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Numerical modeling of the coherent spin relaxation in nanomagnets, which are formed by magnetic mol-
ecules of high spins, is accomplished. Such a coherent spin dynamics can be realized in the presence of a
resonant electric circuit coupled to the magnet. A computer simulation for a system with a large number of
interacting spins is an efficient tool for studying the microscopic properties of such systems. Coherent spin
relaxation is an ultrafast process, with a relaxation time that can be an order shorter than the transverse spin
dephasing time. The influence of the different system parameters on the relaxation process is analyzed. The
role of the sample geometry on the spin relaxation is investigated.
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I. INTRODUCTION

A polarized magnet placed in an external magnetic field,
the direction of which is opposite to the sample magnetiza-
tion, comprises a strongly nonequilibrium system. The relax-
ation of the spins to their equilibrium position can occur in
different ways. The simplest process is the slow relaxation
during the time T1 caused by the spin-lattice coupling1 when
the total magnetization tends to zero. This is an incoherent
process since T1 is usually much longer than the spin dephas-
ing time T2. A straightforward way of making the spin relax-
ation coherent would be by simultaneously imposing a
strong transverse field and driving all spins, which would
represent the process of free induction,1 lasting for the time
T2. This, however, is a rather trivial process when spins are
practically independent of each other.

A more elaborate situation arises if the magnet is inserted
into a magnetic coil of a resonant electric circuit. Then, the
magnetic field, which is induced by the coil, provides an
efficient feedback mechanism organizing the coherent mo-
tion of spins.2 It is possible to realize six different regimes of
coherent spin relaxation in a polarized sample coupled to a
resonant circuit: collective induction, maser generation, pure
super-radiance, triggered super-radiance, pulsing super-
radiance, and punctuated super-radiance. A detailed descrip-
tion of these regimes is given in review articles.3–5

Collective induction and maser generation with spins
were realized in a number of experiments.6–9 Pure spin
super-radiance was first observed by Kiselev et al.10,11 and
later confirmed by Bazhanov et al.12,13 and Reichertz et al.14

Pulsing super-radiance was demonstrated in experiments by
Bösinger et al.15,16 The regime of punctuated super-radiance
was suggested in Ref. 17 and, to our knowledge, has not yet
been experimentally realized. A comprehensive survey of ex-
periments can be found in Refs. 4, 5, and 18.

It is necessary to emphasize the principal role of the reso-
nant electric circuit, which is coupled to the spin sample, to
realize the regimes of spin super-radiance. This makes the
fundamental difference between the spin super-radiance and
the atomic super-radiance.19 The latter can be achieved in a
resonatorless system,19–21 though a resonant cavity can en-

hance the effect.22,23 Contrary to this, the spin super-
radiance, occurring in the radio frequency range, cannot be
realized without a resonator, which is due to the destructive
role of the dipole spin interactions and to the absence of the
feedback mechanism collectivizing the spin motion. This ba-
sic difference was emphasized in Ref. 19 and thoroughly
explained in Refs. 5, 24, and 25. One should also distinguish
between coherent transient effects, which are caused by in-
tense alternating external fields and have much in common
for optical atomic systems,20,21 gamma radiation,26–29 as well
as spin samples,30–32 and super-radiant phenomena when the
self-organization of coherence is the basic origin of the aris-
ing super-radiance.25,33,34

Here, we concentrate our attention on the super-radiant
regime of spin motion, which requires the presence of the
resonant electric circuit, providing the feedback mechanism
for the collective self-organization of spin motion. The re-
gimes of free induction, collective induction, and triggered
spin super-radiance could be considered in the framework of
the phenomenological Bloch equations supplemented by the
Kirchhoff equation for the circuit.35–38 These phenomeno-
logical equations, however, are not applicable for describing
the pure spin super-radiance when the coherent motion of
spins develops in a self-organized way from initially chaotic
spin fluctuations. The complete theory, which is based on the
microscopic spin Hamiltonian and describes all regimes of
spin relaxation, has been developed in Refs. 18, 25, 33, 34,
and 39 and expounded in detail in review articles.4,5 This
theory is in good agreement with experiment4,5 as well as
with numerical computer simulations40–42 accomplished for
nuclear or electron spins S=1 /2.

