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We show that the magnetic anisotropy energy of antiferromagnetic ferrihydrite depends on the square root of
the nanoparticles’ volume, using a method based on the analysis of statistical distributions. The size distribu-
tion was obtained by transmission electron microscopy, and the anisotropy energy distributions were obtained
from ac magnetic susceptibility and magnetic relaxation. The square root dependence corresponds to random
local anisotropy, whose average is given by its variance, and can be understood in terms of the recently
proposed single phase homogeneous structure of ferrihydrite.
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I. INTRODUCTION

The relation between structural and magnetic properties is
important from the point of view of applied and fundamental
research. This relation is not straightforward in systems with
antiferromagnetic �AF� interactions and reduced dimension-
ality or size as in nanoparticles. In these systems, surface
effects and disorder play an important role and, therefore,
deviations from the superparamagnetic �SP� canonic behav-
ior are expected. Such effects change the relation between
anisotropy energy Ea, volume V, and magnetic moment �
found for typical SP systems, for which Ea and � are pro-
portional to V. This is also the case of ultrathin films, where
anisotropy energy is proportional to surface area, leading to a
perpendicular magnetization. An important contribution from
surface anisotropy is also found in SP nanoparticles with
ferromagnetic interactions, where surface atoms constitute a
relevant fraction of the total atoms.1 Another example of
nonproportionality between Ea and V is two-dimensional Co
nanostructures, where Ea was found to depend on the
perimeter.2

The deviations from the proportionality between V and �
found in AF nanoparticles are associated with the fact that, in
these systems, the net magnetic moment arises from the un-
compensated and/or canted moments, �un, that may be
present at the surface, throughout the volume, or both. The
relation between �un and V reflects the origin of the mo-
ments. In particular, Néel showed that �un is proportional to
Vq with q=1 /2 for moments randomly distributed in the vol-
ume, 1/3 for moments randomly distributed in the surface,

and 2/3 for moments distributed throughout the surface in
active planes.3 In ferritin, a protein where Fe3+ is stored as
ferrihydrite, q was estimated to be of the order of q=1 /2,4,5

or to be between 1/2 and 1/3 �Ref. 6� based on magnetization
measurements. These values were obtained either by using a
system with a given size and estimating the power relation
between the total number of ions and the equivalent uncom-
pensated number of ions,4,6 or by the usual comparison of
systems with different average sizes.5 The latter approach is
limited by the possibility of synthesizing identical systems
with different average volumes that usually covers less than
1 order of magnitude. An alternative approach that takes ad-
vantage of the size distribution is developed here. A sample
with a wide distribution can be regarded as one system con-
taining a set of different average sizes. A method reminiscent
of this approach was first used by Luis et al.1 for the deter-
mination of the origin of magnetic anisotropy in Gaussian
size-distributed Co nanoparticles. They concluded that sur-
face anisotropy has an important contribution, since the Ea
distribution is narrower than the V distribution. The effect of
size distributions on the magnetic properties was used later
by Rusponi et al.2 to study two-dimensional Co structures.
The idea was based on the fact that the shape of the in-phase
component of the ac susceptibility �� was critically depen-
dent on the chosen distribution, namely, surface, perimeter,
and perimeter plus surface distributions. The authors con-
cluded that the perimeter atoms were those relevant to the
reversal process in the Co structures, i.e., Ea depends on the
perimeter. Gilles et al.7 also tried to use susceptibility curves
to obtain the relation between �un and V in ferritin, but found
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out that their experimental curves were not very sensitive to
the particular shape of distribution nor the value of q. In a
different context, the luminosity and the size distributions of
rare-earth-doped nanoparticles were used to establish the re-
lation between luminosity and size through the size depen-
dent optical detection probability.8

In this paper, we show that lognormal distributed nano-
particle samples are particularly useful to study the relation
between a physical property and size. This is based on the
fact that when two physical quantities are related by a power
function, the power factor can readily be obtained by com-
paring the respective lognormal deviations, due to reproduc-
tive properties of the lognormal distribution function.9 This
method is of general use and can simply be applied to cases
where the size of the system determines a given physical
property by a power law relation, as in the optical properties
of quantum dots.10 In the present context of magnetism, we
apply this approach to AF ferrihydrite nanoparticles grown in
a hybrid matrix to investigate the relation between Ea and V.

