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Recent experiments on La2CuO4 suggest that indirect resonant inelastic x-ray scattering �RIXS� might
provide a probe for transversal spin dynamics. We present in detail a systematic expansion of the relevant
magnetic RIXS cross section by using the ultrashort core-hole lifetime �UCL� approximation. We compute the
scattering intensity and its momentum dependence in leading order of the UCL expansion. The scattering is
due to two-magnon processes and is calculated within a linear spin-wave expansion of the Heisenberg spin
model for this compound, including longer range and cyclic spin interactions. We observe that the latter terms
in the Hamiltonian enhance the first moment of the spectrum if they strengthen the antiferromagnetic ordering.
The theoretical spectra agree very well with experimental data, including the observation that scattering
intensity vanishes for the transferred momenta q= �0,0� and q= �� ,��. We show that at finite temperature,
there is an additional single-magnon contribution to the scattering with a spectral weight proportional to T3. We
also compute the leading corrections to the UCL approximation and find them to be small, setting the UCL
results on a solid basis. All this univocally points to the conclusion that the observed low temperature RIXS
intensity in La2CuO4 is due to two-magnon scattering.
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I. INTRODUCTION

Indirect resonant inelastic x-ray scattering �RIXS� is rap-
idly establishing itself as a new probe of electronic excita-
tions in solids. The recent increase in brilliance of synchro-
tron radiation has made it possible to observe the second
order scattering processes as indirect RIXS.1–16 Moreover,
the improvements in the instrumental resolution �100 meV is
achieved� allow for lower energy scales to be detected, mak-
ing this technique, in principle, a powerful instrument to
probe the low-lying elementary excitations of solids, for in-
stance, magnons.17,18

In indirect RIXS, the energy of the incoming photons is
tuned to match a resonant edge of an atomic transition in the
particular system that one sets out to investigate. This reso-
nance corresponds to exciting a core electron to an outer
shell. The K edge of transition metal ions is particularly use-
ful since it promotes a 1s core electron to an outer 4p shell,
which is well above the Fermi level, so that the x rays do not
cause direct transitions of the 1s electron into the lowest
3d-like conduction bands.2–16

Due to the large energy involved ��5–10 keV�, the core
hole is ultrashort lived and it induces an almost delta-
function-like potential �in time� on the valence electrons.19–21

Consequently, elementary excitations of the valence elec-
trons will screen the local potential, but have little time to do
so. When the core-hole decays, the system can be left behind
in an excited state. By observing the energy and momentum
of the outgoing photon, one probes the elementary excita-
tions of the valence electrons including, in particular, their
momentum dependence.

In the last few years, considerable theoretical progress has
been made to comprehend RIXS spectra6,9–11 and, particu-
larly, to understand the correlation functions that are mea-

sured by indirect RIXS.18–21 It is by now well established
that indirect RIXS detects the momentum dependence of
charge excitations that are related to the electrons and holes
in the d shell in, for instance, the cuprates and manganites.
Treating the scattering problem to take the ultrashort core-
hole lifetime �UCL� into account has proved that the indirect
RIXS intensity is proportional to the dielectric loss function
and longitudinal spin excitations of the electrons that couple
to the core hole.19–21

Recently, RIXS measurements performed by Hill et al. on
the high-Tc cuprate superconductor La2−xSrxCuO4 revealed
that RIXS is potentially able to detect transversal spin
excitations—magnons.17 The experiments show that the
magnetic RIXS signal is strongest in the undoped cuprate
La2CuO4. The magnetic loss features are at energies well
below the charge gap of this magnetic insulator, at energies
where the charge response function S�q ,�� vanishes, as well
as the longitudinal spin one—which is, in fact, a higher order
charge response function. The proposed scattering mecha-
nism is a two-magnon scattering process in which two spin
waves are created.17,18

In a previous theoretical analysis, we have shown that the
magnetic correlation function that is measured by indirect
RIXS is a four-spin correlation one, probing two-magnon
excitations.18 This makes indirect RIXS a technique that is
essentially complementary to magnetic neutron scattering,
which probes single magnon properties and two-spin corre-
lations. In this paper, we present the theoretical framework of
Ref. 18 in more detail and use it for an analysis of the ex-
perimental magnetic RIXS data on perovskite CuO2 layers of
La2CuO4.

We expand upon the previous considerations by providing
a detailed comparison between the theory and experiment,
including also longer range magnetic exchange interactions
in the theory—with values known from neutron scattering
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data. We develop the theory to account also for the effects of
finite temperature, which give rise to a nontrivial single-
magnon contribution to the RIXS signal. We also compare
with the results of Nagao and Igarashi,22 who recently com-
puted the magnetic RIXS spectra based on the theoretical
framework of Ref. 18, taking also some of the magnon-
magnon interactions into account.