A wide class of paramagnetic materials formed by mag-
netic molecules,43 the effective ground-state spins of which
can reach rather high values of S�10, also exists. These
molecules compose molecular magnets, the properties of
which are described at length in Refs. 5, 18, 44, and 45. For
example, the molecules Mn12 and Fe8 possess the spin S
=10. The magnetic cluster compound Mn6O4Br4�Et2dbm�6
has the total spin S=12.46 The magnetic molecule
Cr�CNMnL�6�CIO4�9, wherein L stands for a neutral penta-
dentate ligand, displays the effective spin S=27 /2.45
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Molecular magnets, which are formed by high-spin mag-
netic molecules, exhibit a rather strong magnetic anisotropy
and a gigantic relaxation time of magnetization, which
reaches about 2 months in zero magnetic field at a low
temperature.5,18,44,45 The magnetization relaxation is mainly
due to the phonon-assisted mechanism caused by spin-
phonon interactions.47,48 The fast super-radiant-type relax-
ation of magnetization is theoretically possible for molecular
magnets provided they are placed in a sufficiently strong
external magnetic field and necessarily coupled to a resonant
circuit.5,18,25,49

The main points distinguishing the relaxation in magnetic
molecules, which were studied earlier,44,45,50–57 from the pro-
cess to be investigated in this paper are as follows.

First of all, the usually studied spin relaxation in magnetic
molecules is the process of quantum tunneling occurring in
individual molecules.50–57 Contrary to this, we shall be inter-
ested in coherent, principally collective effects due to strong
correlations between many molecules, which are caused by
the resonator feedback field.

Quantum tunneling in separate molecules is known to be
phonon assisted, with an essential phonon influence on the
relaxation process.47,48,58 However, in the case of spins
strongly correlated through the resonant feedback field, spin-
phonon interactions are not as important, the basic dynamics
being governed by the resonator feedback field.

The single-molecule spin relaxation is not connected with
a fixed particular frequency59 because of a sufficiently strong
magnetic anisotropy and a varying external magnetic
field,5,19,24,25 while to realize the necessary collective coher-
ent spin relaxation requires a situation close to resonance
between the Zeeman frequency and the resonator natural fre-
quency.

Magnetic avalanches are usually accomplished by sweep-
ing the longitudinal magnetic field with a rather slow sweep-
ing rate. A typical field sweeping rate used in
experiments50–55 is about 0.1 T/s. In our case, we consider a
fixed external magnetic field, with a well defined Zeeman
frequency.

The avalanche time of the magnetic moment in magnetic
molecules is between 10−3 and 1 s.50–57,59 This is a rather
slow process compared to the coherent spin relaxation,
which is an ultrafast process, with characteristic relaxation
times of about 10−10–10−13 s.5,18,24,25,49

The peculiarities of the fast super-radiant-type spin relax-
ation in molecular magnets can be successfully analyzed by
means of computer modeling, which, to our knowledge, has
not yet been accomplished. This approach provides a very
efficient tool for studying the microscopic properties of a
spin system. It is the aim of this paper to describe the results
of computer simulations to analyze the features of the fast
coherent relaxation of molecular spins, which is typical of
high-spin molecular magnets.

The outline of the paper is as follows. In Sec. II, we
present the main definitions and equations to be employed in
our computer modeling. In Sec. III, the results for a bulk
sample are analyzed. Since the dipolar spin interactions are
anisotropic, it is interesting to study the related anisotropic
geometric effects for different shapes of the magnetic
samples. These geometric effects are investigated for a chain

of molecular spins oriented either along the external mag-
netic field or perpendicular to it and for spin planes, with the
external magnetic field being either perpendicular to it or
lying in that plane. Section IV contains conclusions.

II. BASIC DEFINITIONS AND EQUATIONS

We consider a spin sample characterized by the molecular
spin vectors S j = �Sj

x ,Sj
y ,Sj

z� associated with the lattice sites
enumerated by the index j=1,2 , . . . ,N. An external magnetic
field is directed along the z axis,

B0 = B0ez. �1�

This defines the Zeeman frequency

�0 � −
�0

�
B0 =

2

�
�BB0, �2�

in which �0=−2�B is the electron magnetic moment, with
�B being the Bohr magneton. In general, similarly to the
magnetic-resonance setup, a transverse magnetic field, which
is directed along the x axis,

B1 = B1ex, B1 = h0 + h1 cos �t , �3�

and consists of a constant field h0 and an alternating field
h1 cos �t, can exist.

