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Non-negligible higher-order exchange terms are ubiquitous in the spin Hamiltonians of a large variety of
magnetic compounds. Yet the origin of higher-order exchange has not been satisfactorily established. This
question was addressed by performing inelastic neutron scattering experiments for the magnetically diluted
compound KMn0.1Zn0.9F3. The observed excitations can be associated with transitions between the low-lying
electronic states of Mn2+ multimers which are well described by a spin Hamiltonian including bilinear and
biquadratic exchange interactions. The bilinear exchange parameter J derived from the dimer spectra exhibits
a strong temperature dependence, whereas the biquadratic exchange parameter K is independent of tempera-
ture. By minimizing the total elastic and magnetic energy of the dimer, we can express the parameter K in
terms of lattice, elastic, and magnetic properties. The good agreement between the calculated and observed
values of K indicates that the mechanism of exchange striction is the likely origin of the biquadratic interaction
in the title compound.
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I. INTRODUCTION

The magnetic properties of localized S-state systems are
usually interpreted in terms of the Heisenberg model which
is based on the bilinear spin permutation operator,1

Pij = 1
2 �1 + Si · Sj� . �1�

A more complete Hamiltonian takes permutations of more
than two spins into account. The relevant terms up to second
order �biquadratic terms� are defined by

Pij
2 = 1

4 �1 + 2Si · Sj + �Si · Sj�2� , �2a�

PijPjk = 1
4 �1 + Si · Sj + Sj · Sk + �Si · Sj��Sj · Sk�� , �2b�

PijPkl = 1
4 �1 + Si · Sj + Sk · Sl + �Si · Sj��Sk · Sl�� , �2c�

which refer to two-spin, three-spin, and four-spin interac-
tions, respectively. There is increasing evidence for the im-
portance of higher-order and multispin interactions; the most
prominent example being the cyclic exchange of type �2c� in
the high-Tc parent compound La2CuO4 which contributes
about 25% to the total exchange energy as determined by an
analysis of the spin-wave dispersion.2 Three-spin �type �2b��
interactions are relevant to model the excitation spectra of
Mn2+ trimers in CsMn0.28Mg0.72Br3.3 There is ample evi-
dence for the existence of biquadratic two-spin terms of type
�2a� in both molecular magnetic compounds4 and insulators
doped with magnetic ions.5,6

The present work addresses the origin of the biquadratic
two-spin term of type �2a�. In principle, biquadratic ex-
change can arise as an intrinsic second-order exchange term
in Anderson’s theory of superexchange.7 Anderson estimated
the ratio K /J of biquadratic to bilinear exchange to be about
1%. Alternatively, Kittel suggested that an effective biqua-
dratic term can occur as a result of exchange striction, which
is based on a balance between elastic and magnetic exchange

forces.8 Early electron paramagnetic resonance �EPR� ex-
periments performed for Mn2+ pairs in MgO and CaO gave
evidence for a ratio K /J�5%, which could be explained to a
large extent by exchange striction, but the additional pres-
ence of intrinsic higher-order exchange could not be ruled
out.5 A more recent study of Mn2+ pairs in CsMgBr3 with
K /J�0.5% concluded that exchange striction is the major
contribution to the biquadratic exchange; however, intrinsic
higher-order exchange could not be completely excluded due
to some approximations used for the calculation of the elastic
properties.6 An ideal candidate to discriminate between in-
trinsic higher-order exchange and exchange striction would
be a compound with an extremely small ratio K /J. This con-
dition is fulfilled, e.g., for the compound KMnxZn1−xF3 with
K /J�0.1%.

In this paper, we describe the results of an inelastic neu-
tron scattering study of the spin-excitation spectra of isolated
multimers of Mn2+ ions randomly substituted for 10% of the
nonmagnetic Zn2+ ions in the KZnF3 perovskite lattice. The
experimental procedure is described in Sec. II, followed in
Sec. III by a summary of the spin Hamiltonians, energy lev-
els, neutron cross sections, and cluster probabilities for Mn2+

multimers. The observed energy spectra gave evidence for
scattering from Mn2+ dimers up to Mn2+ pentamers as de-
scribed in Sec. IV, which includes a detailed analysis of the
Mn2+ dimer excitations. The magnetoelastic effects are
worked out in Sec. V, which provides strong evidence that
exchange striction can quantitatively account for the ob-
served biquadratic exchange interaction in KMn0.1Zn0.9F3.

