gauge factors, g�R2 ,R1�, which are functions of the center of
mass coordinates only, due to the cancellation by the corre-
sponding phase factors of the order parameters, namely,

�̃2�R1,R2� = g��R1,R2�g�R2,R1�	�R1�	��R2� . �4�

The kernel K̃2 is a product of two translational invariant
Green’s functions, convoluted with the corresponding factors
of the order parameters, which depend only on the relative
pair coordinates, namely,

K̃2�R1,R2� = kBT�
�
 d3r1d3r2��r1����r2�G0↑

� �R2 − R1

+
r2 − r1

2
,���G0↓�R1 − R2 +

r2 − r1

2
,��� .

�5�

The factor of the order parameter that depends on the pair
center of mass coordinates is written, in the LLL
approximation,26 as27

	�R� = c�Z��
n

ei�n2/2�n�R�� ,

�n�R�� = exp�i
2�n

axaH
X − � Y

aH
−
�n

ax
�2� , �6�

where ax= ��2� /3�1/4 is the hexagonal vortex lattice spacing
in units of magnetic length and c�Z�=c0eiqZ �c0= � 2�

ax
2 �1/4	0�

is the Fulde–Ferrell modulation factor. It should be noted
that in the present calculations, the LO modulation has not
been considered; all derivations were made for the FF state.
This approach is justified since our main purpose here is in
examining the existence of a changeover from continuous to
discontinuous transitions and in studying how the appearance
of a modulated SC phase affects this changeover. Obviously,
this restriction does not allow us to discuss any structural
transitions inside the modulated state. Exploiting the fact that

the kernel K̃2�R1 ,R2� depends only on the difference R1
−R2, one may first carry out the integration in Eq. �3� over
the in-plane mean coordinates R�= �R�,1+R�,2� /2 to get the
following average vertex part:28

��̃2� =
1

V0
 �̃2�R1,R2�d2R� = �c0�2

ax

�2�
e�−�2/2�−iq�Z2−Z1�

= 	0
2e�−�2/2�−iq�Z2−Z1�, �7�

where 	0
2= 1

V0
�d3R�	�R��2 and then integrate over the rest of

the coordinates �= �R�,2−R�,1� /aH and �z= �Z2−Z1� /aH.
Since, among other things, we are interested in the effect

of quantum magnetic oscillations, we apply a technique of
exact summation over Landau levels �LLs� that was sug-
gested in Ref. 29. It is similar to the Poisson summation
formula, which transforms the summation over LLs into a
summation over the harmonics of the inverse magnetic field
and allows us to separately deal with the uniform �quasiclas-
sical� contribution and the various quantum corrections. This
technique can be briefly described as follows: Let us con-
sider the integral representation of the Green’s functions,
�nF−n−x2� i��−1=�0

�d�e�i��nF−n−x2�i��, and perform the
summation over LLs by using the well known identity,
�n=0
� znLn�t�= �1−z�−1 exp� tz

z−1 �, where z=e�i� and t=�2 /2.
By taking advantage of these relations, the gauge invariant
part of the Green’s function for ���0 can be transformed to
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G0↑↓�R2 − R1;���

=
1

2�aH
2 �c

 dkz

2�
eikz�Z2−Z1�



0

�

d�
ei��nF−x2+g+i�̃�+i�̃�

�1 − e−i��
exp��2

4

1 + ei�

1 − ei�� , �8�

where �̃�	�� /�c and �̃	� /�c. For ���0, one should re-
place � with −� �or �� with −�����.

The scattering of electrons by nonmagnetic impurities is
taken into account here as a self-energy correction to the
single electron Green’s functions by using the standard re-
laxation time approximation. Vertex corrections to the qua-

dratic kernel K̃2�R1 ,R2� �as well as to higher order ones�,
which are known to exactly cancel the self-energy insertions
in the very weak magnetic field regime of conventional
s-wave superconductors �see, e.g., Ref. 30�, are not so crucial
in the strong magnetic field regime of both the s- and d-wave
situations that are investigated here and will therefore be
neglected in our calculations, as done, e.g., in Refs. 19 and
31. In any event, for the high magnetic field and relatively
clean superconductors that are considered here, the length
scale, aH, corresponding to the diamagnetic pair breaking is
much smaller than the electron mean free path vF /�, and the
effect of impurity scattering is marginal.

