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We investigate superconductor/insulator/ferromagnet/superconductor tunnel Josephson junctions in the dirty
limit using the quasiclassical theory. We formulate a quantitative model describing the oscillations of critical
current as a function of thickness of the ferromagnetic layer and use this model to fit recent experimental data.
We also calculate quantitatively the density of states (DOS) in this type of junctions and compare DOS

oscillations with those of the critical current.
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I. INTRODUCTION

It is well known that superconductivity and ferromag-
netism are two competing orders; however, their interplay
can be realized when the two interactions are spatially sepa-
rated. In this case, the coexistence of the two orderings is due
to the proximity effect.!> Experimentally, this situation can
be realized in superconductor/ferromagnet (S/F) hybrid
structures. The main manifestation of the proximity effect in
S/F structures is the damped oscillatory behavior of the su-
perconducting correlations in the F layers. Two characteristic
lengths of the decay and oscillations are, correspondingly, &
and &p,. Unusual proximity effect in S/F layered structures
leads to a number of striking phenomena such as nonmono-
tonic dependence of their critical temperature and oscilla-
tions of critical current in S/F/S Josephson junctions upon
the F layer thickness. Negative sign of the critical current
corresponds to the so-called 7 state. Spontaneous 7 phase
shifts in S/F/S junctions were observed experimentally.*~'3

Superconductor / insulator / ferromagnet / superconductor
(SIFS) junctions, i.e., S/F/S trilayers with one transparent
interface and one tunnel barrier between S and F layers, rep-
resent practically interesting case of o junctions. SIFS struc-
ture offers the freedom to tune the critical current density
over a wide range and at the same time to realize high values
of a product of the junction critical current /, and its normal
state resistance Ry.'*!® In addition, Nb based tunnel junc-
tions are usually underdamped, which is desired for many
applications. SIFS 7 junctions have been proposed as poten-
tial logic elements in superconducting logic circuits.'® SIFS
junctions are also interesting from the fundamental point of
view since they provide a convenient model system for a
comparative study between O-7 transitions observed from
the critical current and from the density of states (DOS). At
the same time, despite such an interest, there is no complete
theory yet of SIFS junctions which could provide quantita-
tive predictions for critical current and DOS in such struc-
tures. All existing theories dealt only with a number of lim-
iting cases, when either linearized quasiclassical equations
can be used for analysis'” (e.g., temperature range near criti-
cal temperature, small transparency of interfaces) or thick-
ness of the F layer is small'-3 compared to the decay char-
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acteristic length &. Further, in symmetric S/F/S junctions,
the extension of theory to the case of nonhomogeneous mag-
netization and large mean free path was performed in Refs. 3
and 18.

The purpose of this work is to provide a quantitative
model describing the behavior of critical current and DOS in
SIFS junctions as a function of parameters characterizing
material properties of the S and F layers and the S/F interface
transparency. The model provides a tool to fit experimental
data in existing SIFS junctions.

The paper is organized as follows. In the next section, we
formulate the theoretical model and basic equations. In Sec.
III, we solve nonlinear Usadel equations, apply solutions for
calculation of critical current in SIFS junctions with long
ferromagnetic layer, d;>§&;, and fit recent experimental
data. In Sec. IV, we perform numerical calculations for criti-
cal current in a SIFS junction with arbitrary length of the F
layer. In Sec. V, we numerically calculate DOS in the ferro-
magnetic interlayer, and then summarize results in Sec. VL.

II. MODEL AND BASIC EQUATIONS

The model of an S/F/S junction we are going to study is
depicted in Fig. 1 and consists of a ferromagnetic layer of
thickness dy and two thick superconducting electrodes along
the x direction. Left and right superconductor/ferromagnet
interfaces are characterized by the dimensionless parameters
¥p1 and yp), respectively, where yg; pr=Rp) 520,/ &ny Rp1p2
are the resistances of left and right S/F interfaces, respec-
tively, o, is the conductivity of the F layer, §,=VD,/27T,,