II. EXPERIMENT

A sample of 10 g KMn0.1Zn0.9F3 was prepared from stoi-
chiometric amounts of KHF2, ZnO, and MnCO3. The salts
were heated twice with 20 ml of concentrated aqueous HF
acid in a teflon beaker and evaporated to dryness. The ob-
tained powder was transferred into a glassy carbon crucible
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and fluorinated with an Ar /HF gas mixture at 600 °C for
20 h. Finally, the product was molten up at 920 °C for 8 h
and crystallized by cooling to room temperature. The melt
was sealed under vacuum in a welded platinum crucible. The
purity of the light pink product was checked by powder x-ray
diffraction. KMn0.1Zn0.9F3 crystallizes in the perovskite
structure, space group Pm3m, with a lattice parameter a
=4.0719�2� Å. This is in good agreement with a linear inter-
polation of the lattice parameter between the pure com-
pounds KZnF3 and KMnF3 which are reported as a
=4.0611�9� Å �Ref. 9� and a=4.186 Å,10 respectively.

The inelastic neutron scattering experiments were carried
out with use of the high-resolution time-of-flight spectrom-
eter FOCUS at the spallation neutron source SINQ at PSI
Villigen. The measurements were performed with incoming
neutron energies of 4.42 and 2.27 meV, giving energy reso-
lutions at the elastic position of 0.181 and 0.047 meV, re-
spectively. According to simulations �using the time-focusing
principle�, the energy resolutions are gradually improving
with increasing energy transfer on the energy-loss side of the
spectrum, typically by 25% at energy transfers corresponding
to half the incoming neutron energy. The scattered neutrons
were detected by an array of 3He counters covering a large
range of scattering angles 10° ���130°. The sample was
enclosed in an Al cylinder �12 mm diameter, 45 mm height�
and placed into a He cryostat. Energy spectra were taken at
T=1.5, 20, 50, 100, 150, and 200 K. Additional experiments
were performed for the empty container as well as for vana-
dium to allow the correction of the raw data with respect to
background, detector efficiency, absorption, and detailed bal-
ance effects according to standard procedures.

III. THEORETICAL BACKGROUND

A. Spin Hamiltonian

For a dimer, the spin Hamiltonian, up to second order in
the spin operators, can be written as

HD = − 2JS1 · S2 − KD�S1 · S2�2, �3�

where J and KD are the bilinear and biquadratic exchange
parameters, respectively. Equation �3� is diagonal in the basis
�S�, where S denotes the total dimer spin S=S1+S2, with 0
�S�2Si. The eigenvalues are given by

E�S� = − J� − 1
4KD�2, �4�

where �=S�S+1�−2Si�Si+1�. The energy level sequence as
well as the energy eigenvalues E�S� for Mn2+ ions �Si=

5
2 � are

shown in Fig. 1 for antiferromagnetic exchange J�0. For
KD=0, the energy splitting pattern satisfies the Landé inter-
val rule E�S�−E�S−1�=−2JS.

For a trimer, the spin Hamiltonian is described by

HT = − 2�J�S1 · S2 + S2 · S3� + J�S1 · S3�

− KT��S1 · S2�2 + �S2 · S3�2�

− L��S1 · S2��S2 · S3� + �S3 · S2��S2 · S1�� , �5�

where J� and L denote the bilinear next-nearest-neighbor and
biquadratic three-spin exchange parameters, respectively. We
use the coupling scheme S13=S1+S3 and S=S1+S2+S3,
with 0�S13�2Si and �S13−Si��S� �S13+Si�, respectively.
The trimer states are therefore defined by the wave functions
�S13,S�. For KT�0 and L�0, Hamiltonian �5� is not diago-
nal. Figure 1 shows the resulting low-energy part of the split-
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FIG. 1. Energy level splittings for dimers and trimers of Mn2+ ions. The transitions allowed by the selection rules �Eq. �8�� are indicated
by arrows.
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ting pattern as well as the energy eigenvalues E�S13,S� for
Mn2+ ions �Si=

5
2 � and J�0.

For clusters with four and more magnetic ions, the diago-
nalization of the spin Hamiltonian progressively becomes
cumbersome, but the total spin S remains a good quantum
number. We refer to Fig. 2 of Ref. 11 for the low-energy
parts of the splitting patterns of Mn2+ tetramers, pentamers,
and hexamers.