By utilizing this approximation, we rewrite the kernel in
the following form:

K̃2��,�z� =
kBT

�2�aH
2 �c�2�

�
 dz1dz2 dkz,1

2�
eikz,1��z+�z/2�


 dkz,2

2�
eikz,2��z−�z/2�

0

�

d�1ei�1�nF−�2kz,1
2 +g+i�̃�+i�̃�



0

�

d�2e−i�2�nF−�2kz,2
2 −g−i�̃�−i�̃�J��1,�2,�� , �9�

where �= �r�,2−r�,1� /aH, �z= �z2−z1� /aH, and

J��1,�2,�� = d2r�,1d2r�,2f��r2��1 − e−i�1�−1


exp� �� + �/2�2

4

1 + ei�1

1 − ei�1
��1 − ei�2�−1


exp� �� − �/2�2

4

1 + e−i�2

1 − e−i�2
� . �10�

In Eq. �9�, we use the representation ��r�=��z�f�r��,
where f�r��=� d2k

�2��2 fkei�k·r�� describes the two types of elec-
tron pairing, the symmetric s-wave pairing with

fsk =
1

2
�cos�kxd� + cos�kyd�� �11�

and dx2−y2-wave pairing,

fdk =
1

2
�cos�kxd� − cos�kyd�� , �12�

producing nodes in the order parameter along the kx=�ky
directions. The � dependence on z enables us to readily per-
form the first two integrations in Eq. �9�.

By using the resulting expression for K̃2�� ,�z� and the

vertex function ��̃2�, one can calculate the nontrivial coeffi-
cient A0 in Eq. �3� by performing the integrals over � and �z,

A0 = d2�d�zK̃2��,�z�e−�2/2−iq�z, �13�

with the other integrals incorporated in the kernel as appear-
ing in Eq. �9�. It is convenient to perform the integration over
� first since both the function J��1 ,�2,�� and the vertex part
have a Gaussian dependence on �, which can be readily car-
ried out with the result

J��1,�2� = d2�e−�2/2J��1,�2,�� =
2�Jp��1,�2�

2 − e−i�1 − ei�2
, �14�

where

Jp��1,�2� = d2r�,1d2r�,2f�r1�f��r2�e−���/8��2
�15�

and ��=
2+e−i�1+ei�2

2−e−i�1−ei�2
. It should be noted here that the type of

pairing influences the SC condensation energy through the
functional dependence of Jp on the pairing function fk.

By performing the straightforward calculation of
Jp��1 ,�2� for both functions, one obtains

Jsp��1,�2� =
1

4
�1 + e−�1/4���d

2
�2 
 1, �16�

Jdp��1,�2� =
1

4
�1 − e−�1/4���d

2
�2 


1

4
���d2

4
�2

, �17�

where the last approximate step is obtained in the limit
��
4 d2�1. This can be justified by noting that the scale of the
function �� is of the order of unity, whereas d �in units of the
magnetic length� is much smaller than 1. In the opposite
limit, Jsp��1 ,�2�=Jdp��1 ,�2�= 1

4 .
Thus, by noting that the integration of A0 over the center

of mass coordinates yields just the total volume of the sys-
tem and performing the integration over the relative coordi-
nate �z,

 d�z dkz,1

2�
eik1,z�z dkz,2

2�
eikz,2�zei�1�nF−�2kz,1

2 +g+i�̃v+i�̃�


e−i�2�nF−�2kz,2
2 −g−i�̃v−i�̃�e−iq�z

= dkz

2�
ei�1�nF−�2�kz + q/2�2+g+i�̃v+i�̃�


e−i�2�nF−�2�kz − q/2�2−g−i�̃v−i�̃�, �18�

one obtains for a d-wave superconductor the following:
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A0
�d� =

6kBT

�2kz,max
2 /2m��2aH

2 �
�
 dkz

2�


−�

�

d�1d�2



ei�1�nF−�2�kz + q/2�2+g+i�̃�+i�̃�e−i�2�nF−�2�kz − q/2�2−g−i�̃�−i�̃�

�2 − e−i�1 − ei�2�3 .

�19�

A similar expression can be derived for an s-wave super-
conductor. Below, we will present only the final result for
this case �see Eqs. �22� and �24��.

Equation �19� is an exact representation for the coefficient
of the quadratic term in the order-parameter expansion �Eq.
�3��, which includes low temperature quantum corrections
and quantum magnetic oscillations. It can be written as a
sum of contributions from poles at the 2D lattice: �1=2�n1
and �2=2�n2, where n1,2=0 ,1 , . . .. The dominant �zero har-
monic� quasiclassical contribution arises from the pole at
n1=n2=0, whereas the quantum corrections are associated
with the poles at n1=n2�0. It is easy to see that the oscil-
lating terms correspond to the off-diagonal poles, n1�n2, in
the ��1 ,�2� plane.

