
Field and current distributions and ac losses in a bifilar stack of superconducting strips

John R. Clem
Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011-3160, USA

�Received 6 February 2008; revised manuscript received 5 March 2008; published 4 April 2008�

In this paper, I first analytically calculate the magnetic-field and sheet-current distributions generated in an
infinite stack of thin superconducting strips of thickness d, width 2a�d, and arbitrary separation D when
adjacent strips carry net current of magnitude I in opposite directions. Each strip is assumed to have uniform
critical current density Jc, critical sheet-current density Kc=Jcd, and critical current Ic=2aKc, and the distri-
bution of the current density within each strip is assumed to obey critical-state theory. I then derive expressions
for the ac losses due to magnetic-flux penetration both from the strip edges and from the top and bottom of
each strip and I express the results in terms of integrals involving the perpendicular and parallel components of
the magnetic field. After numerically evaluating the ac losses for typical dimensions, I present analytic expres-
sions from which the losses can be estimated.
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I. INTRODUCTION

The magnetic-field and sheet-current distributions gener-
ated in an infinite stack of superconducting strips, all carry-
ing current in the same direction, were analytically calcu-
lated in Refs. 1 and 2 using an extension of a method first
introduced by Mawatari.3 The results were then put to use to
calculate the hysteretic ac losses. Such calculations can be
applied to estimate the ac losses in pancake coils wound
from long lengths of second-generation �2G� high-
temperature superconducting tapes.4,5

Recently, noninductive coils with bifilar windings �in
which adjacent tapes carry current in opposite directions�
have been fabricated using 2G superconducting tapes for use
in superconducting fault-current limiters.6–10 References 11
and 12 give excellent reviews of this topic. Each tape con-
sists of a superconducting film of the order of 1 �m in thick-
ness and 1 cm in width. A thin insulating buffer layer sepa-
rates the film from the underlying metallic base, which is
typically tens of micrometers in thickness. Usually, sur-
rounding this structure is a normal-metal �e.g., copper� sta-
bilizer, such that the total tape thickness is a fraction of
1 mm. Accounting for the thickness of the insulation be-
tween tapes, the spacing D between the superconducting
films in adjacent tapes is of the order of a few millimeters.
Since the interleaving tapes in such coils carry current in
opposite directions, the current-generated magnetic fields are
localized within the windings and decay very rapidly outside
the coil.

To determine the current distribution within a bifilar stack
of superconducting strips is not trivial. Roughly speaking,
when a strip carries an increasing current, the current density
just slightly exceeds the the critical current density Jc only at
the strip edges, where vortices penetrate and carry perpen-
dicular magnetic flux through the strip. The middle portions
carry a current density less than Jc, and therefore no perpen-
dicular magnetic flux penetrates the strip there. However,
there is a magnetic field parallel to the strip, and vortices can
enter the top and bottom of the strip, remaining nearly par-
allel to the surfaces.

In Sec. II, I present solutions for the current-density and
magnetic-field distributions in an infinite stack of supercon-

ducting strips, each strip carrying a current of magnitude I
but adjacent strips carrying currents in opposite directions. In
Sec. III, I show how to calculate the hysteretic ac losses
generated by magnetic flux penetrating both from the strip
edges and from the top and bottom surfaces. I give a brief
summary and discuss the results in Sec. IV.

II. INFINITE BIFILAR STACK

As in many earlier calculations of the properties of thin-
film superconductors, I consider only high-� type-II super-
conductors and assume for simplicity that the magnitude of
the self-field H at the film edges or top and bottom surfaces
is typically much larger than Hc1, such that the magnetic
induction in the superconducting film is given to good ap-
proximation by B=�0H. For small currents, this assumption
leads to an overestimate of both the degree of magnetic flux
penetration and the corresponding ac losses. I also will treat
the quasistatic penetration of vortices into the film using
critical-state theory,13 parametrized by a critical current den-
sity Jc that is independent of the local magnetic induction.