EPR experiments performed for exchange-coupled pairs
of Mn2+ ions in KZnF3 �Ref. 12� gave evidence for the ex-
istence of a single-ion anisotropy term of the form

Han = D�
i

�Si
Z�2, �6�

which we eventually have to add to spin Hamiltonians �3�
and �5�. The anisotropy term has the effect of splitting the
spin states �S� into the states �S , �M� where the additional
spin quantum number M is defined by −S�M �S.

B. Neutron cross section

For spin dimers and polycrystalline material, the neutron
cross section for a transition from the initial state �S� to the
final state �S�� is defined by13

d2�

d�d	
= 2C	1 + �− 1�
Ssin�QR�

QR

��S��T̂�S��2, �7a�

which corresponds to the sum of the transitions
�S ,M�⇒ �S� ,M�� with 
M = +1, 
M =0, and 
M =−1

 d2�

d�d	



M=0
= C	2

3
+ �− 1�
S�2 sin�QR�

Q3R3 −
2 cos�QR�

Q2R2 �
���S��T̂�S��2
 , �7b�

 d2�

d�d	



M=+1
= C	2

3
− �− 1�
S� sin�QR�

Q3 R3 −
cos�QR�

Q2R2

−
sin�QR�

QR
���S��T̂�S��2
 , �7c�

with

C = N� �e2

mec
2�2

S,M
k�

k
F2�Q�

�exp�− 2W�Q�����	 + E�S,M� − E�S�,M��� . �7d�

The cross section for 
M =−1 is identical to Eq. �7c�. N is
the total number of spin dimers in the sample, S,M is the
population of the initial state �S ,M� governed by the Boltz-
mann statistics, k and k� are the wave numbers of the incom-
ing and scattered neutrons, respectively, Q=k−k� is the
scattering vector, F�Q� is the magnetic form factor,
exp�−2W�Q�� is the Debye–Waller factor, �	 is the energy
transfer, E�S ,M� and E�S� ,M�� are the energies of the initial
and final states, respectively, R is the distance between the

two spins, and �S��T̂�S� is the reduced transition matrix ele-
ment defined in Ref. 14. The remaining symbols have their

usual meaning. The transition matrix elements carry essential
information to derive the selection rules for spin dimers,


S = S − S� = 0,�1, 
M = M − M� = 0,�1. �8�

Formulas for the neutron cross section of spin trimers and
spin tetramers were given in Refs. 15 and 4, respectively. For
spin trimers, the condition 
S13=0 ,�1 has to be added to the
selection rules �Eq. �8��. The allowed transitions for Mn2+

dimers and trimers are indicated by arrows in Fig. 1. We
realize that all excitation energies are integer multiples of J
�for J�=KD=KT=L=0� which is convenient to identify the
observed transitions.

C. Cluster probabilities

Isolated clusters of Mn2+ ions in KMnxZn1−xF3 simply
occur because of the random distribution of Mn2+ and Zn2+

ions over the sites of the cubic perovskite lattice. The cluster
probabilities for monomers, dimers, and trimers are given by

pM = �1 − x�6, pD = 6x�1 − x�10,

pT = 9x2�1 − x�14 + 24x2�1 − x�13, �9�

respectively, where the first and second terms of pT refer to
trimers with bond angles of 180° and 90°, respectively. We
chose the Mn2+ concentration x=0.1 in order to maximize
the number of dimers as well as to be well below the perco-
lation limit for the existence of long-range magnetic order,
which is xp=0.312 under the assumption that the Mn2+ ions
essentially interact with nearest-neighbor exchange.16 For x
=0.1, we find pM=0.531, pD=0.209, and pT=0.083. We rec-
ognize that with increasing cluster size, the decrease in the
cluster probabilities of a three-dimensional compound such
as KMnxZn1−xF3 is much less pronounced than for one-
dimensional compounds such as CsMnxMg1−xBr3,6 so that
the experimental data anticipated for dimers are likely to be
contaminated by contributions from unwanted larger clus-
ters.