In the present paper, we are mainly interested in the qua-
siclassical contribution for which a further simplification can
be achieved. By changing to new variables, �2=�0+ �

2 , �1

=�0− �
2 , and exploiting the expansion 2−e−i�1 −ei�2 
�0

2− i�
near the “quasiclassical” pole �1=�2=0, one carries out the
integral over � in Eq. �19� to have

A0
�d� =

6kBT

�2kz,max
2 /2m��2aH

2 �
�
 dkz

0

�

d�0e2i�0��2qkz+g+i�̃�+i�̃�


�nF − �2�kz
2 + �q/2�2��2e−�0

2�nF−�2�kz
2+�q/2�2��. �20�

Note that the lowest order expansion of the denominator in
Eq. �19� about �1=�2=0 is kept under the entire range of
integration since the important integration interval is on the
order ���0

2��0� 1
�nF

�1. Note also that throughout this
paper, we assume that nF�1.

It is convenient to rescale variables as

u 	 �nF�0, x0 	 �q, v 	
�kz

�nF

�21�

and neglect the energy of an electron pair along the z axis,
��q�2, with respect to the Fermi energy, nF. By performing
the explicit summation over the Matsubara frequencies, one
obtains, in terms of the new variables, the following result:

A0
�d� = N�0��d

2�kBT
���c


0

�

du
1 − e−�2�D/���c�u

sinh� 2�kBT
���c

u� e−�2�̃/�nF�u


cos� 2g
�nF

u��2
�d��u,x0� , �22�

where �d=3�
kFd

� �4, N�0� is the electron density of states per

spin at the Fermi energy �N�0�=
�m�mz

�kF

2�3 �, and

�2
�d��u,x0� = 

0

1

d��1 − v2�2 cos�2x0uv�e−u2�1−v2�. �23�

A similar result is obtained for an s-wave superconductor.
In this case, �d→�s=1 and

�2
�s��u,x0� = 

0

1

d� cos�2x0uv�e−u2�1−v2�. �24�

For g=x0= �̃=0, Eqs. �22� and �24� reduce to the quadratic
term derived by Helfand–Werthammer.32

B. Quartic term

The quartic term in the perturbation expansion �Eq. �1��,
which corresponds to a closed loop diagram with four verti-
ces, is given by

�4
�s,d� =

1

V0
 d3R1d3R2d3R3d3R4


�̃4�R1,R2,R3,R4�K̃4�R1,R2,R3,R4� , �25�

where the kernel, containing the gauge invariant factors of
the four electron Green’s functions, is

K̃4�R1,R2,R3,R4�

= kBT�
�
 d3r1d3r2d3r3d3r4��r1����r2���r3����r4�


G0↑
� �R2 − R1 +

r2 − r1

2
,���


G0↓�R3 − R2 −
r3 − r2

2
,���


G0↑
� �R4 − R3 +

r4 − r3

2
,���


G0↓�R1 − R4 −
r1 − r4

2
,��� �26�

and the vertex part is

�̃4�R1,R2,R3,R4� = g��R1,R2�g�R2,R3�g��R3,R4�g�R4,R1�


	�R1�	��R2�	�R3�	��R4� , �27�

which consists of the gauge factors g�Ri ,R j� and the order
parameter values at the four center of mass positions for two
electron pairs.

Since the dependence of the order parameter on the rela-
tive pair coordinates is separable from that of the center of
mass coordinates, the latter dependence is selected to have
the usual Abrikosov lattice structure,

	�R� = c0eiqZe−�1/2���u�2−u2� �
n=0,�1,�2,. . .

eiqnu−qn
2/4, �28�

where qn=2�n /ax and u=X+ iY. To simplify the calculation
of the vertex part, we exploit several assumptions. By sub-
stituting Eq. �28� for Eq. �27�, one may keep only the diag-
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onal terms with qn1=qn2=qn3=qn4= p, since all off-diagonal
terms are small by the Gaussian factor �exp�−�qn4−qn1�2

− �qn4−qn1�2�. Furthermore, we may replace the summation
over p with an appropriate integration. Both of these assump-
tions are equivalent to neglecting particular vortex lattice
structures, corresponding to the replacement of the Abriko-
sov structure parameter, �A, with

��
ax

,27 which yields only a
small error.

