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The orbital contribution to the magnetic moment of Gd3+ is zero, and the anisotropy is weak and dominated
by the classical dipole interaction in most Gd systems. At the ordering wave vector q��0.55,0 ,0� in
GdNi2B2C, the transverse b components are more strongly coupled than the a and c components, and the
magnetic moments order in a linearly polarized sinusoidal wave just below TN. In this situation, the fourth-
order term in the Landau expansion favors the double-q ordering, which ordering is found to explain the
magnetic phase diagram and the “magnetoelastic paradox.”
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I. INTRODUCTION

The ground state of the Gd3+ ion is a pure S multiplet, J
=S=7 /2 and g=2, and, generally, the magnetic anisotropy of
a Gd compound is an order of magnitude smaller than that in
compounds with other rare-earth ions. The separation be-
tween Hund’s ground state and the higher multiplets is large,
and the single-ion anisotropy due to the crystal-field mixing
of multiplets may probably be neglected compared to the
anisotropy deriving from spin-orbit modifications of the ex-
change interaction between neighboring spins. Although this
exchange anisotropy is a possibility, the indications are that
the anisotropy in many Gd compounds is dominated by the
classical dipole-dipole interaction.1,2 In this case, the mag-
netic Hamiltonian is the sum of a Heisenberg exchange term
and the classical dipole interaction,

H = −
1

2�
ij

JijJi · J j −
1

2�
ij

�
��

JDDij
��Ji�Jj�. �1�

The dipole coupling parameter is JD= �g�B�2N, where N is
the number of Gd ions per unit volume and

Dij
�� =

3�ri� − rj���ri� − rj�� − �ri − r j�2���

N�ri − r j�5
. �2�

GdNi2B2C belongs to the series of rare-earth borocarbides
RNi2B2C. The interest for this series of intermetallic com-
pounds stems from the unusual property that four of the
members �R=Tm,Er,Ho,Dy� show coexistence of super-
conductivity and antiferromagnetic ordering.3,4 Neutron-
diffraction, nuclear magnetic resonance, and other experi-
mental studies of the borocarbides suggest the presence of
antiferromagnetic fluctuations related to the 3d electrons of
the Ni ions, but the time-averaged moments on the Ni sites
are found to be vanishing small.3–6 The absence of static Ni
moments implies that the 3d electrons only affect the mag-
netic properties of these compounds in an indirect way via
their influence on the Ruderman–Kittel–Kasuya–Yoshida
�RKKY� interaction. In other words, with respect to the mag-
netic properties, the borocarbides may be characterized as
being pure 4f systems.

Although GdNi2B2C does not become superconducting, it
is of particular importance to understand the magnetic prop-
erties of this compound since it does not share the extra
complexities deriving from the strong anisotropy effects de-
tected in the other heavy-rare-earth borocarbides. Important
examples are the commensurable lock-in effects in the Er
compound7,8 and the additional quadrupolar ordering of Tm
borocarbide that has recently been discovered.9 The crystal
structure of the borocarbides is tetragonal �I4 /mmm� and the
rare-earth ions are placed on a body-centered lattice. In the
Gd case, a=3.574 Å and c=10.366 Å, implying JD
=3.243 �eV. The Néel temperature of GdNi2B2C is TN
=19.4 K. The magnetic ordering has been studied by mag-
netic x-ray scattering on single crystals10 and by hot-neutron
diffraction of a polycrystalline sample.11 The ordering wave
vector q��0.55,0 ,0� �in reciprocal lattice units� is about the
same as in the Er and Tb borocarbides.5 The most important
interaction between the localized rare-earth moments is the
indirect RKKY coupling mediated by the conduction elec-
trons, and band-structure calculations indicate that nesting
effects are important close to �0.55,0,0�.12 From the x-ray
experiments,10 it is concluded that the polarization of the
ordered moments in GdNi2B2C is linear between TN
=19.4 K and TR=13.6 K, with the moments being along the
transverse b axis. Below TR, the moments develop a compo-
nent along the c axis. The diffraction experiments do not
determine the phase angle difference between the two com-
ponents, but the model calculations presented below leave no
doubt that the polarization is elliptical.