Figure 1 shows the film geometry under consideration, an
infinite stack of superconducting strips of width 2a, thick-
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FIG. 1. Infinite bifilar stack: a stack of thin �d�2a� supercon-
ducting strips of infinite length in the z direction, with those at y
=0, �2D , �4D , . . . carrying current I in the +z direction and those
at y= �D , �3D , . . . carrying the same current in the −z direction.
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ness d�2a, and infinite length parallel to the z axis, equally
spaced along the y axis with separation D. The strips are
assumed to be identical, characterized by a uniform critical
current density Jc, critical sheet-current density Kc=dJc, and
critical current Ic=2adJc=2aKc.

Since the magnetic-field and current-density distributions
depend only on the coordinates x and y, it is convenient to
describe the magnetic field outside the strips as H���, which
is an analytic function of the complex variable �=x+ iy. The
real and imaginary parts of H��� are Hy�x ,y�=RH��� and
Hx�x ,y�=IH���. The Biot–Savart law for the complex
field14–16 can be expressed as

H��� =
1

2�
�

−a

+a

du�
�

�
Kzn�u�

� − u − inD
, �1�

where Kzn�x� is the sheet-current density in layer n centered
at �x ,y�= �0,nD�. The currents in a bifilar stack are distrib-
uted such that for n=0, �2, �4, �6, . . ., the sheet-current
density is Kzn�u�=Kz�u�, the same as in the layer n=0, and
for n= �1, �3, �5, . . ., the sheet-current density is Kzn�u�
=−Kz�u�. The resulting sum in Eq. �1� can be evaluated,
yielding

H��� =
1

2D
�

−a

+a

du
Kz�u�

sinh���� − u�/D�
�2�

=
1

2D
�

−a

+a

du
Kz�u�sinh���/D�cosh��u/D�
sinh2���/D� − sinh2��u/D�

, �3�

where the second expression follows from the symmetry that
Kz�−u�=Kz�u�. Note that the complex field has the desired
properties that H��+ iD�=−H��� �i.e., Hx�x ,y+D�=
−Hx�x ,y� and Hy�x ,y+D�=−Hy�x ,y�� and RH�x+ iD /2�
=Hy�x ,D /2�=0.

We seek the solution for which, when a current I is first
applied to the strips in the stack, the sheet-current density Kz
is equal to Kc within bands of width �a−c� at the edges but
obeys Kz	Kc in the middle region, �x�	c. The simplest way

to obtain this solution is to change variables as follows: �̃
= �D /��sinh��� /D�, ũ= �D /��sinh��u /D�, ã
= �D /��sinh��a /D�, and c̃= �D /��sinh��c /D�, similar to
the procedure used by Mawatari in Refs. 3 and 17–19. By

using K̃z�ũ�=Kz�u� and H̃��̃�=H���, this yields

H̃��̃� =
1

2�
�

−ã

+ã

dũ
K̃z�ũ�ũ

�̃2 − ũ2
. �4�

This is the Biot–Savart law for an isolated strip carrying a

current density K̃z�ũ�= K̃z�−ũ�, for which the solution is
known to be20–22

H̃��̃� =
Kc

�
tanh−1 � ã2 − c̃2

�̃2 − c̃2
, �5�

where here and in later similar expressions ��̃2− c̃2 is short-

hand for ��̃− c̃�1/2��̃+ c̃�1/2. Thus, the desired complex field is

H��� =
Kc

�
tanh−1 �sinh2��a/D� − sinh2��c/D�

sinh2���/D� − sinh2��c/D�
. �6�

The corresponding complex potential,

G��� = �
iD/2

�

H����d��, �7�

can be numerically evaluated. Contours of constant RG�x
+ iy� �see Fig. 2� correspond to magnetic field lines.