With the above assumptions, the vertex part reduces to

�̃4�R1,R2,R3,R4� =
ax

��
2�

�c0�4exp�iq�Z1 − Z2 + Z3 − Z4��


exp�−
1

4 � ��l�2�

exp�1/4��u1 − u3�2 + �u2

� − u4
��2�� ,

�29�

where �l=ul+1−ul. Since the dominant contribution to the
quartic term arises from small propagation distances, �ul�
�1,24,33 one may expand the last exponential on the right
hand side of Eq. �29�, up to leading order, under the integrals
over the angular variables in Eq. �25�. An additional angular
dependence is due to the kernel, K4, through its dependence
on the absolute values of linear combinations of “external,”
Rl+1−Rl, and “internal,” rl+1−rl �l=1, . . . ,4�, coordinates
�see Eq. �26��. Since the characteristic size of �rl+1−rl��d is
much smaller than the scale of �Rl+1−Rl��aH, the depen-
dence of the kernel on rl+1−rl �and, consequently, its depen-
dence on the angular variables� may be neglected at large
�Rl+1−Rl�. Therefore, the integration over angular variables
in this region involves only the last exponential in Eq. �29�,
resulting in

�e�1/4���u1 − u3�2+�u2
� − u4

��2�� � 1 +
1

4
��u1 − u3�2 + �u2

� − u4
��2� = 1,

since �ul
2�= �uluk

��=0 �l�k�, whereas for small values of
�Rl+1−Rl�, this exponential is always close to 1 and the re-
maining integration over angular variables can be performed
in closed form �see below�. Thus, one can approximate the
vertex part by the following simple expression:

�̃4�R1,R2,R3,R4� =
ax

��
2�

�c0�4exp�iq�Z1 − Z2 + Z3 − Z4��


exp�−
1

4 � ��l�2� , �30�

which depends only on nearest neighboring coordinates.
By making use of Eq. �30�, the remaining calculation of

the quartic term is similar to that used for the quadratic term
but is considerably massier. Below, we present only an out-
line of the derivation. Since integrations over zi are trivial,
from now on, we shall use only 2D vector notations with
integrations over Zi that are explicitly written.

Combining Eqs. �25�, �26�, and �30�, our starting expres-
sion for the quartic term is given by

�4
�s,d� =

kBT

V0
� 1

2��c
�4ax

��
2�Lz

�c0�4�
�
 dZ1dZ2dZ3dZ4


 �
i=1

4
dkz,i

2�
e−ikz,1�Z2−Z1�eikz,2�Z3−Z2�e−ikz,3�Z4−Z3�


eikz,4�Z1−Z4�eiq�Z1−Z2+Z3−Z4� d2r1d2r2d2r3d2r4


f�r1�f��r2�f�r3�f��r4��4�r1,r2,r3,r4;�kz,i�;��� ,

�31�

where the function �4�r1 ,r2 ,r3 ,r4 ; �kz,i� ;��� includes inte-
gration over all electron pair coordinates:

�4�r1,r2,r3,r4;�kz,i�;���

=
1

LxLy
 d2R1d2R2d2R3d2R4 exp�−

1

4 � ��l�2�



0

�

d�1e−i�1�nF−x1
2−g−i�̃v−i�̃�

exp�R12
2

4

1 + e−i�1

1 − e−i�1
�

1 − ei�1



0

�

d�2ei�2�nF−x2
2+g+i�̃v+i�̃�

exp�R23
2

4

1 + ei�2

1 − ei�2
�

1 − e−i�2



0

�

d�3e−i�3�nF−x3
2−g−i�̃v−i�̃�

exp�R34
2

4

1 + e−i�3

1 − e−i�3
�

1 − ei�3



0

�

d�4ei�4�nF−x4
2+g+i�̃v+i�̃�

exp�R41
2

4

1 + ei�4

1 − ei�4
�

1 − e−i�4
.