YB 1 YBZ

S F S

42 0 dp X

FIG. 1. Geometry of the considered system. The thickness of the
ferromagnetic interlayer is dy. The transparency of the left S/F in-
terface is characterized by the 7yp; coefficient, and the transparency
of the right F/S interface is characterized by yp,.
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Dy is the diffusion coefficient in the ferromagnetic metal, and
T. is the critical temperature of the superconductor (we as-
sume i=kgz=1). We also assume that the S/F interfaces are
not magnetically active. We will consider diffusive limit, in
which the elastic scattering length € is much smaller than the
decay characteristic length &. In this paper we concentrate
on the case of a SIFS tunnel Josephson junction, when
vg1>>1 (tunnel barrier) and y,=0 (fully transparent inter-
face). For comparison, we also consider two other limiting
cases: an SFS junction (yz;=1v5,=0) and a SIFIS junction
(81> Y32 > 1).

Under conditions described above, the calculation of the
Josephson current requires solution of the one-dimensional
Usadel equations.'” In the F layer, the equation has the
form20:2!1

D < (é 1 G ) (w = ih)
4 = w X 1n)ao.

1 . X
+ —0.Gn0.,G s 1
27 9Cnwo=Cnw (1)

where positive sign ahead of & corresponds to the spin up
state () and negative sign to the spin down state (|), w
:277T(n+%) are the Matsubara frequencies, h is the ex-
change field in the ferromagnet, and o, is the Pauli matrix in
the Nambu space. The parameter 7,, is the spin-flip scattering
time. The influence of spin-flip scattering on various proper-
ties of S/F structures was considered in a number of
papers.!320-222531.32 'We  consider the ferromagnet with
strong uniaxial anisotropy, in which case the magnetic scat-
tering does not couple the spin up and spin down electron
populations.

The Usadel equation in the S layer can be written as'’

df A 0 A . n
DS—(GS—GS) =[wo,+ A(x),G,], (2)
ox ox N

where D is the diffusion coefficient in the superconductor.

InEq. (2), G,= (A}sm) and we omit subscripts “1 (])” because
equations in superconductor look identically for spin up and
spin down electron states.

In Egs. (1) and (2), we use following matrix notations (we
omit f, s, and | (|) subscripts):

A G . 0 A
oar=(% ") dw=(0 W) @

A*(x) 0
where G and F are normal and anomalous Green’s functions,
respectively, and A(x) is the superconducting pair potential.

The matrix Green’s function G satisfies the normalization
condition
G*=1, G*+FF =1, (4)

and the pair potential A(x) is determined by the self-
consistency equation,

A()In T; =Ty, (ZA(X) —Fy - Fsl>. (5)

>0 w
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The boundary conditions for the Usadel equations at the
left and right sides of each S/F interface are given by
relations?

A 0 A A 0 A
gny Gf_Gf =§Y GS_GS s (63)
T zan A
A 0 A A A
28,781\ Gy -Gy =[G,.Gila (6b)
ax "/ 4 !
A 0 A A A
28, v\ GGy =[Gf’Gs]df/2’ (6¢)
ox dg2

where y=¢§,0,/§,0,, o, is the conductivity of the S layer, and

&=\D,/27T.,.
To complete the boundary problem, we also set boundary
conditions at x= * o,

(0]

Gy(x»)= W (7a)
o= =S gy
— %) = ———, + %) = ——,

’ VIAP + o? ’ VIAP + o?

where ¢ is the superconducting phase difference between S
electrodes.

In Matsubara technique, it is convenient to parametrize
the Green’s function in the following way, making use of the
normalization condition [Eq. (4)]:%*

A ( cos @  sin 0€iX)
—cos 6/’

(8)

~ \sin fe~X
Solving a system of nonlinear differential equations [Egs.
(1)=(7)], generally can be fulfilled only numerically. We
present full numerical calculation in Sec. IV. The analytical
solution can be constructed in case of one S/F bilayer, when
we can set the phase y in Eq. (8) to zero. We can also set the
phase to zero in case of long S/F/S junction, where the thick-
ness of the ferromagnetic layer d;>§&;. In that case, the
decay of the Cooper pair wave function in first approxima-
tion occurs independently near each interface. Therefore, we
can consider the behavior of the anomalous Green’s function
near each S/F interface, assuming that the ferromagnetic in-
terlayer is infinite. This analytical calculation for an S/F/S
trilayer with long ferromagnetic interlayer is performed in
the next section.
The general expression for the supercurrent is given by

iTlo . ~ J 0 ~
J=—" (F —F;,—F,—F ) 9
K 46 n=_§O=T,l fa'&x fo fo " fo ( )

where F "1 U(x,w):F;( &, —w) are the anomalous Green’s
functions in the ferromagnet.