Taking the real and imaginary parts of H�x� i
� in Eq.
�6�, �see Fig. 3�, and using Kz�x�=Hx�x− i
�−Hx�x+ i
�
=2Hx�x− i
� yields�

Hy�x,0� = 0, �x� � c ,

=
Kc

�
tanh−1 � sinh2��x/D� − sinh2��c/D�

sinh2��a/D� − sinh2��c/D�
, �8�
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FIG. 2. Contours of constant RG�x+ iy� calculated from Eqs. �6�
and �7� for a stack of thin superconducting strips of width 2a �thick
lines� and spacing D. The contours correspond to magnetic field
lines, and in this figure when the current in is the +z direction, the
field lines circulate in a counterclockwise direction around the strips
centered at �x ,y�= �0,−2D�, �0,0�, and �0,2D�, and in a clockwise
direction around the strips centered at �0,−D� and �0,D�. Here, D
=a=2c.
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FIG. 3. Plots of the real �solid� and imaginary �dashed� parts of
H�x− i
�=Hy�x ,0�+ iHx�x ,−
� calculated from Eq. �6� or Eqs.
�8�–�12� for a stack of thin superconducting strips of width 2a and
spacing D. Here, a=1, c=0.5, and D=1.
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c 	 �x� 	 a ,

=
Kc

�
tanh−1 �sinh2��a/D� − sinh2��c/D�

sinh2��x/D� − sinh2��c/D�
, �9�

�x� � a ,

Kz�x� =
2Kc

�
tan−1 �sinh2��a/D� − sinh2��c/D�

sinh2��c/D� − sinh2��x/D�
, �10�

�x� � c , �11�

=Kc, c � �x� 	 a . �12�

The relationship between c /a and the current I carried by
one of the strips is determined by the integral I
=	−a

a Kz�x�dx, which can be expressed as

I

Ic
= 1 −

2

�a
�

0

c

tan−1 � sinh2��c/D� − sinh2��x/D�
sinh2��a/D� − sinh2��c/D�

dx ,

�13�

where Ic=2aKc. Shown in Fig. 4 are plots of c /a vs �I / Ic�2

for D /a=0.1, 0.3, 1, 3, and 10. For D /a=10, the plot of c /a
vs �I / Ic�2 is nearly indistinguishable from c /a=�1− �I / Ic�2,
the result known for an isolated strip.20–22 On the other hand,
for small values of D /a, the plot of c /a vs �I / Ic�2 can be
calculated to good approximation by

sinh��c/D� = sinh��a/D�cos���/2��I/Ic�� , �14�

such that the value of c /a is very close to 1 except when I / Ic
is very close to 1. This behavior occurs because the current
density Kz�x� in the region �x�	c is practically constant and
nearly equal to I /2a for a wide range of subcritical values of
I, as shown by the plot of Kz�x� vs x for D /a=0.1 in Fig. 5.
The curve of c /a vs �I / Ic�2 for D /a=0.1 is indistinguishable
from that obtained from Eq. �14�. For all values of D /a, 
= �a−c�=�a�I / Ic�2 for small values of �I / Ic�, where Eq. �13�
yields

� =
�a/D

2 tanh��a/D�
 �/2
K�k��2

, �15�

and K�k� is the complete elliptic integral of the first kind of
modulus k=tanh��a /D�. This behavior is illustrated by the

dashed lines in Fig. 4. In the limit as D /a→�, Eq. �15�
yields �=1 /2, and for D /a�1, �=�D /8a.

III. ac LOSSES

A secondary goal in this paper is to calculate the hyster-
etic ac losses in a bifilar stack of superconducting strips at a
frequency f =1 /T that is sufficiently low that eddy-current
losses are negligible and the losses can be calculated using a
quasistatic approach.20 The solutions for H�x ,y� derived in
Sec. II can be used to calculate Q�, i.e., the energy dissipated
per cycle per unit length in each strip. Consider time t=0,
when the current has its maximum amplitude I in the z di-
rection, the magnetic-field distribution is given by H�x ,y�
= x̂Hx�x ,y�+ ŷHy�x ,y�, and the magnetic induction is
B�x ,y ,0�=�0H�x ,y�. Half a cycle earlier, at time t=−T /2,
when the current is in the opposite direction, B�x ,y ,−T /2�
=−�0H�x ,y�. The loss per cycle per unit length Q� is twice
the loss in the half cycle −T /2� t�0. Thus,