Molecular magnets possess the single-site magnetic aniso-
tropy characterized by the anisotropy parameter D, which
defines the anisotropy frequency

�D � �2S − 1�
D

�
, �4�

where S is the molecular spin. The magnetic anisotropy ex-
ists for high spins, playing an important role, while for S
=1 /2, it disappears, according to Eq. �4�.

Spins interact with each other through the dipolar forces
characterized by the dipolar tensor

Dij
�� �

�0
2

rij
3 ���� − 3nij

�nij
�� , �5�

in which

rij � �rij�, nij �
rij

rij
, rij � ri − r j .

For what follows, it is convenient to introduce the dipolar
coefficients

aij � Dij
zz, bij �

1

4
�Dij

xx − Dij
yy − 2iDij

xy�,

cij �
1

2
�Dij

xx − iDij
yz� , �6�

with dimensions of energy.
The spin sample is inserted into a magnetic coil of an

electric circuit characterized by the circuit damping � and the
circuit natural frequency �. Moving spins generate electric
current in the coil, which, in turn, produces the feedback
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magnetic field H acting on the spins. The generated electric
current is described by the Kirchhoff equation. By choosing
the coil axis along the x axis, so that H=Hex, the Kirchhoff
equation can be rewritten33,34 as the equation for the feed-
back magnetic field H,

dH

dt
+ 2�H + �2�

0

t

H�t��dt� = − 4	

dmx

dt
, �7�

where the effective electromotive force in the right-hand side
of Eq. �7� is produced by moving spins, with the average
magnetization

mx =
�0

V
	
j=1

N


Sj
x� , �8�

V being the sample volume. The filling factor 
 in the right-
hand side of Eq. �7� is approximately equal to 
=V /Vc,
wherein Vc is the coil volume. For what follows, without loss
of generality, we may assume the dense filling, with 
=1.
Instead of Eq. �7�, we can use the equivalent differential
equation

d2H

dt2 + 2�
dH

dt
+ �2H = − 4	

d2mx

dt2 , �9�

in which we set 
=1.
All possible attenuation mechanisms have been carefully

described in Ref. 25. Those that influence the spin motion are
as follows. The longitudinal attenuation

�1 = �1 + �1
� �10�

is the sum of the spin-lattice attenuation �1, which is caused
by spin-phonon interactions, and of the polarization pump
rate �1

�, which is due to a stationary nonresonant pump, if
any. The total transverse attenuation is

�2 = �2�1 − s2� + �2
�. �11�

This includes the homogeneous broadening �2, which is
renormalized by the factor 1−s2, appearing in the case of
strongly polarized spin systems,1,25 with s being the average
spin polarization reduced to the number of spins, N, and to
the spin value S. The last term �2

� is the static inhomogeneous
broadening.

In order to represent the equations of spin motion in a
compact form, it is convenient to introduce the ladder spin
components

Sj
− � Sj

x − iSj
y, Sj

+ � Sj
x + iSj

y . �12�

Also, we shall use the following notations:

�i
0 �

1

�
	

j��i�
�aijSj

z + cij
� Sj

− + cijSj
+� ,

�i �
1

�
	

j��i�
�2cijSj

z −
1

2
aijSj

− + 2bijSj
+ . �13�

The effective force, acting on the j spin, can be written as

f j � −
i

�
�0�B1 + H� + � j . �14�

The derivation of equations of motion for the spin vari-
ables Sj

−, Sj
+, and Sj

z has been described in great detail in Refs.
4, 5, and 25. The resulting equation for Sj

− reads as

dSj
−

dt
= − i��0 + � j

0 − i�2�Sj
− + f jSj

z + i
�D

S
Sj

zSj
−. �15�

The equation for Sj
+ is conjugate to Eq. �15�. The equation for

Sj
z is

dSj
z

dt
= −

1

2
�f j

+Sj
− + Sj

+f j� − �1�Sj
z − � , �16�

where  is the stationary spin polarization. From Eqs. �15�
and �16�, with notation �12�, one can always return to the
evolution equations for Sj

x, Sj
y, and Sj

z.
In numerical simulations, one treats the spins S j as clas-

sical vectors.40–42 It is convenient to work with the reduced
quantities characterizing the reduced transverse spin vari-
able,

u �
1

SN
	
j=1

N

Sj
−, �17�

and the reduced longitudinal spin variable,

s �
1

SN
	
j=1

N

Sj
z. �18�

The spin variables �17� and �18� characterize the collective
properties of a large number of magnetic molecules compos-
ing the molecular magnet. The time evolution of these vari-
ables is prescribed by the equations of motion �15� and �16�.
This picture of collective spin motion is a generalization of
the evolution equations for a single magnetic molecule. The
study of collective coherent effects is the main aim of this
paper.