�32�

Here, the coordinates, Ri,i+1, in Eq. �32� are the linear com-
binations of �l=Rl+1−Rl and  l=rl+1−rl:

R12 = �1 +
1

2
 1, R23 = �2 −

1

2
 2,

R34 = �3 +
1

2
 3, R41 = �4 −

1

2
 4. �33�

The Gaussian integration over �l reduces Eq. �32� to

�4�r1,r2,r3,r4;�kz,i�;���

= 
0

�

d�1d�2d�3d�4
�2��3

!


exp�−
1

8!
� 1 −  2 +  3 −  4�2�e−i�1�nF−x1

2−g−i�̃v−i�̃�


ei�2�nF−x2
2+g+i�̃v+i�̃�e−i�3�nF−x3

2−g−i�̃v−i�̃�


ei�4�nF−x4
2+g+i�̃v+i�̃�, �34�
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where !=4−ei�1 −e−i�2 −ei�3 −e−i�4. It should be noted here
that Eq. �34� has been obtained by exploiting the fact that the
dominant contributions to the integrals originate in the re-
gions where �i�1.

Furthermore, by noting that in the above equation the  i
and kz dependences are factorized, one can separately per-
form the integrations over both sets of variables. For a
d-wave superconductor, we obtain

 d2r1d2r2d2r3d2r4f�r1�f��r2�f�r3�f��r4�


exp�−
1

8!
� 1 −  2 +  3 −  4�2�

=
1

43 �1 − e−d2/��4�3 + 2e−d2/� + e−2�d2/���2



9

16

d8

!4 , �35�

where the last approximation is valid under the same condi-
tions discussed in the derivation of the quadratic term. Thus,
the quartic term is transformed to

�4
�d� =

kBT

��c�4

ax
��

�2��3 �c0�4
9d8

16aH
8 �

�
 dkz



0

� d�1d�2d�3d�4

�4 − ei�1 − e−i�2 − ei�3 − e−i�4�5


e−i��1−�2+�3−�4��nF−�2kz
2−�2�q/2�2�e−��1+�2+�3+�4���̃v+�̃�


ei��1+�2+�3+�4��g+�2kzq�, �36�

where an additional integration over "= ��1−�2+�3−�4� /2
for small �i can be performed by expanding ei�i in the de-
nominator of Eq. �36� up to the second order. By rescaling
the remaining independent variables as

� = �nF
�1 + �2 + �3 + �4

2
, s =

�nF

2
��3 − �1� ,

and summing up over �, one obtains the final result for the
quartic term as follows:

�4
�d� = B�d�	0

4
0

�

d�
1 − e−�2�D/���c��

sinh� 2�kBT
���c

�� e−�2�̃/�nF��


cos�2�g0��4
�d���,q� , �37�

where B�d�=c4
�d�B0 with c4

�d�= 3
16�

kFd

� �8, B0= �
��
ax

�
�kBT

���c�3/2 N�0�,
and

�4
�d���,q� = 

0

1

dv�1 − v2�4e−�1/2��2�1−v2� cos�2vq��


�
0

�

dse−s2�1−v2��2

. �38�

The result for an s-wave superconductor can be obtained

from Eq. �37� by replacing the factor �1−v2�4 in the defini-
tion of �4

�d� and the factor c4
�d� in the normalization coeffi-

cient B�d� with unity. The s-wave quartic term for zero spin
splitting is equivalent to that obtained in Ref. 24.

III. RESULTS AND DISCUSSION

The analysis presented in the previous sections enables us
to write a GL-type expansion of the SC contribution to the
thermodynamic potential for an s- or dx2−y2-wave pairing up
to the second order in 	0

2 as follows:

��s,d� = ��s,d��t,b,q�	0
2 +

1

2
��s,d��t,b,q�	0

4 +
1

3
��s,d��t,b,q�	0

6

+ ¯ . �39�

For the quadratic term, we have

��s,d��t,b,q� = N�0�� 1

�
−

c2
�s,d�

#�T�0

�

d�
�1 − e−2�/#�TD��

sinh� 2�

#�T�
� e−2�/l


cos�2g

rF
���2

�s,d���,q�� ,

�2
�s,d���,q� = 

0

v0

d�$2
�s,d��v�cos�q�v/�a�


exp�− �1 − v2��2/2aH
2 � , �40�

where �=N�0�V; #�TD�	vF /�kBTD, where TD is the De-
bye temperature and vF=�2�F /m� is the in-plane Fermi ve-
locity; #�T�	vF /�kBT is the thermal mean free path; rF

=�2nFaH is the electronic cyclotron radius at the Fermi en-
ergy; and l the mean free path due to impurity scattering.

The differences between s-wave and d-wave SCs are
given by c2

�s�=1, c2
�d�=3�

kFd

� �4, and $2
�s��v�=1, $2

�d��v�= �1
−v2�2.