Q� = 2�
−T/2

0

dt�
−a

a

dx�
−d/2

d/2

dyJz�x,y,t�Ez�x,y,t� . �16�

According to critical-state theory,13 during this time interval,
Ez is nonzero only where Jz is just above Jc, such that Jz can
be replaced by Jc in Eq. �16�, but the integral is to be carried
out only over those portions of the cross section where
Ez�x ,y , t��0. Note that Ez�0,0 , t�=0 when the current am-
plitude I is less than Ic. Next, let us use Faraday’s law in the
form �dl ·E=−	dS ·�B /�t, where the surface S consists of
two rectangular parts of length Lz, one with width x extend-
ing from the origin to �x ,0� and the other of width y extend-
ing from �x ,0� to �x ,y�. Integration of Faraday’s law thus
yields

Ez�x,y,t� = �
0

x

dx�
�By�x�,0,t�

�t
− �

0

y

dy�
�Bx�x,y�,t�

�t
.

�17�

Substituting this expression into Eq. �16�, integrating over
time, noting that B�x ,y ,0�−B�x ,y ,−T /2�=2�0H�x ,y�, and
making use of the symmetry that the losses in the left and
right halves of the strip are the same, we obtain
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�I�Ic�
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FIG. 4. Plots of c /a vs �I / Ic�2 �solid� determined from Eq. �13�
for D /a=0.1, 0.3, 1, 3, and 10 �top to bottom�. The dashed lines
show the corresponding linear slopes for �I / Ic�2�1 �Eq. �15��.
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FIG. 5. Plots of Kz�x� /Kc vs x /a for I / Ic=0.5 determined from
Eqs. �11�–�13� for D /a=0.1 �c /a=0.989�, 1 �c /a=0.926�, and 10
�c /a=0.868�.
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Q� = 8�0Jc�
0

a

dx�
−d/2

d/2

dy�
0

x

dx�Hy�x�,0�

− 8�0Jc�
0

a

dx�
−d/2

d/2

dy�
0

y

dy�Hx�x,y�� = Qe� + Qtb� .

�18�

From this expression, we see that there are in general two
important contributions to Q� in superconducting strips. The
first of these is Qe�, i.e., the dissipation due to magnetic flux
in the form of vortex or antivortex segments transporting flux
density �0Hy in from the edges of the strip. The second
contribution is Qtb� , i.e., the dissipation due to magnetic flux
in the form of vortex or antivortex segments transporting flux
density �0Hx in from the top and bottom surfaces of the
strip.

A. Edge losses

The edge losses Qe� are most conveniently calculated from
the fundamental equation,1,2,18–20,23–26

Qe� = 8�0Kc�
c

a

�a − x�Hy�x,0� , �19�

which is obtained from the first term in Eq. �18� by partial
integration. By using the expression for Hy�x ,0� from Eq.
�9�, we obtain

Qe� = �0Ic
2Le�F� , �20�

where F= I / Ic and the dimensionless function Le is19

Le =
2

�a2�
c

a

�a − x�tanh−1� sinh2 �x

D
− sinh2 �c

D

sinh2 �a

D
− sinh2 �c

D

dx ,

�21�

which is plotted as the solid curves in Fig. 6 for D /a=0.1,
0.3, 1, and 10.

In the limit as D /a→�, the results correspond to those
for an isolated strip, and Le�F� reduces to the function L2�F�
derived by Norris,20

L2�F� =
�1 − F�ln�1 − F� + �1 + F�ln�1 + F� − F2

�
. �22�

The maximum edge losses occur when F=1 or I= Ic.
These can be calculated by setting c=0 in Eq. �21�. In the
limit as D /a→�, this equation yields

Le�1� = �2 ln 2 − 1�/� = 0.123, �23�

as obtained by Norris for an isolated strip.20 For D /a�1, on
the other hand, Eq. �21� yields

Le�1� =
7��3�
4�3 D

a
�2

= 0.0678D

a
�2

. �24�

The smallness of this result arises because Hy�x ,0�
��Kc /��tanh−1�exp�−��a−x� /D�� when �a /D�1, such
that, except for the logarithmic divergence at x=a, Hy�x ,0� is
exponentially small, i.e., Hy�x ,0���Kc /��exp�−��a−x� /D�,
over most of the range of integration in Eq. �21�. The fol-
lowing interpolation function between large and small values
of D /a approximates Le�1� with a maximum error of 5%,