II. MODEL

A. Relation between distributed quantities

As pointed out in the previous section, in AF nanopar-
ticles there is no a priori established relation between V and
�un. At the same time, Ea and V may also not be propor-
tional. One may, however, expect that generally

Ea = �Vp, �1�

where p can be different from 1. In a given situation where
the average values �V� and �Ea� of one sample are known, it
is impossible to determine � and p simultaneously. Their
determination is usually carried out by comparing samples
with different �V�, considering that � and p are constant in
all of the samples. Here, we show how to determine � and p
by using magnetic studies on a lognormal distributed sample.
The probability distribution of Ea, f�Ea�, is a function of the
V probability distribution g�V� as follows:

f�Ea� = g�V�/�dEa/dV� . �2�

If g�V� is a lognormal distribution function with parameters
sV and nV defined as

g�V� =
1

VsV
�2�

exp − � �log�V/nV��2

2sV
2 	 , �3�

then f�Ea� is given by

f�Ea� =
1

�p�Ea/���p−1�/p
1

�Ea/���1/p�sV
�2�

�exp − � 
log��Ea/���1/p�/nV��2

2sV
2 	

=
1

EasE
�2�

exp − � �log�Ea/nE��2

2sE
2 	 , �4�

with

nE = �nV
p ,

sE = psV, �5�

where sE and sV are the standard deviations of the distribu-
tion of log�Ea� and log�V�, respectively, while exp�nE� and
exp�nV� are the means of the distribution of log�Ea� and
log�V� �which are normal distributions�. From Eq. �4�, it is
evident that if V represents a lognormal distribution; all other
physical quantities that can be related to V by a power rela-
tion �Eq. �1�� are also lognormal distributed. More impor-
tantly, when comparing V and Ea, the ratio between the dis-
tribution parameters sE and sV is a direct measure of the
power p, while the relationship between nE and nV gives
information about � �Eq. �5��. Therefore, the relation be-
tween V and Ea in one sample can quantitatively be derived
knowing the lognormal distribution of V and Ea. As one
might expect, this method can be used to determine the re-
lation between any two physical quantities related by a pre-
cise power law similar to Eq. �1�.

The relations expressed in Eqs. �4� and �5� constitute a
particular case of the reproductive properties of the lognor-
mal distribution function.9 In general, if Xi are independent
random variables having lognormal distribution functions
with parameters ni and si �as defined in Eq. �3��, their product
Y =c�Xi

bi �with bi and c�0 being constants� is also lognor-
mal distributed, with sY =
bisi and nY =c
ni

bi.9 In general,
reproductive properties can be used in the analysis of an
output whose inputs are lognormal distributed, as, for in-
stance, in a quantitative analysis of human information pro-
cessing during psychophysical tasks.11 However, in this pa-
per, they are used in the context of physical properties of
nanoparticles.

Although many physical properties of interest such as size
are often lognormal distributed, many others are better char-
acterized by other functions. This is the case of the aniso-
tropy energy, which is often described by a gamma
distribution.12–15 The gamma function can be expressed by

f�x� =
b−axa−1

��a�
exp − � x

b
� , �6�

with the average of x given by ab and the variance by �
=ab2. For a�1, the gamma distribution is similar to the
lognormal function, so that the use of the latter function, in
the case where the gamma distribution is more suitable, may
be a good approximation. Therefore, the use of Eq. �5� may
also be a good approximation to find � and p. We are pres-
ently working on a method to find these values for any dis-
tribution function.16

B. Anisotropy energy distribution from ac susceptibility and
viscosity measurements

The relation between the out-of-phase component of the
ac susceptibility �� and the anisotropy energy barrier
distribution was derived in the context of spin glasses17

and ferromagnetic nanoparticles with negligible dipolar
interactions.12,18 In the latter case, �� is often expressed in
terms of a volume distribution, which is the physical source
of the observed distributions. At the same time, since Ea and
V are proportional, �� can indistinctively be expressed as a
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distribution of Ea or V.13 However, in the present case, the
relation between Ea and V cannot be a priori established, so
that further care must be taken.