III. CRITICAL CURRENT OF JUNCTIONS WITH LONG
FERROMAGNETIC INTERLAYER

We need to solve the complete nonlinear Usadel equations
in the ferromagnet [Eq. (1)]. For SIFS junctions, an analyti-
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cal solution may be found if d;>§; and we can set the
phase of the anomalous Green’s function to zero (see discus-
sion in Sec. II).

Setting x,=x,=0, we have the following 6 parametriza-
tions of the normal and anomalous Green’s functions [Eq.
(8)], G=cos 6 and F=sin 6. In this case, we can write Eq. (1)
in the F layer as

D% b1()) _

cos 6
. AR
> ol (a) *ih+ — )sm Or1())- (10)

m

In the S layer, the Usadel equation [Eq. (2)] may be now
written as

D, 76

jﬁzwsin 6, — A(x)cos 6,. (11)

The self-consistency equation in the S layer acquires the
form

T.
A(X)n =< =7T >
T w>0

(2A(x)

—sin GYT —sin 0Yl> . (12)
w

In the case of y,=x,=0, the boundary conditions [Egs.
(6a)—(6¢)] for the functions 6y at each S/F interface can be

written as
a0 a0,
fnv(—f> =és(—) : (13a)
NSz N g
a0 .
Evm| =2 =sin(6p— 6)_q 12> (13b)
ox i/
-d2
a0 .
511732(—[) = Sln(as - 0f)d /2 (130)
X/ qn !
The boundary conditions at x= % are
A
0,(* ) = arctan u (14)
w

In the equation for the supercurrent [Eq. (9)], the summa-
tion goes over all Matsubara frequencies. It is possible to
rewrite the sum only over positive Matsubara frequencies
due to the symmetry relation

Optsy1 (@) = Oy (= ). (15)

In what follows, we will use only @ >0 in equations contain-
ing w.

For the left interface (tunnel barrier at x=~d,/2), a first
integral of Eq. (10) leads to

a0 0 (7
& :—qsin—fwl—ezsinz—[, (16)
2 ox 2 2

where &=\D//h and the boundary condition 6/{(x— %)=0
has been used. In Eq. (16), we use the following notations:

I
g=\2mo * ih+ 1, (17a)
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€=1/r,) (0= ih+1/7,)". (17b)

Here, we again adopt convention that positive sign ahead of
h corresponds to the spin up state (1) and negative sign to the
spin down state (]). Here and below, we did not write spin
labels T(|) explicitly but imply them everywhere they
needed.

For the right interface (x=d,/2), a first integral of Eq. (10)
leads to a similar equation,

a0 0 0
& =gsin Z/1- & sin®* L. (18)
2 ox 2 2

Following Faure et al.,”> we integrate Eq. (16), which
gives

/ 0 0
l—ezsinz—zf—cos—zf d/2+
o P eXp<_2qﬁ§;x>'
\/l—ezsin2—2[+cos—2[ /

(19)

The integration constant g, in Eq. (19) should be deter-
mined from the boundary condition at the left S/F interface
[Eq. (13b)]. Since we consider the tunnel limit (yg,;>1), we
can neglect small 6, in the right hand side of Eq. (13b) and
also assume, neglecting the inverse proximity effect,

Al

N
0,(—d,/2) = arctan - (20)

Then, Eq. (13b) becomes

0 Al

fn'yBl(—z> =-G(n), Gn)= RN (21)
X/ Vo + A

From Egs. (16) and (21), we obtain the boundary value of 6,

at x=—d,/2 and substituting it into Eq. (19), we finally get

_Gz(”)£<§z)2
gl_16'}/1291 qz & .