The theory is developed on the basis of the UCL expan-
sion. We compute leading order corrections to this expansion
and show that they are small. This makes sure that the UCL
approximation provides a reliable route to analyze the indi-
rect RIXS spectra.

This paper is organized as follows. In Sec. II, we obtain
an expression for the cross section of the two-dimensional
�2D� S=1 /2 Heisenberg antiferromagnet in linear spin wave
theory in terms of magnon creation and annihilation opera-
tors. In Sec. III, we evaluate the cross section at T=0. Sec-
tion IV concerns the low temperature case. Next, the leading
correction to the cross section in the UCL approximation is
calculated. Section VI is devoted to the concluding remarks.

II. CROSS SECTION FOR INDIRECT RESONANT
INELASTIC X-RAY SCATTERING ON A HEISENBERG

ANTIFERROMAGNET

Recently, Hill et al.17 observed that RIXS on the high Tc
superconductor La2−xSrxCuO4 picks up transversal spin
dynamics—magnons. In the undoped regime, the RIXS in-
tensity turns out to be highest. The same feature was ob-
served in the related compound Nd2CuO4. These cuprates
consist of perovskite CuO2 layers with a hole in the Cu 3d
subshell. The low-energy spin dynamics of these systems are
properly described by a single band Hubbard model at half
filling. The strong interactions between holes in the Cu 3d
subshells drive these materials into the Mott insulating re-
gime, where the low energy excitations are the ones of the
S=1 /2 2D Heisenberg antiferromagnet,

H0 = �
i,j

JijSi · S j , �1�

with Jij �146 meV for nearest neighbors.23 The superex-
change integral Jij is determined from the virtual hopping
processes concerning sites i and j: Jij =4tij

2 /U. Here, tij is the
hopping amplitude and U is the Coulomb repulsion between
two 3d electrons on the same site. In the antiferromagnetic
ground state, the Hamiltonian can be bosonized in linear spin
wave theory �LSWT� where Si

z�1 /2−ai
†ai, Si

+�ai, and
Si

−�ai
† for i�A �A being the sublattice with spin up� and

Sj
z�bj

†bj −1 /2, Sj
+�bj

†, and Sj
−�bj for j�B �the spin-down

sublattice�. A Bogoliubov transformation in reciprocal space
is necessary to diagonalize H0,

�k = ukak + vkb−k
† , �2�

�k = ukbk + vka−k
† , �3�

with

uk =� J0
AB − J0

AA + Jk
AA

2��J0
AB − J0

AA + Jk
AA�2 − �Jk

AB�2
+

1

2
�4�

and

vk = sgn�Jk
AB��uk

2 − 1, �5�

where Jk
XY is the Fourier transform of those terms in Jij con-

necting a site in sublattice X to a site in Y. For interactions up
to third nearest neighbors, we get

Jk
AB = J�cos akx + cos aky� �6�

Jk
AA = Jk

BB = 2J� cos akx cos aky + J��cos 2akx + cos 2aky� ,

�7�

with a the lattice constant and J, J�, and J� the first through
third nearest neighbor couplings. The final linear spin wave
Hamiltonian in terms of boson operators is

H0 = const + �
k

�k��k
†�k + �k

†�k� , �8�

with �k=��J0
AB−J0

AA+Jk
AA�2− �Jk

AB�2.
Our aim is to understand how this picture changes when

doing indirect RIXS. In RIXS, one uses x rays to promote a
Cu 1s electron to a 4p state. For an ultrashort time, one cre-
ates a core hole at a certain site which lowers the Coulomb
repulsion U on that site with an amount Uc. We assume that
the core-hole potential is local; i.e., it acts only at the core-
hole site. This approximation is reasonable as the Coulomb
potential is certainly largest on the atom where the core-hole
is located. Moreover, we can consider the potential generated
by both the localized core hole and photoexcited electron at
the same time. As this exciton is a neutral object, its mono-
pole contribution to the potential vanishes for distances
larger than the exciton radius. The multipolar contributions
that we are left with in this case are generally small and drop
off quickly with distance.