In the cluster model, used for spin glasses, the material is
considered as a set of superparamagnetic clusters, where
each cluster has a relaxation time 	 and a magnetic moment,
which at a small constant applied field h0 has a value m0�	�
at t=
.17 �� can then be written as

���	,T� � −
�

2

m0�	m�
h0

f�ln 	� , �7�

where 	m is the characteristic time of measurement. For sys-
tems following the Arrhenius law Ea=kBT ln�	m /	0�, Eq. �7�
can be written as

���	,T� �
�

2

m0�Ea�
h0

kbTf�Ea� , �8�

where 	0 is a microscopic characteristic time. In Eq. �8�, it is
considered that the particles contributing to �� at a given 	
and T are mainly those with energy equal to Ea,17 and that
the parallel susceptibility is well approximated by the equi-
librium susceptibility12 �i.e., 1 / ln�	m /	0��1�. It follows
from Eq. �8� that �� is a function of Ea and, therefore, curves
taken at different frequencies should scale when plotted
against Ea. By considering a system composed of moments
m0 with a negligible dependence of m0�Ea� on temperature,
�� /T is a measure of the anisotropy energy distribution
f�Ea�. An equation similar to Eq. �8� is obtained for ferro-
magnetic nanoparticles as follows:

���	,T� �
�MS

2

6K
kBT ln�1/�f	0��f�Ea� , �9�

where MS is the saturation magnetization and K the aniso-
tropy constant.1,13

Measurements of the magnetization as a function of time
t �viscosity measurements� at temperatures below the block-
ing temperature TB are a complementary way to investigate
the anisotropy energy barrier distribution of different nano-
particle systems,1,19–21 including ferritin.22 With such mea-
surements, it is possible to determine the magnetic viscosity
S, defined as the change in magnetization with ln�t� of a
system held under a constant applied magnetic field h. As in
the case of ��, S primarily probes relaxation times and their
distribution and, in systems where the Arrhenius law holds,
M�t� can be expressed as a function of f�Ea� as follows:

M�t� = �
0




p�t,Ea�f�Ea�dEa, �10�

with

p�t,Ea� = exp�− �t/	0�exp�− Ea/kbT�� . �11�

By considering p�t ,Ea� to be a step function centered at Ea,
the critical energy approximation,19,23 S, can be written as

S�t,T� �
�M

� ln t
= kBTM0f�Ea� . �12�

A similar result is obtained in Ref. 22 in the context of anti-
ferromagnetic ferritin, where q�Ea�=M0f�Ea� is defined as
the quantity of magnetic moment per unit mass of a specific
element in the system that has an energy barrier equal to Ea.
So, in the present case of antiferromagnetic materials, the
main difference as compared to ferromagnetic materials is
that the energy distribution cannot be straightforward nor-
malized per volume but per magnetic moment. It follows
directly from Eq. �12� that S /T is proportional to the aniso-
tropy energy distribution, f�Ea�, in analogy to �� /T. In fact,
S and �� probe the same energy barrier at different time
scales.

III. EXPERIMENTAL DETAILS

Ferrihydrite is a low-crystalline AF iron oxyhydroxide
that typically forms after a rapid hydrolysis of iron at low pH
and low temperatures.24 The structure of ferrihydrite with
domain sizes ranging from 2 to 6 nm was recently described
as a single phase, based on the packing of clusters, consti-
tuted of one tetrahedrally coordinated Fe atom surrounded by
12 octahedrally coordinated Fe atoms.25 The cell dimensions
and site occupancies slightly and systematically change with
average domain size, reflecting some disorder and relaxation
effects. This picture homogeneously extends to the surface of
the domains. This model is in contrast to previous ones,
where multiple structural phases were considered,26,27 and
the existence of tetrahedrally coordinated Fe atoms was a
matter of debate.28,29

The synthesis of the ferrihydrite nanoparticles in the
organic-inorganic matrix �termed di-ureasil� has been de-
scribed elsewhere.30 The particles were precipitated by ther-
mal treatment at 80 °C after the incorporation of iron nitrate
in the matrix. The sample studied here has an iron concen-
tration of 2.1 wt% and was structurally characterized in de-
tail in Ref. 31.