The phase diagram in the presence of a field applied along
the a or along the c axis has been determined by El Mas-
salami et al.13 from observations of kinks in the magnetiza-
tion or magnetostriction measurements. The results obtained,
when applying the field along the c axis, show the expected
two phase lines, one at the field at which the polarization
changes between an elliptical and a linear one and one be-
tween the antiferromagnetic and the paramagnetic phase. The
a-axis measurements showed an additional low-field phase
line, which El Massalami et al. interpreted as a domain
alignment transition. The star of four equivalent ordering
wave vectors ��0.55,0 ,0� and �0, �0.55,0� implies the
presence of two domains, if the ordering is assumed to be
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single q. The domain in which the moments are perpendicu-
lar to the a-axis field is then favored by the field.

Because of the weakness of the anisotropy, the magneto-
strictive strains observed in Gd compounds mostly derive
from the exchange interaction,14 and the deformations in-
duced by the magnetic ordering are only of the order of 10−4

in GdNi2B2C. As discussed in Ref. 11, the strain dependence
of the RKKY interaction may lead to symmetry preserving �
strains but also to an orthorhombic distortion of the tetrago-
nal plane,

�a − �b �
1

N
�

i

�J�ri� · J�ri + a� − J�ri� · J�ri + b�� , �3�

where the correlation function is nonzero in the antiferro-
magnetic phase but vanishes for a para- or ferromagnet. In
general, the symmetry-breaking zero-field distortions antici-
pated in antiferromagnetic Gd compounds are found to be
vanishing small compared to symmetry preserving � strains,
which is named the “magnetoelastic paradox.”11 However, in
the present system, the orthorhombic distortion is occurring,
not at zero field but in the presence of an applied field along
the a axis larger than the “domain-alignment field.” Just
above this field, the observed distortion is at its maximum,
and it is gradually reduced as the paramagnetic phase is ap-
proached. In Ref. 11, it was shown that the relative variation
of �a−�b as a function of the a-axis field is well accounted
for by the correlation function in Eq. �3� at fields larger than
the “domain-alignment field,” but the reversible vanishing of
the distortion in the zero-field limit was left unexplained.

II. MEAN-FIELD ANALYSIS AND THE LANDAU
EXPANSION

In the mean-field approximation, the Hamiltonian in Eq.
�1� leads to a free energy, which to fourth order in the mag-
netization is2

F = − NkBT ln�2J + 1� −
1

2�
ij

�
��

Jij
���Ji���Jj�� + �

i

�A��Ji��2

+ B��Ji��4 − g�BH · �Ji�	 , �4�

where Jij
��
Jij +JDDij

�� and

A =
3kBT

2J�J + 1�
, B =

9

20

J2 + J + 1
2

J3�J + 1�3kBT . �5�

The additional magnetoelastic contributions are of the order
of 10−3 meV per Gd ion and thus negligible in comparison
with the terms in Eq. �4�. The maximum in the Fourier trans-
form J���q� of the two-ion interaction Jij

�� occurs at q1
= �0.55,0 ,0� and q2= �0,0.55,0�, at which vectors the inter-
action is diagonal. All three diagonal elements are different
from each other because of the classical dipole coupling. The
longitudinal component is generally suppressed �most
strongly at long wavelengths� and because c	a, the cc com-
ponent is smaller than the transverse one within the a-b
plane. Hence, the maximum value is Jbb�q1�=Jaa�q2�. In
this situation, the free-energy expression predicts a sinu-
soidal ordering of the b or the a component of �Ji� at the

wave vector q1 or q2, respectively, when the temperature is
slightly below TN=J�J+1�Jbb�q1� / �3kB�. Assuming a super-
position of the two possibilities,

�Ji� = �ma cos�q2 · ri + 
a�,mb cos�q1 · ri + 
b�,0� , �6�

the free energy per Gd ion at zero field is found to be

F

N
= − kBT ln�2J + 1� +

1

4
�2A − Jbb�q1�	�ma

2 + mb
2�

+ B�3

8
�ma

2 + mb
2�2 −

1

4
ma

2mb
2� . �7�

Written in this way, the last negative term of fourth order
immediately shows that the free energy is minimized when
ma=mb. The double-q structure leads effectively to a smaller
site variation of ��Ji�� compared to the single-q case. The
most effective minimization of ��Ji�� is achieved by the helix.
If the a-axis component in Eq. �6� is being replaced by a
c-axis component equal to mb sin�q1 ·ri+
b�, the last nega-
tive term in Eq. �7� becomes twice as large, but this helical
ordering is suppressed close to TN by the second-order terms
since Jcc�q1��Jbb�q1� in the present system.