Le�1� �
0.123

�1 + 2.1�a/D�5/2�4/5 . �25�

Expanding the right-hand side of Eq. �21� to lowest order
in powers of F= I / Ic yields the approximation

Le�F� �
2

3�
�2F4, �26�

where � is given by Eq. �15�, a result first obtained by
Mawatari.19 For large values of D /a, this equation yields

Le�F� � F4/6� , �27�

as found by Norris,20 and for small values of D /a, Eq. �26�
yields

Le�F� �
�

96
D

a
�2

F4. �28�

Note from the solid curves and dashed lines in Fig. 6 that the
approximation given in Eqs. �15� and �26� provides a good
estimate of the edge losses over a remarkably large range of
values of F= I / Ic.

B. Top and bottom losses

In the theoretical analysis of the ac losses in thin
films,20,21 usually only the losses due to vortex and antivor-
tex motion in from the edges are taken into account. These
losses, represented by the term Qe�, dominate in isolated films
when the ac current amplitude I approaches Ic, for then the
entering vortices travel an appreciable fraction of the strip
width 2a during each cycle �see Eq. �19��. On the other hand,
vortices and antivortices entering from the top and bottom of
the strips can travel at most a distance d /2, and when d�a,
it makes sense to ignore the top-and-bottom losses, repre-

1.000.500.200.100.050.020.01
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0.001

0.1

I�Ic

L
e

FIG. 6. Plots of the dimensionless function describing edge
losses Le vs F= I / Ic for D /a=0.1, 0.3, 1, and 10 �bottom to top�.
The solid curves were obtained from Eq. �21� and the dashed lines
from Eqs. �15� and �26�. On this scale the solid curve for D /a
=10 is indistinguishable from the Norris result L2 �Eq. �22�� for an
isolated strip �Ref. 20�.
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sented by the term Qtb� . However, as seen in the above sec-
tion, the edge losses are proportional to F4 and also are much
reduced for small values of D /a. Since for small F the top
and bottom losses vary as a lower power of F, it is important
to determine the conditions under which these losses exceed
the edge losses.

To evaluate Qtb� , we make use of the fact that, although in
general Jz�x ,y�=�Hy�x ,y� /�x−�Hx�x ,y� /�y, in thin films the
second term is far larger in magnitude. Therefore, to excel-
lent approximation,

Hx�x,y� = − Jc�y − yp�, yp 	 y 	 d/2, �29�

=0, − yp 	 y 	 yp, �30�

=− Jc�y + yp�, − d/2 	 y 	 − yp, �31�

where Hx�x ,−y�=−Hx�x ,y�. Here, yp�x�=d /2−Hx�x ,
−d /2� /Jc for �x�	c, where Hx�x ,−d /2�	Jcd /2, or yp�x�=0
for c� �x�	a, where Hx�x ,−d /2�=Jcd /2. By carrying out
the second integral in Eq. �18�, we obtain

Qtb� =
8�0

3Jc
�

0

a

�Hx�x, � d/2��3dx . �32�

This result is expected because when a type-II supercon-
ductor is subjected to a parallel ac field of amplitude H0, the
hysteretic ac loss per unit area per cycle is known to be13

QA =
2�0H0

3

3Jc
. �33�

The result for Qtb� in Eq. �32� corresponds to replacing H0 by
�Hx�x , �d /2�� and integrating Eq. �33� over the top and bot-
tom of the film. Since we are here considering the case that
d�a, we can evaluate Eq. �32� by replacing �Hx�x , �d /2��
by Hx�x ,−
�=Kz�x� /2, where Kz�x� is given by Eqs. �11� and
�12�. The top and bottom losses therefore can be expressed
as

Qtb� = �0Ic
2Ltb�F� , �34�

where F= I / Ic, and the dimensionless function Ltb is

Ltb =
d

12a�1 − c/a +
8

�3a

��
0

c �tan−1�sinh2 �a

D
− sinh2 �c

D

sinh2 �c

D
− sinh2 �x

D
�

3

dx� .