IV. RESULTS AND DATA ANALYSIS

Energy spectra of neutrons scattered from KMn0.1Zn0.9F3
at T=20 K and T=100 K are shown in Fig. 2. We can easily
attribute the well-defined inelastic peaks to particular multi-
mer transitions according to the energy splitting patterns of
Fig. 1. The dimer transitions denoted by D2J, D4J, D6J, and
D8J nicely satisfy the Landé interval rule predicted in Eq. �4�
with coupling parameters J�−0.4 meV and �KD�� �J�. The
peaks denoted by T3J, T5J, and T7J can then be identified as
trimer transitions. Furthermore, there is evidence for unre-
solved scattering at energies of approximately 5.5, 7.5, and
6.5 J which according to Fig. 2 of Ref. 11 can be attributed
to tetramer �Te5.5 J and Te7.5 J� and pentamer �P6.5 J� transi-
tions, respectively. Phonon scattering can be excluded, since
the lowest peak of the phonon density of states lies at about
8 meV �Ref. 17� which is far outside the considered energy
range. A Gaussian least-squares fit was applied to the ob-
served energy spectra to yield the positions and intensities of
the peaks for a more detailed analysis. The linewidths of all
the peaks were kept fixed slightly above the instrumental
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energy resolution in order to account for level splittings due
to the single-ion anisotropy as well as for overlap of ground-
state and excited-state trimer transitions. The results for the
dimer and trimer transitions are listed in Tables I and II,
respectively.

With increasing temperature, the peak positions margin-
ally move to lower energies. Furthermore, we observe a re-

distribution of the spectral weight of all the peaks in agree-
ment with the Boltzmann population factor. The peak
identification indicated in Fig. 2 was confirmed by detailed
calculations of the T and Q dependences of the intensities
according to the dimer and trimer neutron cross sections
weighted by the corresponding cluster probabilities.
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FIG. 2. Energy spectra of neutrons scattered from KMn0.1Zn0.9F3 at T=20 and 100 K. The incoming neutron energy was 4.42 meV. The
positions of the multimer transitions are indicated by arrows �D=dimer, T=trimer, Te=tetramer, P=pentamer�. The lines are the results of
a least-squares fitting procedure explained in the text.

TABLE I. Temperature dependence of dimer excitation energies and model parameters �J ,KD� of
KMn0.1Zn0.9F3.

T
�K�

D2J

�meV�
D4J

�meV�
D6J

�meV�
D8J

�meV�
J

�meV�
KD

��eV�

20 Obs. 0.817�2� 1.604�3� 2.408�4� 3.198�13�
Calc. 0.808 1.612 2.408 3.193 −0.3987�26� 0.63�51�

50 Obs. 0.812�2� 1.596�2� 2.396�3� 3.171�6�
Calc. 0.803 1.603 2.393 3.171 −0.3958�18� 0.72�38�

100 Obs. 0.802�3� 1.582�2� 2.379�3� 3.148�4�
Calc. 0.796 1.588 2.374 3.150 −0.3933�12� 0.54�29�

150 Obs. 0.796�3� 1.562�3� 2.338�5� 3.094�5�
Calc. 0.786 1.568 2.338 3.093 −0.3859�15� 0.89�33�

200 Obs. 0.779�6� 1.538�4� 2.303�4� 3.039�8�
Calc. 0.774 1.543 2.300 3.041 −0.3794�9� 0.93�22�
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Figure 3 displays data taken at low energies with im-
proved energy resolution. There is an additional line denoted
by Te0.95 J which can be attributed to the lowest tetramer
ground-state transition.11 Moreover, the lowest dimer transi-
tion �D2J� exhibits a highly asymmetric shape. Obviously,
the single-ion anisotropy splits the excited triplet state �S
=1� into a doublet state �M = �1� and a singlet state �M
=0�. The corresponding transition matrix elements have the
approximate ratio of 2:1. A Gaussian least-squares fit results
in a doublet-singlet separation of 0.07�1� meV, which can be
rationalized by an anisotropy parameter D=9�2� �eV ac-
cording to Eq. �6�. Figure 4 confirms this interpretation
through the Q dependence of the intensities which nicely
follow the predictions of cross-section formulas �7b� and
�7c�.

We analyzed the observed dimer transitions according to
Eq. �4� which directly yields the temperature dependence of
the bilinear and biquadratic exchange parameters J and KD,
respectively. The results are listed in Table I and shown in
Fig. 5 as a function of the temperature-induced increase in
the intradimer distance R�T� with respect to R �20 K�.18 The
bilinear exchange parameter J follows a linear relationship
with dJ /dR=1.63�14� meV /Å, whereas the biquadratic ex-
change parameter essentially remains constant at the average
value K=0.79�14� �eV.