The strong core-hole potential in the intermediate state
alters the superexchange processes between the 3d valence
electrons. This causes RIXS to couple to multimagnon exci-
tations, as was first pointed out in Ref. 18. The simplest
microscopic mechanism for this coupling is obtained within
the strong-coupling Hubbard model, in which the doubly oc-
cupied and empty virtual states shift in energy in the pres-
ence of the core hole.18,22 Adding the amplitudes for the two
possible processes shown in Fig. 1 leads to an exchange
integral in the presence of a core hole on site i of

Jij
c =

2tij
2

U + Uc
+

2tij
2

U − Uc
= Jij�1 + �� , �9�

where j is a site neighboring to i and �=Uc
2 / �U2−Uc

2�. This
enables us to write down the generic Hamiltonian for the
intermediate states,18

Hint = H0 + ��
i,j

sisi
†JijSi · S j , �10�

where si creates a core hole and si
† annihilates one at site i. In

the Hubbard framework, one could identify U with the Cou-
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lomb energy associated with two holes in a 3d orbital, Ud
=8.8 eV, which together with Uc=7.0 eV �Refs. 24, 25, 28,
and 29� leads to �=1.7; from U /Uc=2 /3, as suggested in
Ref. 28, one finds �=−0.8.

The situation in the cuprates, however, is more complex
and one needs to go beyond the single band Hubbard model
to obtain a value of � from microscopic considerations. We
will do so by considering a three-band model in the strong
coupling limit. However, it should be emphasized that for the
end result—the computed RIXS spectrum in the UCL
approach—� just determines the overall scale of the inelastic
scattering intensity. As we will show, higher order correc-
tions in the UCL approach are determined by the value of �
because �J /	 appears as a small parameter in this expan-
sion. As for the cuprates J /	�1 /5, such corrections are
small for the relevant possible values of �.

In the three-band Hubbard model that includes also the
oxygen states, two important kinds of intermediate states ap-
pear: the poorly and well-screened ones. Because the Cou-
lomb interaction of the core hole with the valence electrons
is large �Uc=7.0 eV, compared to a charge transfer energy

=3.0 eV �Ref. 24��, a copper hole can transfer to a neigh-
boring oxygen to form a well-screened intermediate state.
The low-energy sector now also encompasses an oxygen
hole, equally distributed over the ligands. We will show that,
starting from a three-band Hubbard model, Eq. �10� gives a
proper description of both the well- and poorly screened in-
termediate states, with � now a function of the parameters of
the three-band model. Before presenting these results, we
remark that scattering processes that scatter a well-screened
state into a poorly screened state or vice versa yield a large
energy loss �. These are not important at low �, where one
will only observe scattering in the magnetic channel, not the
charge one.

The magnetic scattering processes for the poorly screened
state are very similar to the single band picture: all copper
ions have one hole and all oxygen ions are filled shell. The

superexchange processes are shown in Fig. 2. We consider
the Anderson and Geertsma contributions to the
superexchange25 and find

�ps =
Ud
2�Up + 2
�

2�2Ud + 2
 + Up�	 1

�Ud − Uc��Uc − 
�2 +
1

�Ud + Uc�
2

+
�1/
 + 1/�
 − Uc��2

2
 − Uc + Up

 − 1, �11�

which results in �=−0.3 using the parameters Ud=8.8 eV,
Up=6.0 eV, tpd=1.3 eV, 
=3.0 eV, and Uc=7.0 eV,24,25

where tpd is the copper-oxygen hoping integral and Up the
on-site Coulomb repulsion of two oxygen holes.

The well-screened intermediate states have a similarly
modified superexchange interaction, as shown in Fig. 2. Be-
cause of the large core-hole Coulomb interaction, an electron
from the neighboring oxygen atoms moves in to screen it, or,
equivalently, the copper hole is transferred to the in-plane
oxygen ions. Transfer out of the plane is not considered since
the Cu 3dx2−y2 hole only couples to the in-plane oxygens.
Because the Cu hole is transfered in the direction of one of
its neighboring Cu ions, the contribution to the superex-
change interaction for the well-screened state is of second
order in tpd, instead of fourth order between two Cu sites �see
Fig. 2�. The rotational invariance around the core-hole site of
the transfered hole ensures that the intermediate state Hamil-
tonian of the form in Eq. �10� gives the correct scattering
amplitude. To lowest order in tpd, we hence find

�ws =
Ud�Ud + Up�
2�Up + 2
�

2�Ud − 
�tpd
2 �2Ud + Up + 2
��Up + 
�

− 4, �12�

which results in �=−1.3—again restricting ourselves to su-
perexchange of the Anderson and Geertsma type. We see that
to lowest order, the core-hole potential Uc does not appear in
the well-screened intermediate state. From these microscopic
considerations, we conclude that the intermediate state
Hamiltonian �Eq. �10�� is the correct one and higher order
corrections to it are small because for the cuprates � is a
number of order unity.

