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We study the Heisenberg model of classical spins lying on a toroidal support, whose internal and external
radii are r and R, respectively. The isotropic regime is characterized by a fractional soliton solution. Whenever
the torus size is very large, R→�, its charge equals unity and the soliton effectively lies on an infinite cylinder.
However, for R=0, the spherical geometry is recovered and we obtain that configuration and energy of a
soliton lying on a sphere. Vortexlike configurations are also supported: in a ring torus �R�r�, such excitations
present no core where energy could blow up. At the limit R→�, we are effectively describing it on an infinite
cylinder, where the spins appear to be practically parallel to each other, which yields no net energy. On the
other hand, in a horn torus �R=r�, a singular core takes place, while for R�r �spindle torus�, two such
singularities appear. If R is further diminished until it vanishesm we recover a vortex configuration on a sphere.
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I. INTRODUCTION AND MOTIVATION

Geometrical and topological concepts and tools are im-
portant in many branches of natural sciences, particularly, in
Physics. For instance, the idea of symmetry, which is inti-
mately associated with geometry, is a keystone for studying a
number of fundamental properties of several physical sys-
tems, e.g., the Noether theorem asserts a conserved quantity
to each continuous symmetry of the associated action. Topol-
ogy, in turn, is crucial for classifying and for giving stability
to certain excitations, such as solitons �extending objects
having finite energy� and vortices �presenting a nonvanishing
vorticity around a given singular point or a topological ob-
struction�. These and others have been observed in a number
of systems, such as superconductors, superfluids, and mag-
netic materials, namely, vortexlike magnetization has been
directly observed in nanomagnets.1 On the other hand, the
observed vortex-pair dissociation is the mechanism behind
the topological phase transition.2 Another kind of topological
object emerges from Euclidian non-Abelian pure-field mod-
els in �3+1� dimensions. They are called instantons, since
they represent points in the Euclidian space-time. In this
case, the relevant homotopy group is that associated with the
mapping of the field space to the four-dimensional Euclidian
one, so that �3�S3→S3�=Z, for example, if the internal
space is the QCD gauge group, SU�3�. Such excitations play
an important role in this framework once the nonconserva-
tion of the flavor singlet axial current is proportional to the
instanton charge.3

In turn, the toroidal geometry has recently received a con-
siderable attention, for example, as tight traps for Bose-
Einstein condensates, inside which the atoms develop a
quasi-one-dimensional confined dynamics subject to periodic
boundary conditions.4 Ring-shaped carbon nanotubes have
been shown to provide quasi-zero-dimensional systems
whenever the rings are very small.5,6 In addition, their topol-
ogy also makes them possible field-effect transistors for tech-
nological applications7 and a suitable control of their stable
magnetization �e.g., those with a vortexlike profile� may be
useful for applications in magnetoelectronic devices, namely,

if an array of magnetic nanorings is concerned.8 From a more
fundamental point of view, it has been verified that whenever
the Ising model is defined on a donut-shaped lattice, then,
instead of a unique temperature, there appear two critical
temperatures.9 Even in Biology, the toroidal shape plays im-
portant roles: for instance, it has been observed that a large
number of proteins involved in DNA metabolism adopt a
ringlike shape, even though these proteins have quite distinct
and unrelated functions in this mechanism. Why this geom-
etry on topology is so abundant in this process and the reason
why life evolution has selected it amongst many others re-
main a puzzle in specialized literature.10

Geometrically, a torus of genus 1 �one central hole� is a
compact surface whose �Gaussian� curvature smoothly varies
from −1 /r�R−r� to +1 /r�R+r� along its polar angle �see
details below�, so interpolating between the pseudospherical
and spherical curvatures whenever R�r. From the topologi-
cal point of view, the simplest genus-1 torus is obtained by
the topological product of two circles, T1=S1∧S1.11 �In gen-
eral, a genus-n torus is obtained in a similar way; for ex-
ample, that of genus-2 is given by T2=T1∧T1.� This confers
that a nonsimple connectivity, say, closed loops holding on
its central hole or the polar circumference, cannot be shrunk
to a point �other nonsimply connected topologies are the or-
dinary circle and a disk with a hole, an annulus�.