In our numerical simulations, we solve the spin evolution
equations �15� and �16� for a finite number of spins, N. The
resonator feedback field is given by Eq. �9�, with the initial
conditions

H�0� = 0, Ḣ�0� = 0, �19�

where the overdot implies the time derivative of H. The spin
variables Sj

� at the initial time are randomly distributed over
the sample to obtain a prescribed value s�0� of the spin po-
larization �18�, whereas for a sufficiently high initial spin
polarization, variable �17� is negligible,

s�0� = s0, u�0� = 0. �20�

The external magnetic field �1�, with B0�0, is aligned
with ez. For the initial spin polarization s0�0, the magnetic
moment of the molecular sample:
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M�0� = NS�0s0ez = − 2NS�Bs0ez,

is opposed to ez. That is, the considered molecular magnet is
prepared in a strongly nonequilibrium initial state, from
which it relaxes to a stationary state.

III. RESULTS OF COMPUTER SIMULATION

First, we consider the coherent spin relaxation in bulk
samples, where spins are located in lattice sites of a cubic
lattice. Computer simulations are accomplished for N=125
spins. For larger values of N, the results are qualitatively
similar. The periodic boundary conditions have been im-
posed. Since our aim is to study the self-organized process,
we set the transverse field B1=0. We assume that the spin
sample is without defects, so that the inhomogeneous broad-
ening is negligible, �2

�=0. For low temperatures, the spin-
lattice interaction in molecular magnets is very weak, with
the longitudinal relaxation time T1 reaching months �see re-
view articles in Refs. 5, 18, 44, and 45�, because of which
the attenuation parameter �1 plays no role, and we can set
�1=0. It is convenient to deal with dimensionless quantities
measuring all frequencies in units of �2, so that we set �2
=1. We shall measure time in units of �2

−1, that is, in units of
T2.

First and foremost, we have to stress the necessity of the
resonant circuit. When the latter is absent, there is no fast
relaxation at all. Then, only the very slow polarization decay
could exist during the time T2, which is caused by spin in-
teractions. The same slow relaxation happens if there is a
circuit, but there is no resonance between its natural fre-
quency � and the Zeeman frequency �0. Therefore, in what
follows, we always set �=�0. This resonance condition is
necessary, though not sufficient. To realize an effective spin
reversal, it is important for �0 to be much larger than the
anisotropy frequency �4�. The condition �0��D ensures that
the anisotropy does not induce an effective detuning from the
resonance.5,18,24,25

Figure 1 illustrates how the spin reversal depends on the
value of the Zeeman frequency �0. The larger the latter is,
the more pronounced the spin reversal is.

The resonator damping � defines the resonator ringing
time ��1 /�, during which the magnetic sample effectively
interacts with the resonator. The relationship between the
resonator ringing time � and the transverse relaxation time T2
essentially influences the spin reversal. When �=T2, there is
a permanent exchange of energy between the spin sample
and the resonator, so that the spin polarization oscillates
around zero. When �=0.1T2, a well pronounced reversal oc-
curs; hence, the value �=10 is optimal for the latter. If �
=0.02T2, then the effective interaction time between the
sample and the resonator is too short to realize a good rever-
sal of polarization. The corresponding three qualitatively dif-
ferent cases are shown in Fig. 2.

The magnitude of spin reversal also depends on the initial
polarization. The larger the initial value s0 is, the stronger the
spin reversal is, which is illustrated in Fig. 3.

Magnetic anisotropy is an obstacle for the coherent spin
relaxation. The larger the value of �D is, the smaller the spin
reversal is, as is demonstrated in Fig. 4.

Dipole spin interactions are also a factor suppressing spin
coherence. This is illustrated in Fig. 5, where the behavior of
the spin polarization for the case with dipole interactions is

0 0.25 0.5 0.75 1t

-1

-0.5

0

0.5

1

s(
t)

FIG. 1. Reduced spin variable s for a cubic lattice characterizing
the spin polarization along the z axis as a function of dimensionless
time �measured in units of T2� for the Zeeman frequencies �0

=1000 �solid line�, �0=2000 �long-dashed line�, and �0=5000
�short-dashed line�. The simulation is done for molecules with spin
S=10, with reduced initial polarization s0=0.9. The anisotropy fre-
quency is �D=20 and the resonator damping is �=10.