In a previous theoretical treatment, we have shown in
detail how to derive the cross section for RIXS processes
with a local core hole using the UCL expansion.21 For an

1s

3d

4p
1s

3d

4p

1s

3d

4p 1s

3d

4p

or

IntermediateInitial Final

U’=U-U
c

U’=U+U
c

qin, �in
0

qout, �out
0

FIG. 1. �Color online� In RIXS, a photon of momentum qin and
energy tuned to the K edge of a transition metal ion ��in

0 =�res�
creates a core hole at a certain site. The superexchange interaction
between this site and a neighboring other site is modified because
the energy of the virtual intermediate states is changed. The same
site Coulomb repulsion U is lowered by Uc if the core-hole site
contains no holes and is raised by Uc if there are two holes present.
Summing the amplitudes for both processes, we obtain the modified
superexchange interaction �see Eq. �9��.

Cu with

core-hole
CuO

�

1s

3d

Cu with

core-hole
CuO

Poorly-screened Well-screened

exchange

FIG. 2. �Color online� Modification of the superexchange inter-
action in the well- and poorly screened intermediate states. In the
poorly screened state, the core-hole potential Uc modifies the super-
exchange. For the well-screened state, however, the copper 3d hole
on the core-hole site is transfered to a neighboring oxygen, and
superexchange is only of order O�tpd

2 �, independent of Uc.
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incoming and/or outgoing photon with momentum qin /qout
and energy �in

0 /�out
0 , we obtained the cross section through

the Kramers–Heisenberg relation29–32 as a function of energy
loss, �=�in

0 −�out
0 , and momentum transfer, q=qout−qin,

� d2�

d�d�
�

res

 ��

f


Afi
2��� − � fi��
T

, �13�

with

Afi = �res�
n

�f 
D̂
n��n
D̂
i�
�in − En − i	

. �14�

The initial state 
i� with energy Ei �which is used as reference
energy: Ei=0� is photo-excited to an intermediate state which

is described by the dipole operator D̂. The system can evolve
through the intermediate states 
n� with energy En �measured
with respect to the resonance energy �res� and, after the de-
cay of the core hole, end up in a final state 
f� with energy Ef.
Because the lifetime of the core hole is ultrashort, we intro-
duce an energy broadening 	 for the intermediate state. The
detuning of the incoming photon energy from the K edge is
given by �in=�in

0 −�res. Finally, the delta function in Eq. �13�
imposes energy conservation: the energy gain of the system,
� fi=Ef −Ei, must be equal to the energy loss of the photon,
�=�in

0 −�out
0 . If 	�En, we can expand the amplitude Afi in a

power series. We assume that the energy of the incoming
photon is tuned to the resonance ��in=0�,

Afi =
�res

− i	
�
l=1

�
1

�− i	�l �f 
D̂�Hint�lD̂
i� . �15�

Note that we left out the l=0 term because it only contributes
to elastic scattering. The leading order nonvanishing term in
the sum is l=1, since the core-hole broadening is quite large
compared to J. At the copper K edge, 2	�1.5 eV according
to Refs. 33 and 34, and 2	�3 eV for the closely related ions
Mn and Ge according to Refs. 35 and 36 which in either case
is large compared to J. As in the three-band model, �=
−1.3 /−0.3 eV for the well-/poorly screened intermediate
state; the largest value we find is �J /	�−0.22. Note that the
UCL expansion therefore converges very well—even faster
for the poorly screened state than for the well-screened state
�where 
�
 is larger�. It is possible to directly include a num-
ber of terms with l�2 in the cross section by using the
expansion

�
l=1

�
�Hint�l

	l � �
l=1

� 	H0
l

	l +
H0

l−1H�

	l 
 + O���J/	�2� , �16�

with H�=��i,jsisi
†JijSi ·S j. Since �H0 , D̂�=0 and H0
i�=0, all

terms with H0 on the right can be safely neglected. Using Eq.
�16�, Afi simplifies to

Afi =
�res

i	

�

i	 + �
�f 
Ôq
i� , �17�

with the scattering operator

Ôq = �
i,j

eiq·RiJijSi · S j . �18�

From this equation, we can deduce two important features.
First, indirect RIXS probes a momentum dependent four-spin

correlation function.18 Second, Ôq commutes with the z com-
ponent of total spin Sz, so the allowed scattering processes
should leave Sz unchanged. Only an even number of mag-
nons can be created or annihilated.

To bosonize Eq. �18�, we split Ôq in four parts,

Ôq = �
i,j�A

¯ + �
i,j�B

¯ + �
i�A,j�B

¯ + �
i�B,j�A

¯ .