The extra entropy gain of the helix compared to the lin-
early polarized ordering is well established,2 but it is less
commonly known that the double-q structure of two linearly
polarized ordered waves is able to reduce the site variation of
��Ji��. The present case shares similarities with the cubic
compound CeAl2, where the double-q structure is also found
to be stable.15 The reduction of the free energy of the double-
q structure depends on the angle between the two polariza-
tion vectors. If this angle is �, then the fourth-order term in
Eq. �7�, −B 1

4ma
2mb

2, is being replaced by B�cos2 �− 1
4 �ma

2mb
2.

This fourth-order term vanishes in the case of dhcp Nd
metal, where the angle is 2


3 , but the term nevertheless sta-
bilizes a double-q ordering of Nd less than 1 K below the
single-q transition, in which structure the two polarization
vectors are rotated an angle of probably up to about 24°
toward each other. This circumstance was first realized by
Forgan16 �see also Ref. 21 and Sec. 2.1.6 of Ref. 2�.

The Landau expansion in Eq. �4� may be used for estimat-
ing the critical a-axis fields close to TN,

H�1q� = 3H�2q� = �5

3

�J + 1�2

J2 + J + 1
2

TN − T

TN
�1/2

H�0� , �8�

where H�0� is the critical �internal� a-axis field at zero tem-
perature,

g�BH�0� = J�Jbb�q1� − Jaa�0�	 . �9�

The double-q structure disappears at the field H�2q�, above
which the single-q structure, with mb being nonzero, stays
stable up to the three times larger field H�1q�.

At lower temperatures, the situation becomes more com-
plex and, instead of making further use of the Landau expan-
sion, we have performed a numerical analysis of a mean-field
model for GdNi2B2C. Part of the calculations were done us-
ing the MCPHASE17 program package.18–20 We list some tech-
nical details:
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Most of the calculations were done on, effectively, a cen-
tered square lattice by assuming the commensurable period
to consist of 9�9�2 uniform atomic chains perpendicular
to the a-b plane corresponding to �q1 � = 5

9 , but �q1 � = 6
11 has

also been used at low fields and temperatures.
The exchange parameters of the final fit are given in

Table I, and Fig. 1 shows the Fourier transform of the total
two-ion interaction tensor, when q is along �100	. In this
case, only the diagonal components are nonzero: J���q�
=J�q�+JDD���q� with �=a, b, or c.

The effective interaction parameters of the classical dipole
coupling between the sites of a commensurable period may
be calculated accurately by summing over tens of periods in
the a-b plane and hundreds of layers along the c axis. The
convergence is extremely slow in the long wavelength limit
but only the values at q
0 need to be corrected because
only a discrete number of Fourier components are involved
in the case of a commensurable structure. The classical con-
tribution is of the order of 10% of the exchange interaction
leading to significant differences between the three compo-
nents of J���q� at the ordering wave vector q1, as shown in
Fig. 1.

In all the calculations, the sample was assumed to be a
sphere, and including the demagnetization field in the
Zeeman term, then H in Eq. �4� is the internal field. With
this choice,2 the transverse components, Jbb��q ,0 ,0�	

and Jcc��q ,0 ,0�	 in Fig. 1, behave smoothly in the
long wavelength limit, whereas the longitudinal one
�Jaa��q ,0 ,0�	�q→0=Jaa�0�−4
JD.

For a certain starting configuration, the effective mean
field acting on each site of the commensurable period is
calculated, and the corresponding moment �Ji� determined
by the Brillouin function. The calculation is then carried
through with the new configuration of moments, which
whole procedure is repeated until self-consistency is
attained.