�35�

The solid curves in Fig. 7 show plots of Ltb vs I / Ic for
D /a=0.1, 0.3, 1, and 10 for the example of d /a=0.001. All
the curves meet at F=1 or I= Ic, where c=0, such that

Ltb�1� =
d

12a
. �36�

Expanding the right-hand side of Eq. �35� through third
order in powers of F= I / Ic leads to the approximation

Ltb �
d

12a
�1.6855�F2 + �F3� , �37�

where part of the first term, 1.0000�F2, comes from the term
1−c /a, and the other part, 0.6855�F2, comes from expan-
sion of the integral in Eq. �35� and the result

16

�3�
0

�

�tan−1 u�3/u3du = 0.6855. �38�

The factor � in Eq. �37� is given by

� =
8

�2

��a/D�
tanh��a/D�
1 −

E�k�
K�k��� , �39�

where K�k� and E�k� are complete elliptic integrals of the
first and second kinds of modulus k=tanh��a /D�. When
D /a�1, ��2�a /D�2, and in the limit D /a→0, �→1. The
barely visible dashed curves in Fig. 7 show plots of Ltb ob-
tained from Eq. �37� for D /a=0.1, 0.3, 1, and 10 �bottom to
top�. The figure shows that this approximation is excellent
for all F= I / Ic except for D /a=10 close to F=1. In the limit
D /a→0, when �→0 and �→1, the approximation in Eq.
�37� becomes exact, yielding

Ltb =
d

12a
F3, �40�

which holds for all F.

C. Comparison of edge and top and bottom losses

The total energy dissipated per cycle per strip per unit
length is Q�=Qe�+Qtb� =�0Ic

2L�F�, the sum of the edge and
top and bottom losses. Figure 8 shows plots of L=Le+Ltb vs
F= I / Ic for D /a=0.1, 0.3, 1, and 10 and d /a=0.001, the
cases considered in Figs. 6 and 7. It is useful to define FX as

1.000.500.200.100.050.020.01
10�9

10�8

10�7

10�6

10�5

10�4

I�Ic

L
tb

FIG. 7. Plots of the dimensionless function describing top and
bottom losses Ltb vs F= I / Ic for d /a=0.001 and D /a=0.1, 0.3, 1,
and 10 �bottom to top�. The solid curves were obtained from Eq.
�35�. The corresponding dashed curves were generated from Eqs.
�15�, �37�, and �39�, but on this scale, they are indistinguishable
from the solid curves except for D /a=10 very close to I / Ic=1.
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the value of F where the edge and top and bottom losses are
equal, i.e., where the curves of Le vs F and Ltb vs F cross.
Equations �21� and �35� yield for d /a=0.001 the values FX
=0.304, 0.096, 0.051, and 0.037 for D /a=0.1, 0.3, 1, and 10.
The solid portions of the curves in Fig. 8 show where F
�FX and Le�Ltb, and the dashed portions show where F
	FX and Le	Ltb. The edge losses are most important when
D /a is large, and the top and bottom losses grow in relative
importance when D /a is small. The dotted curves show L
=Le+Ltb calculated from the power-law approximations
given in Eqs. �26� and �37�.

Figure 9 displays plots of FX vs D /a for values of d /a
=0.0001, 0.0003, 0.001, 0.003, and 0.01. These plots show
that when D /a is small enough and d /a is large enough, the
top and bottom losses exceed the edge losses for all values of
F= I / Ic.

IV. DISCUSSION

In Sec. II, I derived general expressions for the magnetic-
field and sheet-current-density distributions for an infinite

bifilar stack of thin superconducting strips of width 2a, thick-
ness d, and separation D, all carrying current of magnitude I,
but with adjacent strips carrying current in opposite direc-
tions. The calculations assumed that B=�0H and that the
critical current density Jc of each strip was uniform and in-
dependent of the local magnetic flux density.

In Sec. III, I used critical-state theory to derive expres-
sions for Q�, the hysteretic ac loss per cycle per unit length
in each tape, where Q� is the sum of edge losses Qe�, and top
and bottom losses Qtb� . The top and bottom losses grow in
relative importance as D becomes less than a. I expressed Q�
in terms of integrals of the x and y components of the mag-
netic fields given in Sec. II. Although these integrals can
easily be evaluated by numerical integration, I also expanded
Q� in powers of F= I / Ic to obtain some useful analytic ap-
proximations.