The quartic term has a similar structure:

��s,d��t,b,q� = B0
c4

�s,d�

aH


0

�

d�
�1 − e−2�/#�TD��

sinh� 2�

#�T�
� e−2�/l


cos�2g

rF
���4

�s,d���,q� ,

�4
�s,d���,q� = 

0

v0

d�$2
�s,d��v�cos�q�v/�a�exp�− �1 − v2�


�2/4aH
2 ��

0

�/�2aH

dse−s2�1−v2��2

, �41�

where B0= �
��
ax

�
N�0��kBT

��F�c�3/2 and c4
�s�=1, c4

�d�= 3
16�

kFd

� �8, $4
�s��v�=1,

and $4
�d��v�= �1−v2�4.

On the basis of the above formulas, below, we discuss the
H-T phase diagram for different values of the relevant pa-
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rameters. Three independent dimensionless parameters,
�2aH /rF�g, 2aH /#�T�, and qaH /�a, control the basic integrals
in these equations. The first two parameters measure the
strength of the spin and thermal pair-breaking mechanisms,
respectively, relative to the orbital �diamagnetic� depairing.
The third parameter determines the relative strength of the
compensating FFLO mechanism. The value of the spin pair-
breaking parameter, �	g�2aH /rF�H=Hc20

orb, where Hc20
orb is the

upper critical field at T=0 in the absence of spin pair break-
ing, is related to the well known Maki parameter,9 �M

=
�e/m0c�Hc20

orb

1.76kBTc0
, by �=1.1�M. Here, Tc0 is the transition tem-

perature at zero magnetic field.
As we shall show below, the situation TFFLO�T�, where

T� is the temperature at which ��t ,bc2 ,q=0�=0, is realized
in 3D systems �corresponding to v0=1�, regardless of the
spin-splitting strength and the type of electron pairing. A
typical phase diagram is shown in Fig. 1 for s-wave pairing
and spin pair-breaking parameter �=3.

As long as T�T� �so that ��t ,bc2 ,q=0��0�, the N-SC
phase transition is of second order and the �reduced� critical
field, bc2�t�, can be determined as the maximal value of b
	H /Hc20

orb obtained from the equation ��t ,b ,q�=0 for all val-
ues of q, at the �reduced� temperature t	T /Tc0. The solution
of this equation for q=0 yields a transition line, b=bc2

�0��t�,
ignoring the possibility of a FFLO state. The tricritical point,
TFFLO, is defined as the maximal temperature at which
bc2�t��bc2

�0��t�. It can be alternatively determined from the
equation

d��t,bc2,q=0�
dq2 =0, which is equivalent to the condition

for vanishing of the coefficient of ��	�2 in a gradient expan-
sion of the SC free energy.18

For T�T� and sufficiently strong spin pair breaking, there
can be a changeover to first-order SC transitions, but since
��t ,bc2 ,q�0����t ,bc2 ,q=0� �see Fig. 2�, the segment of
the bc2�t� line with first-order transitions arises only at very
low temperatures. For moderate � values, the coefficient
��t ,bc2 ,q� at optimal q is always positive and the N-SC
transition is of the second order at an arbitrarily low tempera-
ture.

The transition within the SC region from the nonuniform
�FFLO� to uniform �BCS� phase at T�T� cannot be obtained
just by analyzing the quadratic term ��t ,b ,q� since the SC
order parameter is finite there. It can be obtained by mini-
mizing the SC free energy �including both quadratic and
quartic terms� with respect to the modulation wave number
q. By neglecting the sixth and higher order terms in the ex-
pansion, the corresponding �standard� GL free energy, ��q�

−%��� �

2

2� �%��� being the Heaviside step function�, which
has a single minimum at q�0 for a field near bc2 �see Fig. 3,
upper panel�, develops a double-well structure �see Fig. 3,
middle panel� as a function of q upon decreasing the field
below bc2 at a given temperature T �due to the symmetry
q↔−q, only positive values may be considered�. One of
these minima is always at q=0, and it becomes energetically
favorable at a critical field for a first-order phase transition
from the FFLO to the uniform BCS phase. The second
�metastable� minimum at q�0 completely disappears upon
further field decrease �see Fig. 3, lower panel�. The origin of
the developing minimum at q=0 is the quickly decreasing
values of ��q� with the decreasing values of q toward q=0,
where � is negative.