�19�

Next, we rewrite this expression using LSWT as introduced
in Sec. II. Fourier transforming the result gives

Ôq = const + S�
k

��Jk+q/2
AA + Jk−q/2

AA − J0
AA − Jq

AA + J0
AB + Jq

AB�

��ak−q/2
† ak+q/2 + bk−q/2

† bk+q/2� + �Jk+q/2
AB + Jk−q/2

AB �

��ak+q/2b−k+q/2 + ak−q/2
† b−k−q/2

† �� , �20�

and we can write Ôq in terms of the magnon operators using
the inverses of Eqs. �2� and �3�. This leads to

Ôq = Ôq
�1� + Ôq

�2�, �21�

where Ôq
�1,2� are lengthy expressions that contain the one and

two-magnon scattering part respectively. The next section

deals with the two-magnon part Ôq
�2� where two magnons are

created or annihilated. The one-magnon part Ôq
�1� �where the

change in the number of magnons is zero� is treated in Sec.
IV.

III. TWO-MAGNON SCATTERING AT T=0 K

At T=0 K, the system is in its ground state, where no
magnons are present: 
i�= 
0�. Adding conservation of Sz, the
only allowed scattering processes are the ones in which two
magnons are created, so we consider the two-magnon part of
the scattering operator of Eq. �21� with S=1 /2,

Ôq
�2� = �

k�MBZ

�− �Jk+q/2
AA + Jk−q/2

AA − J0
AA − Jq

AA + J0
AB + Jq

AB�

��uk+q/2vk−q/2 + uk−q/2vk+q/2� + �Jk+q/2
AB + Jk−q/2

AB �

��uk+q/2uk−q/2 + vk+q/2vk−q/2����k+q/2�−k+q/2

+ �k−q/2
† �−k−q/2

† � . �22�

The two-magnon spectrum is shown in Fig. 3�a�. Several
remarkable features can be seen.

First of all, the spectral weight vanishes at q= �0,0� and
q= �� ,��, as can be seen in Fig. 4�b�. This is in agreement
with experimental observations.17 The vanishing of the RIXS
intensity at q=0 is obvious: from Eq. �18�, we see that at

q=0, Ôq reduces to 2H0 �the factor of 2 arises from the fact
that the sum in Eq. �18� is over all i and j�. At zero tempera-
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ture, 
i�= 
0� and consequently H0
i�=0—the RIXS intensity
vanishes. At nonzero temperatures, H0
i�=Ei
i� and accord-
ing to Eq. �17�, only elastic scattering occurs. It is easy to
show that at q= �� ,��, the RIXS intensity always vanishes,
regardless of the temperature or the form of Jij �as long as
there is antiferromagnetic order�. This holds because q
= �� ,�� is a reciprocal magnetic lattice vector: eiq·Ri =1 if Ri
is in sublattice A and eiq·Ri =−1 if Ri is in sublattice B �as-
suming that at Ri= �0,0�, we are in sublattice A�. We obtain

Ôq=��,�� = �
i�A,j

JijSi · S j − �
i�B,j

JijSi · S j . �23�

Adding all terms where j�B in the first term and j�A in the
latter, we get zero. What remains is

Ôq=��,�� = �
i,j�A

JijSi · S j − �
i,j�B

JijSi · S j . �24�

These terms cancel when applied to an initial state which is
symmetric under the interchange of the sublattices.

The other remarkable feature of the magnetic RIXS spec-
trum is its strong dispersion. This is apparent from Figs. 3�a�
and 4�a�, showing the first moment �average peak position�
of the spectrum. The calculations for the nearest neighbor
Heisenberg antiferromagnet �see the dashed line in Fig. 4�a��
show that the magnetic scattering disperses from about �
�0 around �0,0� to ��4J at �� ,0� and �� /2,� /2�. Longer
range couplings tend to reduce �increase� the first moment of
the RIXS spectrum if they weaken �reinforce� the antiferro-
magnetic order �see the solid line in Fig. 4�a��. The observed
dispersion in Fig. 3�a� has a twofold origin. It is in part due
to the q dependence of the two-magnon density of states
�DOS�, combined with the scattering matrix elements that
tend to pronounce the low energy tails of the two-magnon
DOS. In Fig. 3�b�, it looks as if the two-magnon DOS has
two branches. The most energetic one around q=0 is
strongly suppressed by the matrix elements throughout the
Brillouin zone �BZ�.26,27

The consistency at q= �0,0� and q= �� ,�� of the theoret-
ical results and experimental data was already noticed, but at
other wave vectors, the agreement stands out even more. The
data on La2CuO4 for q= �� ,0� show a peak at around
500 meV, precisely where we find it on the basis of a nearest
neighbor Heisenberg model with J=146 meV—a value
found by the analysis of neutron scattering data.23 Similar

q

ω
/J

Two-magnon RIXS intensity
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Two-magnon DOS