For studying classical spinlike textures, of solitonic and
vortex kinds, on a torus, we first write down the continuum
version of the Heisenberg �exchange� Hamiltonian in this
geometry �Sec. II�. Later, the nonlinear Euler–Lagrange
equations are obtained and some particular cases are explic-
itly considered to describe the desired excitations. In addi-
tion, their profiles, energies, and other basic properties are
discussed and compared to their counterparts from other sur-
faces. These tasks are performed in Sec. III, where solitoni-
clike solutions in the isotropic regime are described and, in
Sec. IV, which is dedicated to vortexlike configurations, are
studied within the planar rotator model �equivalently, the XY
model, deals only with static properties�. Finally, we and our
paper by pointing out our conclusions and prospects for a
forthcoming investigation in Sec. V.
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II. CONTINUUM HEISENBERG MODEL ON THE TORUS

The anisotropic exchange Heisenberg model, for nearest-
neighbor interacting spins on a two-dimensional lattice, is
given by the Hamiltonian below:

Hlatt = − J��
�i,j�

Hi,j = − J��
�i,j�

�Si
xSj

x + Si
ySj

y + �1 + ��Si
zSj

z� ,

�1�

where J� denotes the coupling between neighboring spins
and, according to J��0 or J��0, the Hamiltonian describes

a ferro- or antiferromagnetic system, respectively. Si
�

= �Si
x ,Si

y ,Si
z� is the spin operator at site i and the parameter �

accounts for the anisotropy interaction amongst spins: for
��0, spins tend to align along the �internal� Z axis �easy-
axis regime�; for �=0, one gets the isotropic case; for −1
���0, we have the easy-plane regime, while the �=−1
case yields to the so-called XY model �or the planar rotator
model �PRM� if we focus on a two-component spin, impos-

ing Sz�0, so that S�PRM= �Sx ,Sy��.
In the continuum approach of spatial and spin variables,

valid at sufficiently large wavelength and low temperature,
the Hamiltonian �1� may be written as �J�J� /2�
follows:12–14

H1 = J
/ �

i,j=1

2

�
a,b=1

3

gijhab�1 + �a3��	 �Sa

��i

	 �Sb

�� j

��g�d�1d�2

= J
�
 �1 + �a3���D� Sa�2d� , �2�

where � is the surface with curvilinear coordinates �1 and

�2, so that d�=��g�d�1d�2, �a3 is the Kronecker symbol, D�

is the covariant derivative, ��g�=��det�gij��, and gij and hab
are the elements of surface and spin space metrics, respec-

tively �as usual, gijg
jk=�i

k�. Now, S� = �Sx ,Sy ,Sz�
��sin 	 cos 
 , sin 	 sin 
 , cos 	� is the classical spin vec-
tor field valued on a unity sphere �internal space�, so that
	=	��1 ,�2� and 
=
��1 ,�2�. With this Cartesian param-

etrization for S� , we have hab=�ab. The Hamiltonian �2� may
also be viewed as an anisotropic nonlinear � model, which
lies on an arbitrary two-dimensional geometry, so that our
considerations could have some relevance to other branches

such as hydrodynamics, superfluidity, and superconductivity.
Our interest is to study the model above on the torus

geometry, which is a smooth surface with varying curvature.
The simplest torus is thought of as a surface having genus 1
�a single central hole� and, whenever embedded in three-
dimensional space, it takes the shapes of a donut �see Fig. 1�.
The standard tori are classified in three distinct types con-
cerning the relations between their internal r and external R
radii. For R�r, we have a ring torus �donut shape, as shown
in Fig. 1�; if R=r, a horn torus is obtained, while for R�r, a
spindle torus is described �the latter ones are depicted in
Fig. 2�.

Any ordinary torus may be parametrized in a simple way
by some distinct coordinate systems, such as Cartesian15 and
peripolar16 �� ,�, so that

�R − �x2 + y2�2 + z2 = r2, �3�

with the parametric equations

x = �R + r sin ��cos , y = �R + r sin ��sin , z = r cos � ,

�4�

where R and r are the rotating �external� and axial �internal�
radii, respectively �see Fig. 1�. In peripolar variables �� ,�,
the metric elements read

g�� = r2, g = �R + r sin ��2, and g� = g� = 0,

�5�

from which follows the Gaussian curvature:

K =
sin �

r�R + r sin ��
. �6�

Note that K varies from −1 /r�R−r� at �=3� /2 to +1 /r�R
+r� at �=� /2. At �=0 and �, the curvature vanishes. In-
deed, as R→0, we get the sphere geometry once K�R=0�
=r−2, while for R→�, we obtain a curvatureless infinite sur-
face, like an infinite cylinder or an annulus. These points will
be important later, whenever discussing the behavior of soli-
tonic and vortex energies at these limits. Although we shall
explicitly treat the case of a ring torus, 0�r�R, our ap-
proach may be extended to the other standard tori, unless
otherwise specified.