At temperatures T below T�, the first two terms in the
expansion of the thermodynamic potential are not sufficient
to correctly describe the uniform SC state since for negative
� values, the scale of the SC free energy is determined by the
sixth-order term. In contrast, the free energy of the nonuni-
form state, where ��t ,b ,q�0��0, can be obtained from the
standard GL functional �with the assumption that the contri-
bution of the sixth-order term is small compared to that of
the quartic term�. The characteristic q dependences of the GL
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FIG. 1. �Color online� Phase transition lines for a 3D system
with s-wave pairing: Shown are the second-order N-SC transitions
for order parameters with FFLO modulation �thin solid line� and
without FFLO modulation �dotted line�. The FFLO-BCS transition
obtained by minimizing the GL free energy �including quartic cor-
rections� with respect to the FFLO wave number, which is of the
first order, is represented by the thick solid line. The dashed-dotted
line represents the location of vanishing d� /dq2 �see text for de-
tails�. The value of the spin-splitting parameter is �=1.8.
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2aH���T�

�b�

FIG. 2. �Color online� The GL coefficients ��t ,b ,q=0� �dashed
lines�, d��t,b,q=0�

dq2 �solid lines�, and d��t,b,q=0�
dq2 �dotted lines� as func-

tions of the parameter
2aH

#�T� for �a� v0=0.4 and �b� v0=1. The curves
are plotted with � measured in units of N�0� and � in units of
N�0��� /ax�F�c.
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coefficients, � and �, and the mean-field free energy,
−%��� �2

2�A�
, for T�T� are illustrated in Fig. 4. Whereas at

high fields �Fig. 4, upper panel� the minimum of the SC
energy occurs in a region where ��0, at lower fields �see
Fig. 4, lower panel� it approaches the expanding temperature
domain of negative �. Thus, even for moderate spin splitting
and low temperature, the transition line from a nonuniform
to a uniform SC state cannot be determined without knowing
the sixth-order term. It is clear, however, that this transition
is of the first order.

It should be noted that if one attempts to determine the
FFLO-BCS phase boundary from the equation d��t,b,q=0�

dq2 =0,
it will greatly overestimate the size of the FFLO phase as
compared to that obtained by minimizing − �2

2� �see Fig. 1�.
This remarkable difference is due to the strong q2 depen-
dence of the quartic coefficient � �see Fig. 2�.

The suppression of the orbital effect in the considered 3D
systems, with ellipsoidal Fermi surfaces contained entirely
within the BZ, is due to the factor 1−v2 appearing in the
Gaussian exponents of Eqs. �40� and �41�. The recovery of
this effect in quasi-2D systems with truncated ellipsoidal
Fermi surface, where v0�1, can reverse the relation between
TFFLO and T�. Figure 2�b�, in which the GL coefficients are
shown for �=1.8, v0=0.4 and s-wave pairing, illustrates the
situation with TFFLO�T�, which occurs for all values of v0
below a critical dimensionality v0,cr�0.44 �see Fig. 5�, and
only weakly depends on the spin-splitting parameter �.

The corresponding phase diagram �see Fig. 6� for v0 be-
low this crossing point is quite different from that found for
the 3D systems shown in Fig. 1. First of all, since ��0, one
may use Eqs. �40� and �41� to determine the phase diagram
only under the assumption that the sixth-order coefficient �
is positive �see Ref. 19�. In this case, a discontinuous SC
transition occurs at ��	0

2�=0 with 	0
2= � 3���

4� � and �= 3�2

16� �0,
and the corresponding critical field, bc2�t�, should be larger
than bc2

0 �t�, which is obtained from the equation ��q=0�=0.
Thus, at a temperature below T�, the N-SC phase boundary
includes a segment of first-order transitions, which may end
at zero temperature or at a finite temperature, depending on
the spin-splitting strength. This dependence appears because
of the competition between the decreasing explicit depen-
dence of � on decreasing temperature and its increasing im-
plicit dependence through q�T� at the FFLO state. The
boundary between the BCS and FFLO states should be de-
termined by minimizing the free energy �Eq. �39�� with re-
spect to q. This may be restricted to the explicit dependence

0 0.5 1 1.5
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0 0.5 1 1.5
−0.01
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0

0.02

−0.02
0 0.5 1 1.5

FIG. 3. �Color online� The dependence of the GL coefficient �
�dashed lines� and the mean-field SC free energy, −%��� �2