0 0.25 0.5 0.75 1
t

-1

-0.5

0

0.5

1

s(
t)

FIG. 2. Reduced spin polarization s as a function of dimension-
less time for a cubic lattice, with �0=2000 and �D=20, for the
resonator dampings �=1 �solid line�, �=10 �long-dashed line�, and
�=50 �short-dashed line�. The sample of molecules with spin
S=10 has the initial polarization s0=0.9.
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compared to that one for which the dipole interactions are
switched off by setting Dij

��=0.
It is interesting that switching off the dipole interactions

yields figures that are very close to those obtained by the
reduction in spin from S=10 to S=1 /2. Thus, the dashed line
in Fig. 5, where �=10, for S=10 can be repeated not by

setting the dipole tensor to zero but by reducing the spin to
S=1 /2. In Fig. 6, we show the behavior of the spin polariza-
tion for S=10 and S=1 /2 for �=1. Again, switching off the
dipole interactions for S=10 yields the dashed curve corre-
sponding to S=1 /2 with dipole interactions.

Dipole interactions are anisotropic. Therefore, their influ-
ence on the relaxation process can be different for the
samples with different shapes and with different orientations

0 0.25 0.5 0.75 1
t

-0.6

-0.2

0.2

0.6

1

s(
t)

FIG. 3. Reduced spin polarization s as a function of dimension-
less time for a cubic lattice, with �0=2000, �D=20, �=10, and S
=10, for different initial polarizations s0=0.9 �solid line�, s0=0.7
�long-dashed line�, and s0=0.5 �short-dashed line�.

0 0.25 0.5 0.75 1
t

-1

-0.5

0

0.5

1

s(
t)

FIG. 4. Spin polarization s as a function of dimensionless time
for a cubic lattice, with �0=2000, �=10, and S=10, for different
magnetic anisotropy values characterized by the anisotropy fre-
quencies �D=20 �solid line�, �D=50 �long-dashed line�, and �D

=100 �short-dashed line�.

0 0.25 0.5 0.75 1
t

-1

-0.5

0

0.5

1

s(
t)

FIG. 5. Spin polarization s as a function of dimensionless time
for a cubic lattice, with �0=2000, �D=20, �=10, and S=10, for
two different cases, which are when the dipole interactions are
present �solid line� and when they are absent �dashed line�.

0 0.25 0.5 0.75 1
t

-1

-0.5

0

0.5

1

s(
t)

FIG. 6. Spin polarization s as a function of dimensionless time
for a cubic lattice, with �0=2000, �D=20, and �=1, for different
spins S=10 �solid line� and S=1 /2 �dashed line�.
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with respect to the external magnetic field and with respect
to the resonator feedback field. To analyze these differences,
we study the spin relaxation under the same system param-
eters but for different samples. We consider the chain of
spins oriented either along the external magnetic field, i.e.,
along the z axis, or along the feedback field, that is, along the
x axis. We consider the plane of spins, which is oriented
either in the y-z plane or in the x-y plane. The results of
computer simulation for N=144 spins are presented in Fig. 7.
These results demonstrate that the maximally efficient spin
reversal happens for the chain with spins directed along the x
axis. This looks quite understandable since the x axis is the
axis of the direction of the resonator feedback field, which is
the main source of the coherent spin motion.

IV. DISCUSSION

We have accomplished computer simulations of the co-
herent spin relaxation in molecular magnets with a large
spin. The investigation is based on the microscopic model
taking into account realistic dipole spin interactions and the
single-site magnetic anisotropy. The system is prepared in a
strongly nonequilibrium state, with an external magnetic
field opposite to the sample magnetization.

The principal point of our investigation is the presence of
a resonator coupled to the sample. The latter is inserted into
a coil of an electric circuit, the natural frequency of which is
in resonance with the Zeeman frequency. Without the reso-
nator, the coherent spin motion is impossible. It is the reso-
nator feedback field, which collectivizes the spin motion,
that makes it well correlated, hence, coherent.

To realize the coherent spin relaxation, the Zeeman fre-
quency �0 has to be much larger than the anisotropy fre-
quency �D. An efficient spin reversal requires that the initial
spin polarization be sufficiently high; the higher, the better,
The typical spin reversal time � is an order smaller than the
transverse dephasing time T2, which translates into the rela-
tion ��10�2.