In this set of coordinates, the Hamiltonian �2� gets the
form below ��� �

� and ��� �
�� �:

θ
r

R

x

z

P

FIG. 1. Shape of an ordinary ring torus embedded in a three-dimensional space �left�. Its cross section and the variables used throughout
this work �right�. The azimuthlike angle, , runs along the torus tube, z-constant planes, and is not shown in the cut.
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H = J
−�

� 
0

2� � r

R + r sin �
��1 + � sin2 	���	�2 + sin2 	��
�2� +

R + r sin �

r
��1 + � sin2 	����	�2 + sin2 	���
�2��dd� ,

�7�

from which follow the �static� Euler–Lagrange equations for 	 and 
, respectively:

sin 	 cos 	� r

R + r sin �
����	�2 + ��
�2� +

R + r sin �

r
�����	�2 + ���
�2��

= cos ��1 + � sin2 	����	� +
R + r sin �

r
��1 + � sin2 	���

2	 + 2� sin 	 cos 	���	��

+
r

R + r sin �
��1 + � sin2 	��

2 	 + 2� sin 	 cos 	��	�� , �8�

cos � sin2 	��
 +
R + r sin �

r
���sin2 	��
� +

r

R + r sin �
��sin2 	�
� = 0. �9�

As expected, the general anisotropic regime of the
Heisenberg model is described by nonlinear differential
equations. Suitable nontrivial solutions can be obtained pro-
vided that some conditions are imposed, so that special so-
lutions may be explicitly worked out. At this point, we
should note that the equations above resemble in form those
counterparts for the planar, spherical and pseudospherical
surfaces. Indeed, whenever R+r sin � is identified with r,
R sin �, or �� while  keeps its role as the azimuthlike

angle, the expression above exactly recovers their planar,
spherical, or pseudospherical analogs.13,14 Above, r= �r�� is the
planar radial distance, R is the sphere radius, while �� ac-
counts for the distance measured along a pseudospherical
geodesic, say, a hyperbole.

III. ISOTROPIC MODEL AND SOLITONIC SOLUTIONS

The simplest way to seek for possible solitonic solutions
associated with the present model on a torus is by consider-

x

z

x

z

FIG. 2. Global and cross-section views of a horn �upper� and spindle tori �in this case, the torus was cut to improve global view�. The
parameters are those from Fig. 1. Note that in the cross sections, the horn and spindle tori have a single and a pair of self-intercepting points,
respectively. Indeed, in the case of the spindle torus, such points correspond to two circumferences along which this surface crosses itself.
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ing the isotropic regime, �=0, and writing down the Hamil-
tonian �7�, and its associated equations �8� and �9� in a more
suitable coordinate system, which will allow us to get the
sine-Gordon equation in a simpler way �further details may
be found in Refs. 12 and 17�. Such a coordinate system is
parametrized by

x =
a sinh b cos �

cosh b − sin �
, y =

a sinh b sin �

cosh b − sin �
,

z =
a cos �

cosh b − sin �
, �10�

where � and � vary from 0 to 2�, while the constant param-
eters a and b are both real and positive, which impose that
the above parametrization is valid only for the ring torus,
R�r. In terms of r and R, we have

a = ��R + r��R − r�, cosh b =
R

r
, �11�

which allow the interpretation of a and b as the geometrical
radius and the eccentric angle, respectively.17 Conversely,
we have R=a / tanh b and r=a /sinh b. In addition, it is easy
to obtain the relations =� and tan�� /2�
=��R+r� / �R−r�tan�� /2�. Therefore, in this set of coordi-
nates, the Hamiltonian �7� describing toroidally symmetric
solutions, 	=	��� and 
=
���, gets the form

H = J
0

2�

d�
0

2�

d�� ���	�2

sinh b
+ sinh b sin2 	���
�2� ,

�12�

while Eqs. �8� and �9� read

sin 	 cos 	���
�2 = sinh−2 b��
2	 and ��

2
 = 0.