Linearizing Eq. (19), we can now obtain the anomalous
Green’s function in the ferromagnetic layer of the SIF tunnel
junction with infinite F layer thickness. Similar formula for
the FS bilayer with a transparent interface (yz,=0) was de-
veloped by Faure et al.?® [to obtain it one should integrate
Eq. (18) and then linearize the resulting equation]. The
anomalous Green’s function at the center of the F layer in a
SIFS junction may be taken as the superposition of the two
decaying functions, taking into account the phase difference
in each superconducting electrode,

(22)

4 — dd2 +x ©
ot el )
f\’l_62|:gl P\—4q £ 2

— —dg2

+Vg exp(qx—gL + l%):| . (23)
f

The expression for g, was obtained in Ref. 25 for the rigid
boundary conditions at the transparent FS interface,
0/d;/2)=arctan(|A|/ w) and reads
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~ (1-€)F(n)
82 V(1 -&Fn) +1+1] (24a)
Al
F(n) = (24b)

w+ Vo +|AP

Using the above solutions and Egs. (9) and (15), we arrive at
sinusoidal current-phase relation in a SIFS tunnel Josephson
junction with the critical current

1677 | < GF(nexp(= gd /&)

VI -&F ) +1+1 |

ICRN = (25)

Here and below, we fix positive sign in the definition of ¢
and € in Egs. (17a) and (17b): q=\"2—/iz\f'w+ih+1/7m and
e=(1/r1,)(w+ih+1/7,)"". It is possible since we already
performed summation over spin states and have to define
now spin-independent values. In Eq. (25) and below, Ry is a
full resistance of an S/F/S trilayer, which include both inter-
face resistances of left and right interfaces and the resistance
of the ferromagnetic interlayer. In case of SIFS and SIFIS
junctions, the F layer resistance can be neglected compared
to large resistance of the tunnel barrier.

At this point, we define the characteristic lengths of the
decay and oscillations & , as

e e ()
—_— = I+(—+—] £{—+—]. (26b)
Ena & h  hr, h  hr

m

The critical current in Eq. (25) is proportional to the small
exponent exp(~d,/ ;). The terms neglected in our approach
are of the order of exp(-2d,/&;) and they give a tiny
second-harmonic term in the current-phase relation.

The critical current equation [Eq. (25)] can be simplified
in the limit of vanishing magnetic scattering, Tr_nl <7T,,

—d; d
o 167TTE n)F(n)exp & cos £

TNT e =0 VE2(n) + 1+ 1

. (27)

Equation (25) also simplifies near 7. and may be written as
(for T.<h)

A S N
=T, exp| — £ cos £ . (28)

The damped oscillatory behavior of the critical current can
be clearly seen from this equation. With increasing dy, the
junction undergoes the sequence of 0-r transitions when
positive values of the I.Ry product correspond to a zero state
and negative values correspond to a 7 state.

Equation (28) in the absence of spin-flip scattering coin-
cides with the corresponding equation [Eq. (37)] from Ref.
17, taken in the limit of long d;>§&; in case of yg >1,

Yp2=0.

I L‘RN
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FIG. 2. (Color online) The F layer thickness dependence of the
critical current for SFS (y,=0), SIFS (yz=10% 75,=0), and
SIFIS (7 ,=10?) junctions in the absence of spin-flip scattering.
Red dashed lines correspond to the modulus of the analytical results
[Egs. (31), (25), and (29)] and black solid lines correspond to the
results of numerical calculation in Sec. IV, h=37T,, and T=0.5T.,.