(0,0)(π,π)(π,0)(0,0)
0

1

2

3

4

5

(0,0)
(π,0)

(π,π)

(a)
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(c)

FIG. 3. �Color online� �a� RIXS spectrum and �b� two-magnon
DOS for a nearest neighbor Heisenberg antiferromagnet with ex-
change interaction J as a function of transferred momentum q for a
cut through the �c� Brillouin zone. The dashed line indicates the
magnetic BZ boundary.
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FIG. 4. �a� First moment and �b� total spectral weight of the
RIXS spectrum. The solid lines are obtained by using interaction
strengths determined from neutron data �next neighbor coupling J
=146.3 meV, second and third neighbor couplings J�=J�=2 meV,
and ring exchange Jc=61 meV� �Ref. 23�. The dashed lines have
only nearest neighbor interaction.
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agreement is found at q= �0.6� ,0� and q= �0.6� ,0.6��.17

Even better agreement is found when we take into account
the second and third nearest neighbors and ring exchange
according to the neutron data. The ring exchange interaction,
which we treat on a mean field level, simply renormalizes
first- and second-nearest neighbors exchange.23

In Fig. 5, we compare the results for the two-magnon
scattering intensity with experimental data,17 using the inter-
action strengths determined from neutron data,23 for three
values of q in the BZ. Note that we use the wave-vector
independent renormalization factor Zc here, which takes into

account some of the magnon-magnon interactions.37 This
simply changes the energy scale by a factor Zc�1.18 but
does not affect the intensity of the spectrum. Each panel
shows the theoretical prediction �dashed line�, the theory
convoluted with the current instrumental resolution �solid
line�, and the experimental data. The only free parameter in
the theoretical spectra is the overall scale of the scattering
intensity. We find it to vary by a factor of 2.5 comparing
different q, which is within the error bars of the
experiment.38

Many qualitative features such as the occurrence of in-
tense peaks at the magnetic BZ boundary and the large dis-
persion characterizing the total spectrum are in accordance
with our earlier results18 and the results of Nagao and
Igarashi.22 The spectra of Ref. 22, taking two-magnon inter-
actions partially into account, show slight quantitative differ-
ences with respect to our results: the RIXS peaks soften and
broaden somewhat as a consequence of the magnon-magnon
interaction, particularly for the �� ,0� point. The range of the
dispersion in the spectrum is therefore smaller �the mean � /J
varies between 1 and 3 instead of 1 and 4�.

IV. FINITE T: SINGLE-MAGNON SCATTERING

The Stot
z symmetry allows scattering processes where no

additional magnons are created. In the finite-temperature
case, an initial magnon of momentum k can be scattered to
k−q. The one-magnon part of the scattering operator, within
LSWT, takes the following form:

Ôq
�1� = S �

k�MBZ

��J0
AB + Jq

AB − J0
AA − Jq

AA + Jk
AA + Jk−q

AA ��ukuk−q

+ vkvk−q� − �Jk
AB + Jk−q

AB ��ukvk−q + vkuk−q����k−q
† �k

+ �k−q
† �k� . �25�

We choose to concentrate on the basic case where the only
nonvanishing interaction is the nearest-neighbor coupling J
for a 2D Heisenberg antiferromagnet with S=1 /2.

In the low temperature regime, a few magnons of low
momentum k are present in the system. Their energy can be
approximated for T→0 by letting k→0: �k��2J
k
. In this
limit, uk and vk can be substituted by the following approxi-
mate expressions:

uk �
1

��2
k

	1 +

�2

4

k

 ,

vk �
1

��2
k

	1 −

�2

4

k

 . �26�

In order to calculate the one-magnon contribution to the
cross section, we have to evaluate the scattering amplitude
expressed by Eq. �17�. In the low temperature case, we can
consider a one-magnon initial state 
i�=�k

†
0�.39 The only
contribution to Afi

�1� comes from the final state with a single
magnon of momentum k−q,
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FIG. 5. RIXS intensity for various points in the BZ. Each figure
contains the bare theoretical data �dashed line�, the convolution
with experimental resolution �solid line�, and the experimental data
from Ref. 17. For these figures, we used J=146.3 meV, second and
third neighbor couplings J�=J�=2 meV, and ring exchange Jc