The role of dipole spin interactions in the presence of a
resonator is twofold, making the spin dynamics in a sample
coupled to a resonator rather different from that happening in
a sample with no resonator feedback fields.

On the one hand, dipole interactions influence the spin
motion by making the spin reversal less pronounced. For low
spins, such as S=1 /2, dipole interactions are less important
than for large spins S=10. By emphasizing the decoherence
influence of the dipolar interactions, we should keep in mind
that our simulations are performed for a finite number of
spins. The majority of our calculations are done for 125
spins. Because of the long range of the dipolar forces, in-
creasing the number of spins strengthens the decohering in-
fluence of these forces. However, all qualitative results re-
main, as we have checked by varying the number of spins
between 64 and 343. Also, presenting the results in dimen-
sionless units, as we have done, when all frequencies and
attenuation parameters are normalized by the dipolar interac-
tion strength, makes the calculated curves for the average
magnetization practically independent of the sample size. In-
creasing the number of interacting spins simply implies the
renormalization of the dimensionless quantities and does not
change their behavior represented in dimensionless units.

At the same time, increasing the number N of spins
strengthens the role of the resonator feedback field, which
makes the process of spin coherentization faster, so that the
relaxation time, which is due to the coherent spin motion,
depends on the number of spins as 1 /N.

In this way, stronger dipole interactions, on the one hand,
increase the transverse decoherence attenuation; on the other
hand, they induce a stronger coherence through the action of
the resonator feedback field, making the coherent relaxation
faster. These two opposite effects, to some extent, compen-
sate each other. Therefore, the coherent spin dynamics, oc-
curring in the presence of a resonator, does not qualitatively
change much under the variation of the spin number.

Our main concern in this paper has been the study of spin
dynamics for large spins. This is why we have done numeri-
cal simulations for S=10. We have had no aim of studying
the low-spin dynamics, such as that of spins 1/2, since this
dynamics has been considered earlier. It is only to note that
the low-spin dynamics is rather different that we show its
qualitative difference in one curve of Fig. 6.

It is worth mentioning that for large spins S�1, it is
feasible to consider the spin transitions between different
sublevels labeled by the z-projection number m=−S ,−S
+1, . . . ,S−1,S. A pair of sublevels can be treated as an ef-
fective two-level system.56,57 Then, to realize the coherent
spin relaxation, one has to tune the resonant natural fre-
quency to the transition frequency between the two chosen
levels. For high nuclear spins, this procedure was experimen-
tally realized.15,16 Hence, it can be realized for molecular
magnets in the same way.

0 0.25 0.5 0.75 1
t

-1

-0.5

0

0.5

1

s(
t)

FIG. 7. Difference in the behavior of spin relaxation for differ-
ent sample shapes and orientations under the same values �0

=2000, �D=20, �=30, and S=10. The chain of spins along the z
axis �solid line�, the chain of spins along the x axis �long-dashed
line�, the plane of spins in the y-z plane �short-dashed line�, and the
plane of spins in the x-y plane �dashed-dotted line�.
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It is important to stress that there are several principal
physical differences between the experiments with nuclear
spins, which are described in Refs. 15 and 16, and the situ-
ation considered in this paper. In these experiments,15,16 the
nuclei of 27Al inside the ruby crystal were studied. First of
all, the nuclei of 27Al possess spins I=5 /2, which are not as
large as we have considered here, dealing with S=10. Sec-
ond, in the case of 27Al, an external resonant circuit was
tuned to the central line �−1 /2,1 /2�, with a fixed transition
frequency �0�108 Hz, thus reducing the consideration to
an effective two-level system with spin 1/2, while, here, we
have always dealt with the total spin S=10 since we have
considered the resonant circuit to be tuned to the transition
between −S and S. Third, as we have shown, for our high-
spin case, the influence of dipolar interactions is essential,
while their role for an effective one-half spin system15,16 is
not of such importance. Fourth, contrary to the case of
nuclear spins, with no single-site anisotropy, the molecular
magnets, which we have studied, exhibit a quite strong mag-
netic anisotropy, fundamentally distorting spin dynamics and
making it principally different compared to the isotropic case
of nuclear spins. Fifth, for strongly polarized spin materials,
it is necessary to take into account the saturation effect mak-
ing the total transverse attenuation depend on the polariza-
tion level,1,25 as in Eq. �11�, while this effect does not play a
role for a not so strong polarization.15,16 Sixth, in
experiments,15,16 pulsing spin dynamics was analyzed when
the inversion of the spin polarization was permanently sup-
ported by a constantly applied dynamic nuclear polarization
with a rather high pumping rate, while we studied the pure
coherent spin relaxation when there is no permanent pump-
ing. Finally, here, we have studied the dependence of the
spin relaxation on the sample shape and orientation. To our
knowledge, such geometric effects have not been investi-
gated. These seven factors make the spin dynamics in our
case and in the case of Refs. 15 and 16 principally different.