V. MAGNETOELASTIC EFFECTS

A. Dimers

The total energy of an isolated pair of magnetic ions cor-
responds to the sum of the elastic energy Wel and the mag-
netic energy Wex due to the exchange coupling J. The elastic
energy density for cubic symmetry reads

uel = 1
2c11�exx

2 + eyy
2 + ezz

2 � + 1
2c44�eyz

2 + ezx
2 + exy

2 �

+ c12�eyyezz + ezzexx + exxeyy� , �10�

where the cik and e�� denote the elastic constants and strain
components, respectively. The exchange coupling gives rise
to a small deformation �contraction or dilatation� along the
dimer bond axis, so that the local symmetry changes from
cubic to tetragonal. For a tetragonal deformation �along the z
axis�, we have eyz=ezx=exy =0. Furthermore, assuming that
the tetragonal deformation does not result in a volume
change, we have −exx=−eyy = 1

2ezz= 1
2 �

R−R0

R0
�, where R0 is the

intradimer distance in the absence of the exchange interac-
tion. Equation �10� then reduces to

uel =
3

4
�c11 − c12��R − R0

R0
�2

. �11�

The total energy of a dimer is then given by

TABLE II. Temperature dependence of trimer excitation energies for KMn0.1Zn0.9F3.

T
�K�

T3J

�meV�
T5J

�meV�
T7J

�meV�
J

�meV�
KT=LT

��eV�

20 Obs. 2.000�8� 2.805�7�
Calc. 1.209�18� 2.021�35� 2.828�49� −0.3987�26� 0.42�34�

50 Obs. 1.190�15� 1.990�8� 2.795�13�
Calc. 1.201�13� 2.009�25� 2.810�34� −0.3958�18� 0.48�26�

100 Obs. 1.188�12� 1.973�8� 2.756�9�
Calc. 1.190�10� 1.989�18� 2.781�24� −0.3933�12� 0.36�20�

150 Obs. 1.172�8� 1.968�7� 2.716�6�
Calc. 1.175�11� 1.966�21� 2.746�28� −0.3859�15� 0.59�22�

200 Obs. 1.164�10� 1.929�11� 2.682�11�
Calc. 1.156�7� 1.935�14� 2.703�17� −0.3794�9� 0.62�15�
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FIG. 3. Energy spectra of neutrons scattered from KMn0.1Zn0.9F3 at T=1.5 K. The incoming neutron energy was 2.27 meV. The arrows
and lines are as in Fig. 2.
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WD =
3

4
v�c11 − c12��R − R0

R0
�2

− 2J�R�S1 · S2

�
3

4
v�c11 − c12��R − R0

R0
�2

− 2�J�R0� + � dJ

dR
�

R0

�R − R0��S1 · S2, �12�

where J�R� is expanded up to the first order. Here, v is the
volume element occupied by the dimer. The distance R cor-
responding to the minimal total energy is obtained from
dWD /dR=0, resulting in

R − R0 =
4R0

2

3v�c11 − c12�
� dJ

dR
�

R0

S1 · S2. �13�

Substituting R−R0 back to Eq. �12� yields

WD = − 2J�R0�S1 · S2 −
4R0

2

3v�c11 − c12�
� dJ

dR
�

R0

2

�S1 · S2�2.

�14�

By setting v=2R0
3 and R0=a and comparing Eqs. �3� and

�14�, we can express the biquadratic exchange parameter KD
in terms of lattice, elastic, and magnetic properties,

KD =
2

3a�c11 − c12�
� dJ

dR
�2

. �15�

For KMn0.1Zn0.9F3, the parameters cik are not known; thus,
we interpolate between the values published for KZnF3 and
KMnF3. With c11=133 GPa, c12=51 GPa �Ref. 19 and refer-
ences therein�, a=4.0719�2� Å, and dJ

dR =1.63�14� meV /Å
from Fig. 5, we find KD=0.85�13� �eV which is in excellent
agreement with KD=0.79�14� �eV determined from the
present analysis of the dimer excitations. We therefore con-
clude that the presence of biquadratic exchange in
KMn0.1Zn0.9F3 is likely to be caused by the mechanism of
exchange striction.