2�A�
�solid

lines�, on the modulation parameter, q̃	� 2
� ��m�

mz
� �qaHc20

orb�, in a 3D
system �v0=1� are shown at t=0.4 and a decreasing magnetic field.
The value of the spin-splitting parameter is �=3. Upper panel: b
=0.1142, i.e., near the tricritical point, just below the normal-FFLO
SC transition. It is seen that ��0 in a small region around q̃=0.6,
where the SC free energy has a minimum. Middle panel: b=0.114,
where a uniform �q=0� metastable SC state is present. Lower panel:
b=0.1139, where a uniform �q=0� equilibrium SC state is present,
while a metastable SC state exists at q�0.
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FIG. 4. �Color online� The GL coefficients, � �dashed lines� and
� �dotted lines�, and the mean-field SC free energy �solid lines� as
functions of the modulation parameter, q̃, in a 3D system �v0=1� at
a relatively low temperature t=0.25 and decreasing field values b
=0.118 �upper panel� and b=0.117 �lower panel�. Note the vanish-
ing of � inside the region where ��0, around which the used
approximation, −%��� �2

2�A�
, for ��q� breaks down.
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on q since the order parameter is determined by ��

�	2 =0. Con-
sequently, the positive sign of d��t,b,q=0�

dq2 �see Fig. 2�b�� results
in a partial cancellation of the leading contribution to ��

�q2 ,
which is proportional to d��t,b,q=0�

dq2 and negative in the FFLO
part of the phase diagram. Moreover, since for the discon-
tinuous transition the order parameter is finite just below the
transition, the higher order terms in 	0

2 �Eq. �39�� should be
taken into account. As a result, TFFLO should be smaller than
TFFLO

0 , which is the temperature obtained from the equation
d��t,b,q=0�

dq2 =0, as schematically shown in Fig. 6.

IV. CONCLUSIONS

It is shown that the expected changeover to first-order SC
transitions in clean, strongly type-II superconductors in the
Pauli paramagnetic limit can take place in materials with
quasicylindrical Fermi surfaces, regardless of the type of the
electron �s- or d-wave� pairing interaction, which leads to
superconductivity. This finding clarifies the debate on this
topic in literature.17–20

The observation of such a changeover in the heavy-
fermion compound CeCoIn5 for a magnetic field orientation
perpendicular to the easy conducting plane11 is consistent
with the quasi-2D character of its electronic band structure.34

The interesting situation of a 2D superconductor under a
magnetic field parallel to the conducting plane, for which a
changeover to discontinuous SC transitions was very re-
cently reported,12 is more subtle since the vanishingly small
cyclotron frequency characterizing this case does not allow
the utilization of the LLL approximation employed here �for
a recent review, see, e.g., Ref. 35�. It should be noted that
under certain circumstances, vortex states with higher Lan-
dau levels �HLLs� could be important even in the present
situation of vortex lines parallel to a large magnetic field
component. Adachi and Ikeda in Ref. 19, indeed, presented a
phase diagram for a quasi-2D system with H �c, in which n
=1 LL was found to be dominant at sufficiently low tempera-
tures.

In our opinion, this result should be considered with cau-
tion since it was obtained by analyzing only the quadratic
term without accounting for q modulation and first-order
phase transition. Both effects lead to an increase in the upper
critical field for the LLL at low temperature, which can com-
pete with the upper critical field for the n=1 LL. It should be
stressed that the above discussion does not mean that the
effect of HLL can be completely ignored. However, the prob-
lem is very subtle, and to correctly treat it, one should know
the sixth-order term �at least for LLL�, which is not yet avail-
able in our calculations.

Finally, in comparing our results to the available experi-
mental data, one should note that for the typical values of the
Maki parameter realized in the relevant materials, the first-
order transition line, which separates the nonuniform SC
phase from the uniform one, and the second-order N-SC
transition line, which is predicted for superconductors with a
3D Fermi surface, are very close to each other. Thus, they
might be indistinguishable in the presence of the strong ther-
mal fluctuations expected for such a strongly type-II super-
conductor under high magnetic fields.36

Indeed, quite recently, a sharp rise of the thermal conduc-
tivity with the decreasing field just below Hc2 at low tem-
peratures was reported37 for the heavy-fermion supercon-
ductor URu2Si2, whose Fermi surface may be characterized
as 3D. This observation might indicate the existence of a
latent heat associated with a first-order phase transition,
which is not inconsistent with our theoretically predicted
phase diagram for a 3D Fermi surface, since the width of the
experimentally observed transition is �0.1Hc2,37 while the
maximal field difference between the calculated transition
lines shown in Fig. 1 is within 0.1Hc2.
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