�13�

The latter equation has the simplest solution 
���=�+�0,
which, after substitution in the first one, gives us the sine-
Gordon equation �with �=� sinh b� as follows:

��
2	 = sin 	 cos 	 , �14�

whose simplest solution reads:12,18

	��� = 2 arctan�e� sinh b� , �15�

with energy

Ering = 8�J tanh�� sinh b� = 8�J tanh	��R2

r2 − 1
 � 8�J ,

�16�

which is in agreement with the saturated Bogomol’nyi
inequality,19 Esoliton=8�J�Q�, once, if we evaluate the solito-

nic charge, Q= 1
4� � sin 	d	d
, for the solution above, we

exactly obtain Qring= tanh�� sinh b�. Figure 3 shows how the
solitonic charge behaves with the torus size, R. Namely, note
that only when R→� �sinh b→�� does this charge equal
unity. At this limit, the soliton agrees with its counterpart,
which lies in an infinite cylinder and represents a complete
mapping from the spin sphere to the target manifold �the

torus�, a � soliton, so corresponding to the first homotopy
class of the second homotopy group of the mapping of the
spin sphere to the �infinite� torus, say, �2�S2→ �T1�R→��=Z.
However, for finite R, such a mapping is incomplete and no
homotopy arguments can be used for classifying solution
�15� as a topological excitation. Indeed, in this case, we must
take into account the topology of the geometrical support:
although the genus prevents the complete mapping from the
spin sphere onto the torus �so that the solution presents a
fractional charge, �Q��1�, at the same time, it also ensures
topological stability, in principle, preventing the fractional
soliton from decaying against the ground state. In other
words, now the soliton acquires a finite characteristic length,
proportional to the genus size, which prevents its collapse
and, consequently, its size from vanishing. Similar scenarios
are provided by the annulus, the truncated cone,20 and by the
punctured pseudosphere.13

Once the torus is the topological product of two circles,
we may wonder whether another solitonic solution depend-
ing on the polar angle �� or ��, 	���, should not also appear
in this framework. This is, indeed, the case. If we reconsider
Hamiltonian �7� with the conditions �=0, 	=	���, and 

=
��, we get

H2 = J
−�

�

d
0

2�

d��	 r

R + r sin �

sin2 	��
�2

+ 	R + r sin �

r

���	�2� , �17�

from which we obtain

�
2 
 = 0 and 	 r

R + r sin �

sin 	 cos 	��
�2

= cos ����	� + 	R + r sin �

r

���

2	� . �18�

The first equation is readily solved, giving 
=+0, so that
the latter one is simplified to

1 1.2 1.4 1.6 1.8 2
R/r

0

0.2

0.4

0.6

0.8

1

Q
ri

ng

1.6 1.8 2
0.999

1.000

1.001

FIG. 3. How the solitonic charge associated with solution �15�
behaves in the ring torus as a function of R /r�1. Although Q
approaches unity very fast �e.g., for R /r=2, we obtain QR=2r

�0.999 95; see inset�, it should be stressed that only when R→�
do we get Q=1.
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	 r

R + r sin �

sin 	 cos 	

= cos ����	� + 	R + r sin �

r

���

2	� . �19�

This expression is a generalized sine-Gordon equation, with
nonconstant coefficients. In principle, the equation above ad-
mits solitonic solutions �possibly with fractional charge�, but
a closed and analytical solution is still lacking.20 A further
light into this issue may be shed if we take R→0 above. At
this limit, the equation above gets the simple form

sin 	 cos 	 = sin � cos ����	� + sin2 ����
2	� , �20�

which is easily solved by

	��� = � � , �21�

which is precisely the simplest solution we have for the
spherical geometry,14,21 whose energy reads Esphere=8�J,
corresponding to the fundamental solitons with charges �1.
Therefore, we have seen that solitonic solutions lying on a
torus generally present �or are expected to� fractional
charges. These charges equal unity only at specific limits: for
R→�, we effectively get a soliton on an infinite cylinder,
while for R→0, the spherical counterpart is obtained.