Mössbauer spectra were measured at selected tempera-
tures between 4.2 and 40 K. A conventional constant-
acceleration spectrometer was used in transmission geometry
with a 57Co /Rh source, using a �-Fe foil at room tempera-
ture to calibrate isomer shifts and the velocity scale. ac and
dc magnetic measurements were performed in a Quantum
Design superconducting quantum interference device magne-
tometer.

IV. RESULTS AND DISCUSSION

A. Relationship between anisotropy energy and size

The Fourier transform high resolution transmission elec-
tron microscopy �FT-HRTEM� images and x-ray diffraction
�XRD� patterns show the existence of low-crystalline six-line
ferrihydrite nanoparticles. The nanoparticles are homoge-
neously distributed, separated from each other, and have a
globular habit. The size �diameter D� distribution can be de-
scribed by a lognormal function, with nD=4.7�0.2 nm and
deviation sD=0.43�0.05 �see Fig. 2�.31 As expected from
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the reproductive properties, a lognormal size distribution re-
sults in a lognormal volume distribution.

The in-phase ac susceptibility �� is frequency indepen-
dent above TF=30 K. The maxima of �� follow a Néel–
Arrhenius relation

	 = 	0 exp� Ea

kBT
� . �13�

The extrapolated 	0 is of the order of 10−12 s, as found in
noninteracting or very weakly interacting nanoparticles.32 As
dipolar and exchange interactions become relevant, the ex-
trapolated 	0 decreases. For instance, similar ferrihydrite/
hybrid matrix composites with more concentrated ferrihy-
drite nanoparticles �6.5% of iron in weight�, have
extrapolated 	0�10−17 s.

Another evidence of the existence of negligible interac-
tions is given by Mössbauer spectroscopy results, since in-
teracting systems have a collapsed V-shaped pattern.33–35 For
temperatures around TB, the spectra can be described by a
simple sum of a sextet distribution and a doublet and no
signs of a collapsed magnetic hyperfine field pattern. On the
other hand, such a collapse is observed in the ferrihydrite/
hybrid matrix sample with 6.5% of iron, where interactions
are expected to be relevant. At 4.2 K, the Mössbauer spec-
trum of the sample studied here �2.1% of iron� shows a sex-
tet, with a hyperfine field Bhf =48 T. This is characteristic of
ferrihydrite nanoparticles of low crystallinity, in accordance
with the FT-HRTEM and XRD results.

As described in Sec. II B, �� /T and S /T constitute a direct
measure of the anisotropy energy distribution, observed at
different time scales. In Fig. 1, we can observe that the dis-
tribution obtained from �� /T and S /T fairly superimpose,
which means that Eqs. �8� and �12� are good approximations.
Both �� /T and S /T curves are well fitted by a gamma distri-
bution function, with a=3.3 and b=53 �Fig. 1�. As expected
for a�1, the curves can also be satisfactorily fitted to a
lognormal function, with s�/T=0.61�0.02 and �� /T�
=170�4 K, and sS/T=0.65�0.02 and �S /T�=176�4 K,
respectively. We therefore consider sE=0.63�0.04 from the

average of s�/T and sS/T. Since sD=0.43�0.05 and by using
Eq. �5�, we directly obtain the power relation between Ea and
D, p�=1.5�0.2, which corresponds to p�=3 /2, so that

Ea = ��D3/2 �K� . �14�

Equation �5� can be further used to determine the propor-
tionality between Ea and D3/2 ���=18 K nm−3/2�. As ex-
pected from the above equation, we observe that, in a
�Ea /���2/3 scale, distributions of both �� /T and S /T super-
impose on the diameter distribution �Fig. 2�. This is a con-
firmation that describing � /T and S /T by a lognormal func-
tion is a good approximation for the identification of p and
�.

Equation �14� can be rewritten in terms of the particle
volume as

Ea = �V1/2. �15�

This means that the anisotropy barriers are randomly distrib-
uted in volume. In each particle, the effective value of Ea is
given by the fluctuation of local Ea. This requires that the
local Ea is a random homogeneous quantity. Such homoge-
neity is supported by the recent structure model, �Ref. 25�
since it is composed of a single phase with in-volume de-
fects, where we can expected Ea to be locally different.