III. THEORETICAL RESULTS AND COMPARISONS
WITH EXPERIMENTS

The calculated phase diagrams obtained, when applying a
field along �100	 and along �001	, are compared with the
experimental results of El Massalami et al.13 in Fig. 2. Just
below TN, the a-axis phase diagram is in accordance with the
results derived from the Landau expansion. As the tempera-
ture is reduced, the maximum length of the linearly polarized
oscillating moments approaches the saturation value and
higher-order odd harmonics are developed. Below TR
�13.6 K, it becomes energetically favorable to reduce these

TABLE I. The exchange coupling parameters used in the model
calculations of GdNi2B2C. n is the number of equivalent neighbors.

rij n �rij� �Å� Jij ��eV�

�1, 0, 0� 4 3.57 49.9

�1, 1, 0� 4 5.05 −71.7

� 1
2 , 1

2 , 1
2 � 8 5.77 −21.6

� 3
2 , 1

2 , 1
2 � 16 6.10 2.2

�2, 0, 0� 4 7.15 −10.0

�2, 1, 0� 8 7.99 16.1

�0, 0, 1� 2 10.37 15.0
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FIG. 1. �Color online� The Fourier transforms of the two-ion
interaction components J���q� in GdNi2B2C for q along �100	 and
�=a, b, or c.
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FIG. 2. �Color online� The phase diagrams of GdNi2B2C, when
a field is applied along the a or the c axis. The solid lines are the
calculated results obtained for a spherical sample. The circles show
the results obtained from magnetization and magnetostriction mea-
surements by El Massalami et al. �Ref. 13�.
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higher harmonics by the establishment of an elliptical polar-
ization. Assuming the major �first harmonic� part of the or-
dered moments in the a-b plane to be given by Eq. �6�, then
the corresponding c component appearing below TR is

�Ji · ĉ� = mc2 sin�q2 · ri + 
a� + mc1 sin�q1 · ri + 
b� .

�10�

As noticed by Detlefs et al.,10 the similar transition, in the
single-q case, is also observed in Er metal.22 The “squaring-
up” process is weaker than that in the single-q case, and the
phase diagram indicates that the double-q ordering reduces
this transition temperature by nearly 2 K compared to the
single-q case. If the elliptical polarization was shared equally
by the two single-q components �mc1=mc2 and ma=mb�, the
transition would be of second order, but in the present model
and several related ones, the symmetric structure is only
metastable. In the stable structure, only one of the two
single-q components is elliptically polarized, whereas the
other slightly smaller component stays �nearly� linearly po-
larized. In this structure, the a and b directions are no longer
equivalent and the transition to the elliptically polarized
phase becomes of first order, although it is very close to be
continuous at zero field in the final model.

The calculated magnetic structure at low temperatures has
been used to generate a neutron-diffraction pattern, which is
compared to experimental data in Fig. 3. The result derived
from the model is in good agreement with the data, if the
experimental error involved in scattering experiments using
hot neutrons is taken into account. The specific heat derived
from the model is compared with the experimental results of
Godart et al.23 in Fig. 4. The two transition temperatures at
zero field determined from this experiment, TN�20 K and
TR�13.5 K, agree with those determined from the results of

El Massalami et al.13 shown in Fig. 2. The specific heat
derived from the mean-field model does not account for the
relatively large critical magnetic contributions observed
above TN; however, the steps in the heat capacity calculated
at the two transitions are of the right order of magnitude.

When applying a field along the a axis, the domain in
which the elliptically polarized moments are perpendicular to
the field is favored by the field, and the other double-q com-
ponent of this structure vanishes at the relatively low field of
10–20 kOe. In the case where the field is applied along the c
axis, the field does not affect the stability of the double-q
arrangement, but the elliptical polarization is removed well
below the field at which the antiferromagnetic ordering is
destroyed. The phase at intermediate fields in the c-axis
phase diagram is named “nonelliptical 2q” in Fig. 2 since the
c-axis component of the moments is still modulated at the
even harmonics of q1 or q2 �and at linear combinations of the
two wave vectors�. Hence, the transition from the “elliptical”
to the “nonelliptical” phase is characterized by the disappear-
ance of the two first harmonics �and the higher-order odd
ones� in the spatial variation of the c-axis moments, which
gives rise to a kink in the magnetization curve as observed
experimentally.13

If the elliptical polarization were equally shared by the
two single-q components at low temperatures, the double-q
configuration would not lead to any orthorhombic distortion
of the tetragonal a-b plane at zero field. However, in spite of
the asymmetry predicted by the present model, the correla-
tion function introduced by Eq. �3� accounts acceptably for
the orthorhombic distortion �a−�b induced by the a-axis
field. The calculated correlation function is compared with
the experimental strain variation observed at 2 K by Rotter et
al.11 in Fig. 5.