While studying the geometric effects related to the sample
shape and its orientation, we have considered differently ori-
ented spin chains and planes. Under the same system param-
eters, including the number of spins and excluding the
sample shape and orientation, we have found that the most
efficient coherent spin relaxation, with the deepest spin re-
versal, happens for a chain of spins aligned with the direction
of the resonator feedback field.

The main aim of this paper is to analyze the coherent spin
relaxation under widely varying system parameters in order
to clarify the influence of the different parameters on the
coherent spin motion. This should help in choosing the opti-
mal materials for realizing such a coherent spin motion.
Nowadays, there are plenty of magnetic materials, with
widely varying properties, that could be used in experimen-
tally observing the described effects. The description of the
properties of various molecular magnets can be found in re-
view articles.5,18,44,45

As an example, we can mention the most often studied
molecular magnets made of the molecules Mn12 or Fe8, the
spins of which are S=10. For these materials, �D
�1012 s−1. At low temperatures, below the blocking tem-
perature of about 1 K, the sample can be polarized, with a
very long spin-lattice relaxation time T1�105–107 s.

Hence, �1�1 /T1 is practically negligible, �1
�10−7–10−5 s−1. The dipole spin interactions in these mate-
rials are rather strong, with �2�1010 s−1. To realize the co-
herent spin relaxation, the external magnetic field B0 should
be sufficiently strong, such that the corresponding Zeeman
frequency �0, being close to the resonator natural frequency
�, would be much larger than the anisotropy frequency �D.
For the considered case of Mn12 or Fe8, this requires the field
B0�100 T. This is a strong field but which can be experi-
mentally reached.60 Fortunately, there are many other mo-
lecular magnets with a smaller anisotropy. For instance, in
the case of nanomagnets formed by the molecules Mn6, the
spin of which is S=12, the magnetic anisotropy is much
lower, with �D�1010 s−1. Therefore, the required external
magnetic field is only about B0�1 T, which is the standard
field used in laboratory.

The existence of the magnetic anisotropy, which is typical
of many molecular magnets, hinders the feasibility of the
coherent spin relaxation. However, there are many magnetic
materials with a small anisotropy, which should not disturb
the coherent spin motion. In addition, the influence of the
magnetic anisotropy can always be suppressed by a suffi-
ciently strong external magnetic field. Fortunately, in the
world, the possibility of creating very strong magnetic fields
exists. Among the available sources,60 we may mention those
wherein magnetic fields up to 45 T �USA� and even 600 T
�Japan� can be reached.

In order to estimate the typical time of the coherent spin
relaxation, we may notice that this time is an order smaller
than T2. The spin dephasing time in molecular magnets, such
as Mn12 and Fe8, is due to dipole interactions yielding �2
�1010 s−1. Hence, T2�10−10 s. This means that the typical
time of the coherent spin relaxation in these materials is
10−11 s, which makes it an ultrafast process.

In conclusion, it is worth mentioning that for many mag-
netic molecules, the influence of hyperfine interactions from
nuclear spins could be important. These interactions result in
the appearance of an additional line broadening, which can
be included in the effective attenuation parameters, so that
the existence of the hyperfine interactions can be taken into
account by an appropriate definition of the effective attenu-
ations, as was done in Ref. 42. At the same time, for many
molecules, which are typical of the large family of magnetic
molecules, such as Mn12 and Fe8, the hyperfine interactions
are of the order of 10−3 K, which are much weaker than the
dipolar interactions, which are of the order of 0.1 K �see
details in review articles5,18,44,45�. When the hyperfine inter-
actions are 2 orders smaller than the dipolar interactions,
with a very good approximation, the former can be ne-
glected. If the former are comparable to the latter, this can be
taken into account by the corresponding definition of the line
broadening.
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