Using the same approach, we can obtain the equation for
the critical current in a SIFIS structure with two strong tun-
nel barriers between the ferromagnet and both superconduct-
ing layers (yj,> 1),

—qd
ATE, vy + - Gz(”“’(%)
77' N
LRy= fYB1T VB2 Re 2
e, V1 Ym n=0 q

(29)

This formula coincides with corresponding expression [Eq.
(39)] for the critical current in a SIFIS structure in Ref. 25
for yp,=7v5>1 and dy> &;. Equation (29) near T, may be
written as (for T,<<h)

A + -d d
I.Ry= AP 71+ oo cos(‘P)exp(J)sin(\I’ - —i) ,
2eT.& Vo1V &n &n

(30)

where W is defined by tan(W)=£&p/&. Equation (30) in the
absence of spin-flip scattering coincides with the correspond-
ing equation [Eq. (35)] from Ref. 17, taken in the limit of
long d;> &

We also provide here equation for the critical current in an
SFS junction [see Ref. 25, Eq. (74)], written in our notations,

Ll F2(n)q exp(- qd /&)
o e&; N1 -AFPm) +1+172 |

(31

We compare critical current dependencies over d; for SFS
[Eq. (31)], SIFS [Eq. (25)], and SIFIS [Eq. (29)] structures in
Fig. 2. Each of above junction types undergoes the sequence
of 0-r transitions with increasing thickness of the F layer.
From the figure, we see that the transition from 0O to 7 state
occurs in SIFS tunnel junctions at shorter dy than in SFS
junctions with transparent interfaces, but at longer d; than in
SIFIS junctions with two strong tunnel barriers. This ten-
dency can be qualitatively explained by the fact that in struc-
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FIG. 3. (Color online) The F layer thickness dependence of the
critical current in a SIFS junction [modulus of the Eq. (25)] for
different values of a=1/#T.7,,, h=37T,, and T=0.5T,.

tures with barriers (SIFS, SIFIS) part of the 7 phase shift
occurs across the barriers. Therefore, a thinner F layer in a
SIFS junction compared to an SFS one is needed to provide
the total shift of 7 due to the order parameter oscillation. For
the same reason, 0-7r transition in a SIFIS junction occurs at
a smaller thickness than in a SIFS junction. We note that in
Fig. 2, we plot both analytical and numerical calculated
1.(dy) dependencies, where numerical calculation was per-
formed for full boundary problem [Eqs. (1)—(7)] (see further
discussion in Sec. IV).

In Fig. 3, we plot the F layer thickness dependence of the
critical current in a SIFS junction for different values of spin-
flip scattering time. For stronger spin-flip scattering, the pe-
riod of supercurrent oscillations increases and the point of
0-7 transition shifts to the region of larger d;. The same
tendency exists for SFS and SIFIS junctions.?

In Fig. 4, we plot the F layer thickness dependence of the
critical current in a SIFS junction for different values of the
exchange field h. We see that for large exchange fields i
> 7rT,, the critical current scales with the ferromagnetic co-
herence length &

From comparison with numerical results presented in Fig.
2, we can conclude that the results for the critical current in

10"k
:
N"r —h=nT,
10*E —h=3aT.
L ——h=10aT,
i ——h=50nT,
—h=10°AT,
10’7 I I
0 2 4 6 dig 8

FIG. 4. (Color online) The F layer thickness dependence of the
critical current in a SIFS junction [modulus of the Eq. (25)] for
different values of exchange field 4 in the absence of spin-flip scat-
tering, 7=0.5T,.
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FIG. 5. (Color online) Fit to the experimental data from Ref. 14
for the critical current in a Nb/Al,O3/Nij ¢Cug4/Nb junction. The
fitting parameters are h/kz=950 K and 1/7,=1.6 h.

SIFS junctions presented in Figs. 3 and 4 give correct mag-
nitude of the I.Ry product for dy=§,/2.

As an application of the developed formalism, we present
in Fig. 5 the theoretical fit of the experimental data for a
Nb/Al,04/Ni, ¢Cuy 4/Nb junctions by Weides et al.'* mak-
ing use of Eq. (25). We used following values of parameters:
Rp=3.9mQ, D=39cm?/s, T=42K" and T,=72K
(damped critical temperature in Nb). Good agreement was
obtained with the following parameters: h/kz=950 K and
1/7,=1.6 h (see Fig. 5). These parameters can be compared
with parameters obtained by Oboznov et al.'® for similar
ferromagnetic material, Nij 53Cug47: h/kp=850 K and 1/7,,
=1.3 h. Higher Ni concentration in the NiCu alloy in the
experiment of Weides et al. results in higher exchange field.