IV. CONCLUSION

The mean-field analysis shows that the magnetic moments
in GdNi2B2C are ordered in a double-q structure below TN at
zero field. The only discrepancy of some importance, be-
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FIG. 3. �Color online� Neutron-diffraction pattern from powder
of GdNi2B2C at T=2.2 K. Symbols show the experimental data
taken from Rotter et al. �Ref. 11�. The dashed line indicates a fit of
the nuclear pattern observed at T=30 K	TN. The solid line shows
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tween the theoretical phase diagram and experiments, is that
TR is predicted to be about 2 K higher than observed, which
also applies to the tetracritical point in the a-axis phase dia-
gram. The exchange interaction parameters derived in the
analysis are subjected to some arbitrariness. However, Jbb�q�
at zero and at the ordering wave vector are well determined
and, in addition, we have found that it is important that
Jbb�q� has a sharp maximum at the ordering wave vector.
The sharp maximum is needed in order to prevent a larger
reduction of the length of the ordering wave vector when the
temperature is reduced. A strong reduction would be in con-
tradiction with the tendency of a small increase of this length
seen experimentally.10 The situation is equivalent to the one
occurring in the case or Er borocarbide,7 and although Jbb�q�
in Fig. 1 is strongly peaked at q=q1, the calculated length of
the ordering wave vector is still being reduced, but only by a
few percent, from 5 /9 at TN to about 6 /11 of a* at zero
temperature, when assuming the ordering wave vectors to be
along the �100� directions. At the lowest temperatures, the
true free-energy minimum of the present mean-field model is
found to be determined by the planar double-q structure,


�Jia� = J0 cos�q2� · ri + 
� , q2� = ���, 1
2 + �,0�

�Jib� = J0 sin�q1� · ri + 
� , q1� = � 1
2 + �, � �,0� ,

�
�11�

where ��0.036 �here, we neglect a minute rotation of the
structure due to the classical interaction�. This structure has
the remarkable property that �Ji � =J0 at all sites for an arbi-

trary value of � ��� should be read either as +� or −� in both
wave vectors�. Hence, this particular double-q structure may
maximize �Ji� with no need for incorporating higher harmon-
ics or a c-axis component. This property means that the
structure may be able to compensate for the smaller value of
Jbb�q� at q1� in comparison with the double-q structure at
�q1 ,q2� since the latter one is going to involve a nonzero
c-axis component and higher harmonics, when �Ji� is close
saturation. Experimentally,10 the c-axis component increases
steadily as the temperature is reduced, indicating that the
planar structure in Eq. �11� does not appear. In order to de-
stabilize it in the model calculations, the maximum in Jbb�q�
needs to be more sharp, at least in the direction perpendicular
to q1.

The present analysis has general implications. The precise
locations of the phase lines depend on the specific model
parameters, but the Landau expansion indicates that the
double-q ordering is going to occur in all Gd compounds
sharing the present symmetries. The requirement is only that
�i� the possible set of linearly polarized single-q structures
should contain a pair where the polarization vectors make an
angle of between 


3 and 2

3 with each other and �ii� that the

different two-ion interaction components are nondegenerate
at the ordering wave vector. Since the occurrence of
the double-q ordering strongly reduces the orthorhombic
distortion anticipated for a single-q antiferromagnet, the
present mechanism resolves the magnetoelastic paradox of
GdNi2B2C and has the potential for doing the same in the
case of other �planar ordered, tetragonal� Gd compounds.

If the fourth-order term of Er or Tb borocarbide were not
modified by anisotropic crystal-field terms, they should also
show a double-q ordering. However, here the magnetoelastic
energy of the orthorhombic distortion is of the order of hun-
dred times larger than that in GdNi2B2C and is favoring a
single-q ordering, which is also the case with the four-state
clock anisotropy shown by the two compounds. The ortho-
rhombic distortion is observed to appear immediately below
TN at zero field in both compounds,24,25 which is a strong
indicator of a single-q ordering. Nevertheless, the metastable
domain of ErNi2B2C, when placed in the a-axis field, is ob-
served to reappear in a reversible way at decreasing values of
the field,8,26 suggesting that the two single-q domains in this
system do interfere with each other.
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