=61 meV. The latter contribution is evaluated theoretically using a
mean field approximation. These values were found in neutron scat-
tering experiments �Ref. 23�. These experiments were analyzed us-
ing the wave-vector independent renormalization factor Zc=1.18,
which is also used to generate the theoretical curves. The theoretical
intensity is scaled independently in each figure to match the experi-
ment. The overall scale factors differ at most by a factor 2.5, which
is comparable to experimental uncertainty in absolute intensities
�Ref. 38�.
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Afi
�1� = S��J0 + Jq��ukuk−q + vkvk−q� − �Jk + Jk−q��ukvk−q

+ vkuk−q�� �
S

�2�2
�J0 + Jq��uq − vq��
k
 , �27�

where we used the condition 
k
� 
q
 and inserted the ex-
pressions of Eq. �26� for uk and vk, retaining the leading
order term in 
k
.

These approximations allow the analytic evaluation of the
scattering intensity. At finite T, the cross section is given by

� d2��1�

d�d�
�

res

 �

i,f

1

e�Ei − 1

Afi

�1�
2��� − Ef + Ei� . �28�

For k�0, and by taking the continuum limit, we obtain

d2��1�

d�d�

 P�q��

MBZ

dkxdky


k

e��k − 1

��� − �k−q + �k� ,

�29�

where we defined P�q�=S2�J0+Jq�2�uq−vq�2. In the low
temperature limit, the Bose factor goes to zero rapidly for
high 
k
, so the only substantial contribution to the integral
comes from 
k
�0. Therefore, we can extend the domain of
integration to the entire k space. Replacing �k with its ap-
proximate expression in the limit of low 
k
 and assuming
polar coordinates, we obtain

d2��1�

d�d�

 P�q��

0

�

dk
k2

e��2Jk − 1
��� − �q + �2Jk� . �30�

Note that we used the replacement �k−q→�q, which breaks
down at q=0 and the BZ corners. This integral can simply
evaluated to be

d2��1�

d�d�

 P�q�

�� − �q�2

e−���−�q� − 1
���q − �� , �31�

and the spectral weight for T /J�1 is

W1 =� d2��1�

d�d�
d� 
 P�q�	 1

�J

3

. �32�

The T3 behavior also shows up in the numerical evaluation of
W1 �without assuming 
k
� 
q
�, as shown in Fig. 6, as a
function of the transferred momentum q, for various tem-
peratures �dashed lines�. According to the considerations dis-
cussed in the previous section, the RIXS intensity is vanish-
ing for �� ,��. The average peak position and the peak width
are expected to be modified as a function of temperature. We
can easily estimate these modifications by evaluating the first
moment,

��max� � �q −
�4

30��3�
T , �33�

and the variance,

��max
2 � − ��max�2 
 T2. �34�

We conclude that the peak position is shifted from �q toward
lower values of � by an amount that grows linearly with T
and at the same time the peak broadens proportional to T.

We now determine the relative intensity of the one- and
two-magnon scattering processes. Even if a direct compari-
son is not possible, since the one-magnon and the two-
magnon peaks occur at different lost energies �, it is useful
to compare the one-magnon and the two-magnon total spec-
tral weights for the 2D Heisenberg antiferromagnet. The lat-
ter is evaluated numerically at T=0 and the former at various
temperatures without making the approximation k−q�−q.
In Fig. 6, we plot the two-magnon �solid line� and the one-
magnon weights for different temperatures �dashed lines�. At
room temperature, the one-magnon weight is 1 or 2 orders of
magnitude smaller for almost every value of q and is ex-
pected to decrease with decreasing T, according to Eq. �32�.
This allows us to conclude that the two-magnon scattering is
the dominant process at low temperatures. A rough estimate
for the temperature at which the one-magnon process be-
comes significant gives a value of �1 eV in the case of
La2CuO4, which is well above room temperature. These re-
sults support the conclusion that two-magnon scattering
dominates the magnetic RIXS intensities in this material ob-
served by Hill et al.17 In other materials, this of course needs
not necessarily be so, depending on the temperature at which
the experiments are performed. One can expect, for instance,
interesting RIXS scattering signals from high temperature
paramagnons.