In Ref. 13, it was suggested that a “dead” layer exists in
the ferromagnet near each S/F interface, which does not take
part in the “oscillating” superconductivity. Other authors also
include into consideration the existence of nonmagnetic lay-
ers at the interface of the ferromagnet and the supercon-
ductor or normal metal.??732 Thickness of the dead layer
cannot be calculated quantitatively in the framework of our
model and also cannot be directly estimated from the experi-
ment. In the experiment of Weides et al.,'* the range of F
layer thicknesses was rather narrow and only the first 0-7
transition was observed. Due to these reasons, we did not
take into account the existence of a nonmagnetic layer in our
fit. This question deserves separate detail experimental and
theoretical study.

We should mention that the above estimates of exchange
field and spin-flip scattering time could be different if we
consider magnetically active S/F interfaces. It was shown in
Ref. 28 that the effect of spin-dependent boundary conditions
on the superconducting proximity effect in a diffusive ferro-
magnet results in the change of the period of critical current
oscillations.

IV. CRITICAL CURRENT OF JUNCTIONS WITH
ARBITRARY LENGTH OF THE FERROMAGNETIC
INTERLAYER

In the previous section, we derived the expression for the
critical current of a SIFS junction in case of considerably
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long F layer thickness, d;>&,. For arbitrary F layer thick-
ness in the absence of spin-flip scattering, general boundary
problem [Egs. (1)—(7)] was solved numerically using the it-
erative procedure.? Starting from trial values of the complex

A

pair potential A(x) and the Green’s functions G, s, we solve
the resulting boundary problem. After this, we recalculate

A

G, and A(x). We repeat the iterations until convergency is
reached. The self-consistency of calculations is checked by
the condition of conservation of the supercurrent across the
junction.

In Fig. 2, we compare numerically and analytically calcu-
lated 1.(d;) dependencies in case of SFS, SIFS, and SIFIS
junctions. We see that, as expected, the numerical method
provides correction only for small length of ferromagnetic
layer. We note that for SFS and SIFS junctions, analytical
curves [Eq. (31) and (25)] practically coincide with numeri-
cal results in the region of the first O-7 transition. For a
SIFIS junction, this transition occurs at smaller dy, where the
assumptions of Sec. III are not valid. However, in the pres-
ence of strong spin-flip scattering the first 0-7 transition
peak in a SIFIS junction shifts to the region of larger d; and
Eq. (29) describes the transition accurately.

The main result of this section is that Eq. (25) for the
critical current of a SIFS junction can be used as a tool to fit
experimental data in SIFS junctions with good accuracy.

V. DENSITY OF STATES OSCILLATIONS IN THE
FERROMAGNETIC INTERLAYER

It is known that in a ferromagnetic metal attached to the
superconductor the quasiparticle DOS at energies close to the
Fermi energy has a damped oscillatory behavior.>*33 Experi-
mental evidence for such behavior was provided by Kontos
et al.*® In SIFS junctions, we can compare the DOS oscilla-
tions with the critical current oscillations.

We are interested in the quasiparticle DOS in the F layer
in the vicinity of the tunnel barrier (x=-d;/2+0 in Fig. 1).
Below, we will refer to the local DOS at this point. For the
case of strong tunnel barrier (yg;> 1), left S layer and right
FS bilayer in Fig. 1 are uncoupled. Therefore, we need to
calculate the DOS in the FS bilayer at the free boundary of
the ferromagnet. Solving numerically Egs. (10)-(14), we set
to zero the ¢, derivative at the free edge of the FS bilayer,
x=—d;/2, ((96f/(9x)_dﬂ=0.31

We use the self-consistent two step iterative
procedure.?*-3! In the first step, we calculate the pair poten-
tial coordinate dependence A(x) using the self-consistency
equation in the S layer [Eq. (12)]. Then, by proceeding to the
analytical continuation in Egs. (10) and (11) over the quasi-
particle energy iw— E+i0 and using the A(x) dependence
obtained in the previous step, we find the Green’s functions
by repeating the iterations until convergency is reached. We
define the full DOS N(E) and the spin resolved DOS
Ny()(E), normalized to the DOS in the normal state, as

N(E) = [N,(E) + N (E)]/2, (32a)

Ny()(E) =Re[cos 0;y(iw — E+i0)]. (32b)
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FIG. 6. DOS on the free boundary of the F layer in the FS
bilayer calculated numerically in the absence of spin-flip scattering
for different values of the F layer thickness dy: N1(E) (dashed line),
N|(E) (dotted line), and N(E) (solid line), E,=37T,, and T
=0.5T.. (a) dy/£,=0.4, (b) d;/&,=1, (c) d;/§,=1.6, and (d) d// ¢,
=2.2.