IV. VORTEXLIKE SOLUTIONS ON THE TORUS

Geometrically, a vortex with a net winding number �
�0 may be viewed as a set of spins rotating in a closed
circuit around a core �whose center is a singular point� or a
topological obstruction, which makes it impossible to change
the configuration to a perfectly aligned state without tamper-
ing with spins at an arbitrary distance from the core. Thus,
once a vortexlike configuration cannot be continuously de-
formed to the ground state, it acquires the status of a topo-
logically stable excitation. Vortices have been intensively
studied for decades in a number of physical systems, such as
superfluids and superconductors, and they have been recently
observed in several nanomagnets as remanent states of the
net magnetization.1 In addition, they have been proposed to
take part �and even to be the key elements� in some magne-
toelectronic mechanisms with potential applications to mag-
netic recording, processing, sensors, and so forth.22

When we model a vortex as a continuum of spins, we
intend to describe only its outer region; once inside the core,
the analytical treatment is expected to give only an estimate
of its energy, shedding no light about its real structure and
spins arrangement, which require numeric or simulation
techniques. However, as we shall see, in the toroidal topol-
ogy, a natural cutoff for the vortex is provided by the genus
whenever R−r�0, so that, in a ring torus, the solution pre-
sents no core. On the other hand, in the case of a horn torus
�R=r�, a singular core takes place, while for R�r �spindle
torus�, two singular points are verified. In both cases, the
cores appear at the self-intercepting points �discussed earlier,
see Fig. 2 and related text�.

To achieve our purposes, we shall consider the planar ro-
tator model, whose continuum Hamiltonian may be obtained

from Eq. �7� with �=−1 and 	=� /2 �once we are dealing
with static solutions, our results apply equally well to the XY
model�, so that

H = J
0

2� 
0

2� � r

R + r sin �
��
�2

+
R + r sin �

r
���
�2�dd� . �22�

Demanding 
 to be cylindrically symmetric, 
=
��, the
Hamiltonian above yields the following:

�
2 
 = 0 ⇒ 
�� = � + 0, �23�

where � is the charge of the vortex, while 0 is a constant
accounting for its global profile, which gives no contribution
to its exchange energy. The charge �vorticity� is formally
defined, in the continuum limit, as

� =
1

2�
�

C

��� 
� · dl�, �24�

where the integration is evaluated along a closed path C
around the genus of the torus. By taking the solution above
to the Hamiltonian �22�, we obtain, for a ring torus �R�r�,

Ev-ring = 4�2J�2 r
�R2 − r2

, �25�

from which we see that, distinctly from other cases �planar,
conical, spherical, or pseudospherical geometries�, the en-
ergy of a vortex in a ring torus does not present singularities,
so that no cutoff needs to be introduced to prevent spurious
divergences. The profile of a vortex with �= +1 and 0=0 is
presented in Fig. 4. Note that its energy increases with r and
decreases as R is raised. In addition, note that as R→�, then
Ev−ring vanishes, which is expected since at this limit we
effectively deal with the spins lying along the axial direction
of an infinite cylinder, parallel to each other �in the ferromag-
netic case�. Thus, instead of a true vortex, we have the
ground-state configuration in this flat geometry, whose nor-
malized energy vanishes.

A similar analysis may be suitably employed for the re-
maining supports. However, in the case of a horn torus �R
=r�0�, Hamiltonian �22� diverges for the vortex solution

FIG. 4. Global �left� and top �right� views of a vortex with �
= +1 on the ring torus. The arrows represent the spin field, �
. The
genus holds as a natural cutoff, preventing any core formation
where energy could spuriously diverge.
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�23�. This is not surprising since for this case the genus of
the torus has been shrunk to a point �but it is not absent�
where a singular core may be developed. Now, this spurious
divergence must be bypassed by introducing a cutoff around
the vortex core size, l0. By doing that, the vortex energy on a
horn torus may be easily evaluated to give

Ev-horn = 4�J�2 cot�l0/2r� , �26�

which depends only on the relative sizes of the core to the
vortex, l0 /r. The singular core appears exactly where the
horn torus is self-intercepting. This will also happen to the
spindle torus, where a pair of singularities takes place, once
this surface crosses itself at two distinct points �in variable
��, as follows.