V. LEADING CORRECTION TO ULTRASHORT LIFETIME
APPROXIMATION

The UCL expansion offers a systematic way of calculat-
ing the Kramers–Heisenberg relation �Eq. �13��. In this sec-
tion, we calculate the leading correction term to the two-
magnon cross section in the UCL approximation. This is
especially relevant at q= �0,0� where the intensity is vanish-
ing to first order, but nonzero to second order. The leading
order correction is taken into account by including all terms
up to O���J /	�2� in Eq. �16�. Again, we can include a num-
ber of extra correction terms by using an expansion of the
type

100

102

104

106

(0,0)(π,π)(π,0)(0,0)

W
1,

W
2

q

βJ = 100

βJ = 10

βJ = 1

FIG. 6. Comparison between spectral weight for single-magnon
scattering W1 �dashed lines� for various temperatures and zero tem-
perature two-magnon scattering W2 �solid line�, all obtained nu-
merically. The figure displays the T3 behavior from Eq. �32� for the
single-magnon intensity. For La2CuO4, J�146 meV, and at room
temperature, we have �RTJ�5.8.
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�
l=1

�
Hint

l

	l � �
l=1

� 	H0
l

	l +
H0

l−1H�

	l 
 + �
l=2

�
H0

l−2�H��2

	l + O���J/	�3� .

�35�

The contribution of the last term to the UCL scattering am-
plitude is

�res

	2

�2

i	 + �� f��
i

eiq·Ri�
j,k

JijJik�Si · S j��Si · Sk��i� .

�36�

This scattering amplitude that corresponds to this term is
nonzero at q=0, which can be easily checked in linear spin-
wave theory. The reason is that the resulting scattering op-
erator at zero transferred momentum does not commute with
the Hamiltonian. For the LSWT analysis, we make use of the
identity,

�
j,k

JijJik�Si · S j��Si · Sk� =
1

4 �
j�k

JijJikS j · Sk −
1

2�
j

Jij
2 Si · S j

+ const. �37�

We drop the constant because it does not contribute to inelas-
tic scattering. For simplicity, we only take nearest neighbor
interactions into account. The last term in Eq. �37� is propor-
tional to the first order result for the scattering amplitude,
which has already been analyzed in LSWT. The other term
can be treated in LSWT too and yields a two-magnon con-
tribution to the scattering amplitude at zero temperature of

−
�res

4	2

�2J2

i	 + �
�
k

�f 
f�k,q� � �ukvk+q + uk+qvk��k
†�−k−q

† 
0� ,

�38�

with f�k ,q�=−6�cos qx+cos qy�+4 cos kx cos�ky +qy�
+4 cos ky cos�kx+qx�+2 cos�2kx+qx�+2 cos�2ky +qy�. Since
the phase of the first order amplitude differs from the second
order amplitude by � /2, there is no interference of these
terms. The consequence is that the leading corrections to the
first order scattering intensity are down by a factor ��J /	�2

�0.06 for the well-screened intermediate state. This makes
the ultrashort core-hole lifetime approximation a viable way
of computing magnetic RIXS spectra. The contribution �Eq.
�36�� is shown in Fig. 7�a� and the full cross section in Fig.
7�b�. Only at q=0, there is an appreciable difference from
the first order result shown in Fig. 3�a�. At q= �� ,��, there is
again no intensity, which can be understood by the same
argument as for the first order result in Sec. III.

VI. CONCLUSIONS

We derived the two-magnon scattering cross section
which is measured in magnetic RIXS at the Cu K edge, tak-
ing advantage of a series expansion in the UCL of the inter-
mediate state. In the context of LSWT, we calculated the
magnetic RIXS spectrum for a 2D S=1 /2 Heisenberg anti-
ferromagnet, in the more general case where the superex-
change is not limited to nearest neighbors. Our results

strongly suggest a multimagnon scattering scenario, where
two-magnon excitations are created in the system as a con-
sequence of the modifications in the superexchange interac-
tion induced by the core-hole potential.

Our results for the two-magnon scattering agree very well
with experimental data on La2CuO4. The vanishing of the
RIXS intensity for the elastic case q= �0,0� and the antifer-
romagnetic point q= �� ,�� is recovered. The latter feature
turns out to be a consequence of an underlying symmetry
property of the scattering operator and does not depend on
the range of the exchange interaction. The excellent quanti-
tative agreement between our results and experiments is tes-
tified by the occurrence of an intense peak at q= �� ,0� for
��500 meV. We have generalized the theory to include
also finite-temperature scattering, for which we find that also
one-magnon processes contribute. For La2CuO4 at room
temperature, the single-magnon spectral weight is very small
compared to two-magnon scattering.

The subleading order in the UCL expansion of the cross
section is shown to be of order O���J /	�2� smaller than the
first order result. This makes the UCL approximation a rig-
orous method for this case to calculate the Kramers–
Heisenberg relation. The introduction of longer range inter-
actions �according to data from neutron experiments�
improves the correspondence between theory and magnetic
RIXS experiments on La2CuO4. The generalization of the
analysis to doped systems will be an interesting next step
toward understanding multispin correlations in the spin liq-
uid phase of the high-Tc superconductors.
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