The numerically obtained energy dependencies of the
DOS at the free F boundary of the FS bilayer are presented in
Figs. 6 and 7. Figure 6 demonstrates the DOS energy depen-
dence for different dy. At small dy, full DOS turns to zero

N(E)

—_
(9]

0.0

N(E) 5

0.9F

I E/A

FIG. 7. DOS N(E) on the free boundary of the F layer in the FS
bilayer calculated numerically for a=1/7T,7,=0 (solid line), a
=0.5 (dashed line), and a=1 (dotted line) for different values of the
F layer thickness dj, E, ,=37T,, and T=0.5T,. (a) d;/&,=0.4, (b)
dsl &,=1, (c) dy/ €,=1.6, and (d) d// £,=2.2.

134507-6



PROPERTIES OF TUNNEL JOSEPHSON JUNCTIONS WITH...

107

-7 ) L ) L ) L ) L 1 ]
1% ] 2 3 4 dJE

FIG. 8. (Color online) The F-layer dependence of the function
ON(dy) in the absence of spin-flip scattering, h=37T,, T=0.5T,.
Black solid line is a result of the numerical calculation; blue dashed
line is calculated with the use of Eq. (41). Red line shows normal-
ized critical current for a SIFS junction. Zero and 7 states defined
from /. are indicated by red color, while zero and 7 states defined
from the DOS are indicated by black color.

inside a minigap, which vanishes with the increase of dj.
Then, the DOS at the Fermi energy N(0) rapidly increases to
the values larger than unity and with further increase of dy it
oscillates around unity, while its absolute value exponentially
approaches unity (see also Fig. 8). In Fig. 6, we also plot the
spin resolved DOS energy dependencies N(E) and N (E).
Figure 7 demonstrates full DOS energy dependence for dif-
ferent values of spin-flip scattering time. For stronger spin-
flip scattering, the minigap closes at smaller d, the period of
the DOS oscillations at the Fermi energy increases, and the
damped exponential decay occurs faster.

In case of long F layer (d;> &) it is also possible to
obtain an analytical expression for the DOS at the free
boundary of the ferromagnet,

1
NT(D(E) = Re[COS Gbm)] ~1- 5 Re Him), (33)

where 6y is a boundary value of 6 at x=—d,/2. It can be
obtained by the mapping method, similar to the one used in
the electrostatic problems. We consider the FS bilayer where
x € [~d;/2,ds12] stands for the ferromagnetic metal and x
>d;/2 stands for the superconductor; the point x=~d,/2 cor-
responds to the free F layer boundary. For infinite F layer
(dy— ), the solution for 6y (|, far from the interface is given
by the exponential term in Eq. (23), written in the real energy
space,

- 4 — x—di2

O =T V82 eXp<P—L>, (34)
V1= &
where
p=\2/hN—-iEgr = ih+1/7,, (35a)
7 =/1,)(—iEg * ih+1/7,)7", (35b)
(1-77)FX(E)

&2 (35¢)

T - AFE) + 1+ 17
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|A|
—iEg+ AP - EY

F(E) = Ex=E+i0. (35d)

Here, as above, positive sign ahead of & corresponds to the
spin up state in Eq. (34) and negative sign for the spin down
state. By using the arrow “from right to left” in 6, we
want to stress that this solution is induced in the ferromagnet
from the right FS interface.