In the evaluation of the elastic energy density for tetrag-
onal symmetry, we made the assumption of zero volume
change which, however, is not a crucial condition. If we
consider only a local, longitudinal distortion ezz of the unit
cell, i.e., setting exx=eyy =0, the elastic energy density is sim-
plified to

uel =
1

2
c11�R − R0

R0
�2

. �16�

The minimization procedure as outlined above then yields

KD =
1

ac11
� dJ

dR
�2

. �17�

By inserting the parameters for KMn0.1Zn0.9F3, we find KD
=0.78�13� �eV, which is in good agreement with KD deter-
mined from Eq. �15�.

B. Trimers

In close analogy to the procedure outlined in Sec. V A,
the total energy of a trimer is given by

WT �
3

4
v�c11 − c12��R − R0

R0
�2

− 2�J�R0� + � dJ

dR
�

R0

�R − R0���S1 · S2 + S2 · S3� .

�18�

By setting v=3R0
3, we find
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FIG. 5. Dependences of the bilinear and biquadratic exchange
parameters J and KD �listed in Table I� on the variation of the
intradimer distance R with temperature. The lines are the results of
a linear least-squares fit.
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WT = − 2J�R0��S1 · S2 + S2 · S3�

−
4

9a�c11 − c12�
� dJ

dR
�

R0

2

�S1 · S2 + S2 · S3�2. �19�

A comparison of Eqs. �5�, �15�, and �19� yields

KT = L =
4

9a�c11 − c12�
� dJ

dR
�2

=
2

3
KD. �20�

We calculated the energies of the trimer transitions from the
parameters J and KD obtained from the dimer transitions and
using relation �20� for KT and L. The results are listed in
Table II. Within experimental error, there is good agreement
between the observed and calculated trimer energies, which
means that the size of the next-nearest-neighbor exchange
parameter is typically �J���1–2 �eV. Furthermore, the
good agreement reinforces our conclusion for KD that ex-
change striction is also likely the origin of the biquadratic
two-spin and three-spin exchange terms of Hamiltonian �5�.

VI. CONCLUDING REMARKS

By analyzing the inelastic neutron scattering data ob-
served for KMn0.1Zn0.9F3, we were able to determine the
temperature dependence of the exchange coupling of Mn2+

dimers, resulting in precise values of the bilinear and biqua-
dratic exchange parameters J and KD, respectively. We like
to mention that biquadratic exchange terms cannot be di-
rectly derived from measurements of the spin-wave disper-
sion, since the bilinear and biquadratic coupling parameters J
and KD are combined as a joint prefactor of the wave-vector
dependence.20 Our value of J=−0.399�3� meV at T=20 K
is in good agreement with J=−0.414�17� meV and J
=−0.405�8� meV derived for Mn2+ dimers and trimers, re-
spectively, from neutron scattering investigations performed
for a single crystal of KMn0.1Zn0.9F3 at T=4.3 K �Ref. 21� as

well as with J=−0.43�3� meV derived from EPR experi-
ments of Mn2+ doped KZnF3 at T=4.2 K.12 The analysis of
the spin-wave dispersion measured for KMnF3 at T=4.2 K
gave J=−0.328�4� meV and J�=−9�2� �eV.22 The much
lower size of J is attributable to the different lattice con-
stants, but the large size of J� is incompatible with the trimer
energies determined in the present work. In the present work,
the anisotropy parameter D=9�2� �eV determined has about
half the size of �D�=17 �eV derived from EPR
measurements.12

Our results are in remarkable qualitative agreement with
a recent study performed for Mn2+ pairs in the one-
dimensional paramagnetic compound CsMn0.28Mg0.72Br3.6

More specifically, the results gave evidence for a strongly
temperature- and pressure-dependent bilinear exchange
parameter J and a nearly temperature- and pressure-
independent biquadratic exchange parameter KD, which
could be rationalized to a large extent in terms of exchange
striction. Moreover, a detailed study of Mn2+ trimers in
CsMn0.28Mg0.72Br3 resulted in explicit values for the two-
and three-spin biquadratic exchange parameters, namely,
KT=8.4�9� �eV and L=6.1�6� �eV, respectively.3 Within
experimental error, KT and L are roughly equal as predicted
by Eq. �20� which adds further weight to support the ex-
change striction scenario. The results of the present work
carried out for a three-dimensional paramagnet allow us now
to generalize the statement that exchange striction is presum-
ably the dominating mechanism for the presence of biqua-
dratic exchange terms in the spin Hamiltonian of any mag-
netic insulator.
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