From Eq. �15�, it is still possible to determine an effective
anisotropy energy per volume, Keff, that increases with de-
creasing V, following V−1/2. In the 1–10 nm D range, Keff
ranges from 4.7�105 to 1.5�104 J /m3, which are of the
order of those found in the literature.7,36 For the average size
of the sample, Keff=2.9�104 J /m3.

B. Relationship between magnetic moment and size

Unlike the case of Ea, there is no direct measurement of
the �un distribution. A way to obtain this distribution is to
model the dependence of the magnetization on the field
M�H� to a given function of �un considering a �un distribu-
tion. A function usually applied to model M�H� of nanopar-

FIG. 1. Anisotropy energy distributions obtained by the out-of-
phase component of ac susceptibility ��� /T� and viscosity �S /T�
measurements. Lognormal and gamma distribution fits to �� /T data
are shown.

FIG. 2. Diameter distribution determined by TEM as compared
to the anisotropy energy distributions obtained by �� /T and S /T in
a �Ea /���2/3 scale, showing the scaling between �Ea /���2/3 and D.
Using other powers p� such as 3, 2, or 1 gives unsatisfactory
scaling.
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ticles is the Langevin function.4–6,31 This is a good approxi-
mation when surface effects and anisotropy are negligible.
Anisotropy effects are expected to be relevant in AF nano-
particles due to coupling between �un and the AF axis.7,37 In
AF nanoparticles, anisotropy effects have been taken into
account using a Néel �Ising-type� model, considering that
�un can have only the AF axis direction.7 On the other hand,
recent simulations show that M�H� is greatly affected by
surface effects, such that a one-spin approach as considered
in the Langevin or Néel functions is a crude approximation.38

Despite this situation, we have previously modeled M�H�
by using a Langevin function31 and found that the parameter
s of the �un lognormal distribution is s�=0.9, so that
q=0.7�0.1 and �un 
 V2/3. We note that the value of q
derived here is different from that estimated in Ref. 31 by
comparing the average values of the equivalent number of
uncompensated ions and the total number of ions �q=1 /3�.
Both q values are obtained after the same fit procedure per-
formed on the same M�H� curves. The only difference is the
approach for deriving q: using average values of the uncom-
pensated moment and size or using the information about the
distribution of both. This is an example of how the use of
averages may lead to inaccurate estimations, since the pref-
actor of the power law cannot be ignored. In this scenario,
the uncompensated moments were made to lie on the parti-
cle’s surface, despite the fact that the energy barriers associ-
ated with the uncompensated moments are randomly distrib-
uted in volume.

At this point, one should highlight that the Langevin func-
tion with moment distribution may be too crude a description
of M�H� to yield a good estimation of s�, so that a different
scenario is possible: having no reliable estimation of s�, we
discuss the situation where the uncompensated moments are
associated �proportional� with the energy barriers, so that
�un 
 V1/2, i.e., they are randomly distributed in volume. In
fact, the uncompensated moments are those contributing to
the Curie-type ac susceptibility and those experiencing the
blocking phenomena associated with the onset of �� and S.
Therefore, uncompensated moments should be those relevant
in determining the relation between Ea and V. Within this

framework, V1/2 may be regarded as the equivalent volume
that contains the ferromagneticlike uncompensated moments.
Such a relation between �un and V1/2 was proposed for anti-
ferromagnetic nanoparticles by Néel3 and is consistent with
magnetization measurements performed on ferritin.4–6

V. CONCLUSIONS

In this paper, we show that distributed samples can be
used to investigate the relationship between the magnetic
anisotropy barrier Ea and the nanoparticle volume V in a
consistent manner. The relation is accessed by comparing the
parameters of the lognormal distribution of both physical
quantities. Size distribution was obtained by a transmission
electron microscopy �TEM� study and Ea was obtained by
two independent measurements: out-of-phase ac susceptibil-
ity and viscosity measurements. We have applied this method
to a ferrihydrite nanoparticle system and found the relation
between Ea and V in an antiferromagnetic material:
Ea 
 V1/2. This shows that the magnetic anisotropy barriers
are randomly distributed in volume, in accordance with re-
cent structure studies.
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