If we insist in configurations like 
=
��, we clearly
realize that the energy density diverges at those two points
where the spindle torus is self-intercepting, say, R+r sin �
=0. Integrating Hamiltonian �22� with solution �23�, but
keeping � arbitrary, gives

�spindle = 2��2J
r

�r2 − R2
ln	 r − �r2 − R2 + R tan��/2�

r + �r2 − R2 + R tan��/2�

 .

�27�

To extract some finite and meaningful quantities, we must
evaluate the result above over proper intervals. For that, we
should introduce suitable cutoffs around those points where
the energy density given by Eq. �22� blows up, say, �sing
=arcsin�−R /r� and �−arcsin�−R /r�, and only later should
we suitably evaluate �spindle in order to bypass the singulari-
ties. However, this task is very tedious and results in a very
lengthy expression, which will be omitted here. The main
feature is that the well-defined vortex energy clearly shows
the appearance of two singular cores located at both �sing,
which is given above. Another interesting issue is that when-
ever R→0, then an integration of the Hamiltonian �22� for
solution �23� gives us exactly that result obtained in the
spherical case,14 namely, exhibiting the pair of cores at an-
tipodal points. In summary, if we start off with a ring torus
�R�r� where the vortex is coreless and decrease R, we even-
tually get a horn torus, where a core is formed. By decreas-
ing R further, a spindle torus is obtained and the vortex now
presents a pair of singular cores at the self-intercepting
points. At the limit R→0, these cores are located at diametri-
cally opposite positions and, effectively, we have a vortex
lying on a sphere of radius r.

As previously discussed for the solitonic case, we could
look for “vortexlike” solutions depending on the polar angle,
say, 
=
���. For this case, Hamiltonian �22� yields

��
 = ��
r

R + r sin �
, �28�

while the topological charge is given by k�

� 1
2� ���
� ·dl��=��r /�R2−r2 �so, valid only for the ring

torus�. Therefore, the solution of the equation above may be
written as


��� = 2�� arctan	 r + R tan��/2�
�R2 − r2 
 + �0, �29�

whose energy is easily evaluated and give

E�-ring = 4�2��
2J

�R2 − r2

r
, �30�

which blows up as the ring torus becomes infinite, R→�.

V. CONCLUSIONS AND PROSPECTS

We have studied the Heisenberg exchange model for clas-
sical spins defined on a toroidal geometry on topology.
Solitonic- and vortex-type configurations were described in
some detail, including their energy, profile, and behavior at
some limiting cases of the torus size and geometry.

We first considered the isotropic regime. There, only for
the ring torus �R�r� were solitonic solutions analytically
obtained. These solutions appear to bear fractional charges,
while their stability could be ensured, in principle, by the
nontrivial topology of this torus, which is provided by the
finite size of its central hole, R−r�0. As R increases, such a
charge is raised but equals unity only for R→� �in practice,
a soliton in an infinite cylinder�. On the other hand, as R
→0, a soliton lying on a sphere is described.

Now, by taking the XY regime, we have investigated vor-
texlike configurations in this support. In a ring torus, the
vortex exhibits no core and its energy density is finite every-
where. Its net energy vanishes as R→�, once the spins are
now practically parallel to each other �the ferromagnetic
ground state�. If R=r �horn torus�, then the vortex develops a
singular core at the self-intercepting point, while for R�r
�spindle torus�, a pair of such cores appear, so that as R
→0, they tend to be located at antipodal points and we re-
cover the spherical case.

An interesting problem to be investigated is a small nano-
ring, say, with the geometry and topology of a ring torus.
Actually, the expression nanorings frequently appears in na-
nomagnetic literature, including some possibilities for actual
applications.8 Such an object is generally fabricated by mak-
ing a sufficiently large centered hole in a thin cylindrical
nanodisk. Although it shares the torus topology, its geometry
does not; once at the disk and hole borders, curvature
abruptly changes. In addition, magnetostatic energies, which
are very sensitive to the size and geometry of the magnet, are
relevant in these cases, so that their evaluation in smoother
supports seems to be more manageable, which justifies our
prospect. Furthermore, our results could have some rel-
evance for other branches where topological excitations
and/or toroidal surfaces are concerned.
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