In the case of finite ferromagnet length, the boundary con-
ditions at the free F layer boundary, x=-d;/2, become

1))
ox

Or1() (= dff2) = Opy())s ( ) ) 2=0- (36)
—d

To ensure these conditions, we add another exponential so-
lution,

- 4 —
0 = Vg, exp
F1(0) = 172

f

resulting from the mirror image of the F layer with respect to
the point x=—d,/2. At x=-d,;/2 both exponential terms are
equal to each other and the final solution, 1)

=0p(y(=d12)+ éf-T(U(—df/Z), is two times larger than the so-
lution for infinite ferromagnetic layer at this point and reads

exp(—pc—g). (38)

This equation coincides with the result obtained in Ref. 32
by direct integration of the Usadel equation.

In Fig. 8, we plot analytically and numerically calculated
function

. 8F(E)
T - PFPE) +1+1

5N(df) = |1 _NO

, Ng=N(E=0), (39)

together with the /,.(dy) dependence for a SIFS junction. We
see that the point of 0-7 transition on the /.(d;) plot does not
coincide with the first minimum of 6N(d,) corresponding to
sign change of 1-N,. This difference can be qualitatively
explained as follows. The transition from 0 to 7 state in a
junction, seen as sign change of 1.(d/), is the result of inter-
ference of solutions for ¢ originating from two S electrodes.
0-7r transition in /.(dy) occurs approximately at such thick-
ness d; when the boundary value of 6, in Eq. (23) at x
=—d,/2 becomes negative, i.e., when 6, acquires the phase
shift 77. On the other hand, sign change of 1-N, occurs at
such d; when the boundary value 6, in Eq. (38) becomes an
imaginary number, i.e., when 6 acquires the phase shift /2.
It occurs at smaller dy compared to O-7 transition in the
critical current. Corresponding 0 and 7 states defined from /.
and from the DOS are indicated in Fig. 8.

It is also seen from Fig. 8 that the DOS oscillations have
the period approximately twice smaller than those of the
critical current. This fact is easy to see from the analytical
expression for 6N(dy). Using Egs. (32)-(39), we obtain
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1 2d,
ON(d;) =32|Re| —— - —1) s
@) e{(\a—néﬂﬁexp( s H
(40)

where 7,=7(E=0) and py=p(E=0) in Egs. (35a) and (35b).
At vanishing magnetic scattering, 7-;11<77TC, this equation
can be simplified,

2d 2d
SN(d,) = ——f) (—f> . @
N(dy) s 2\’5‘6Xp< i cos £ (41)

where characteristic lengths of decay and oscillations & ,
are given by Eq. (26b) with the substitution iw— E+i0. This
equation can be compared with Eq. (27). We see that the
period of the DOS oscillations is approximately twice
smaller than the period of the critical current oscillations and
the exponential decay is approximately twice faster than the
decay of the critical current.

VI. CONCLUSION

We have developed a quantitative model, which describes
the oscillations of the critical current as a function of the F
layer thickness in an SIFS tunnel junctions with thick ferro-
magnetic interlayer, d¢> g, in the dirty limit. We justified
this model by numerical calculations in general case of arbi-
trary d;: for all values of parameters characterizing material

PHYSICAL REVIEW B 77, 134507 (2008)

properties of the ferromagnetic metal numerical and analyti-
cal results coincide in physically important region of the first
0-7 transition. Thus, the derived analytical expression for the
critical current can be used as a tool to fit experimental data
in various types of SIFS junctions. We have discussed the
details of the damped oscillatory behavior of the critical cur-
rent for different values of the F layer parameters.

We also studied the superconducting DOS induced in a
ferromagnet by the proximity effect. We showed that the
oscillation pattern of DOS at the Fermi energy in the ferro-
magnet (at location of the tunnel junction) does not coincide
with that of the critical current in a SIFS junction and its
period is approximately twice smaller. Therefore, the DOS
oscillations do not reflect the 0-7 transition in 7.(dy). We
calculated the quasiparticle DOS in the F layer in the close
vicinity of the tunnel barrier which can be used to obtain
current-voltage characteristics for a SIFS junction. These cal-
culations will be presented elsewhere.

Finally, we used our results to fit recent experimental data
for SIFS tunnel junctions and extracted important parameters
of the ferromagnetic interlayer.
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