The behavior of the losses in a bifilar stack are very dif-
ferent from those in an infinite stack of strips of separation D
when the strips all carry the same current in the same direc-
tion. In the latter case, Q�, the hysteretic loss per unit length
per cycle in each tape, increases rapidly as D /a decreases.1,2

The additive effect of the magnetic fields generated by
nearby strips greatly increases the magnetic field at the edges
of a given strip, such that the edge losses are greatly magni-
fied. When D /a�1 and F=1 �I= Ic�, the resulting Q��1� is
then larger than that of an isolated strip by a factor of
2.71�a /D�. For the case of a finite stack, a similar enhance-
ment of the losses over those in an isolated strip has been
experimentally5 and theoretically5,27 noted.

In strong contrast, in a bifilar stack, where adjacent strips
carry current in opposite directions, the magnetic fields gen-
erated by nearby strips nearly cancel, and when D /a�1, the
magnetic-field distribution is strongly altered by the presence
of adjacent strips, as noted by Mawatari in Ref. 19. The
perpendicular component of the field is strongly attenuated,
and the parallel component becomes nearly uniform across
the width of the strip. In this case, accounting for both the
edge and top and bottom losses in the stack, Q��1� is smaller
than that for an isolated strip by a factor of 0.552�D /a�2

+0.678�d /a� �see Eqs. �23�, �24�, and �36��.
Majoros et al.28 used a finite-element method to calculate

the transport ac losses in finite stacks of superconducting
tapes of elliptical cross section carrying mutually antiparallel
currents at the critical value Ic. They found that when the
tapes were closely spaced, the losses were less than when the
tapes were far apart. The results in Sec. III confirm this gen-
eral conclusion not only for I= Ic but also for all I	 Ic.

Although the results in Sec. III for Q� were derived for an
infinitely tall bifilar stack of infinitely long strips, they
should provide an excellent approximation to the hysteretic
loss per cycle per unit length for superconducting tapes of
finite length in fault-current limiters consisting of noninduc-
tively wound pancake coils with a large number of bifilar
windings, so long as the radius r of each winding is much
larger than the spacing D between adjacent tapes.

A key assumption made in this paper is that the magnetic
induction in the superconducting film is given by B=�0H.
This should be a good approximation in a high-� supercon-
ducting film when the magnitude of the self-field H at the
edges or surfaces is much larger than the lower critical field

1.000.500.200.100.050.020.01
10�9

10�7

10�5

0.001

0.1

I�Ic

L

FIG. 8. Plots of the dimensionless function L=Le+Ltb describ-
ing the sum of the edge losses Le �Eq. �21�� and top and bottom
losses Ltb �Eq. �35�� vs F= I / Ic for D /a=0.1, 0.3, 1, and 10 �bottom
to top� and d /a=0.001. The solid curves display those portions of L
for which F�FX and Le�Ltb, and the dashed curves display those
portions for which F	FX and Le	Ltb. The dotted curves show L
calculated from the sum of the approximate expressions for Le �Eq.
�26�� and Ltb �Eq. �37��.

d�a�0.01

0.003

0.001

0.0003

0.0001

1.00.5 2.00.2 5.00.1 10.0

1.00

0.50

0.20

0.10

0.05

0.02

0.01

D�a

F
X

FIG. 9. Plots of FX, the value of F= I / Ic for which the edge
losses �Eq. �21�� are equal to the top and bottom losses �Eq. �35��,
vs D /a for several values of d /a. For given values of D /a and d /a,
when F�FX, edge losses exceed top and bottom losses, but when
F	FX, top-and-bottom losses exceed edge losses.
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Hc1. However, if this condition is not met, then the loss ex-
pressions given in Sec. III will generally overestimate the
true losses. For example, for the case of D /a�1, when Kz

� I /2a, if Hx�x ,−
�=Kz /2� I /4a is less than Hc1, no vorti-
ces will be able to penetrate the top or bottom of the strip. In
this case, the top and bottom losses will be zero, rather than
what was calculated in Sec. III B.
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