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Spin-polarized electron transport driven by inhomogeneous magnetic dynamics is discussed in the limit of a
large exchange coupling. Electron spins rigidly following the time-dependent magnetic profile experience
spin-dependent fictitious electric and magnetic fields. We show that the electric field acquires important cor-
rections due to spin dephasing, when one relaxes the spin-projection approximation. Furthermore, spin-flip
scattering between the spin bands needs to be taken into account in order to calculate voltages and spin
accumulations induced by the magnetic dynamics. A phenomenological approach based on the Onsager reci-
procity principle is developed, which allows us to capture the effect of spin dephasing and make a connection
to the well studied problem of current-driven magnetic dynamics. A number of results that recently appeared in
the literature are related and generalized.
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Interest in magnetic heterostructures,1 which was initially
fueled by the discovery of the giant magnetoresistance and, a
decade later, by the current-induced switching in spin valves
and related systems, has more recently spilled over into
current-driven phenomena in magnetic bulk, individual mag-
netic films, and nanowires.2 Particular attention was given to
the problems of current-driven Doppler shift of spin waves,
magnetic instabilities, and domain-wall motion. The latter
has also enjoyed a very vibrant experimental activity, which
is in part motivated by a promising application potential in
spintronics. The past year3–6 saw a revival of interest in the
inverse effect of electromotive forces induced by the time-
dependent magnetization, which were previously studied in
various physical contexts �see, e.g., Refs. 7–9�. In this paper,
we will exploit the reciprocal relation between the two phe-
nomena, which will allow us to understand important spin-
dephasing corrections to the electromotive force. Such cor-
rections were first mentioned in Ref. 4 and the Onsager
principle in the present context was invoked in Ref. 5. Ref-
erence 3 reported the magnetically induced electromotive
forces as a manifestation of the position-dependent Berry-
phase accumulation, and Ref. 6 considered these forces act-
ing on semiclassical wave packet motion, mainly reproduc-
ing results from Ref. 9. For completeness, it should also be
mentioned that an earlier paper10 already contains some
seminal phenomenological insights related to the problem of
the electric response to the magnetic domain-wall dynamics.

In the following, we start by recalling how most of the
results recently discussed in the literature can be captured by
an SU�2� gauge transformation together with the projection
of spins on the magnetic direction.9 The corrections due to
the remaining transverse spin dynamics are governed by spin
dephasing, which have already been studied for the recipro-
cal process of current-driven magnetic dynamics,2 and can be
translated to the current problem by the Onsager principle.
We will develop a phenomenological framework, that will
allow us to relate and generalize the more specialized cases,
which were recently studied using different methods.3–6 Fi-
nally, we will derive spin-charge diffusion equations, ac-
counting for spin-flip scattering and respecting local charge
neutrality, which is necessary in order to relate the micro-

scopic electromotive forces to measurable quantities, such as
an induced voltage and spin accumulation.

Most of our analysis will pertain to the following time-
dependent Hamiltonian:

H�t� =
p2

2m
+

�xc

2
�̂ · m�r,t� + Vc�r,t� + H�. �1�

Here, H� is the contribution due to spin-relaxation processes,
which will be characterized by a Bloch-type T1 spin flipping
and T2 spin dephasing, and Vc�r , t� stands for a Hartree
charging potential, which will be taken into account only
insofar as enforcing local charge neutrality. �xc is the ferro-
magnetic exchange band splitting, �̂ is the vector of Pauli
spin matrices, and m stands for the local magnetization di-
rection unit vector, so that the magnetization is given by M
=Mm. The exchange field �xcm may in practice be provided
by localized magnetic d orbitals �as in the so-called s-d
model� or it may self-consistently be governed by the itiner-
ant electron spin density �as in the Stoner model or local
spin-density approximation�.2 We will first perform a micro-
scopic calculation for the idealized Hamiltonian Eq. �1� ne-
glecting H� and subsequently utilize the Onsager theorem to
capture the spin-dephasing corrections. The spin-flip scatter-
ing will be included phenomenologically in the final diffu-
sion equation.

By disregarding H�, we can perform an SU�2� gauge
transformation by rotating m to point along the z axis for all
r and t.9,11 This is conveniently achieved by the Hermitian

spin-rotation matrix Û= �̂ ·n �such that Û= Û†= Û−1�, where
n is the unit vector n�m+z. It is easy to see that

Û��̂ ·m�Û= �̂z �since Û corresponds to a �-angle spin rota-
tion around n�. By applying this gauge transformation to the
spinor wave function, we get for the transformed Hamil-
tonian we get

H��t� =
1

2m
�p − Â�2 + V̂ +

�xc

2
�̂z + Vc, �2�

where the SU�2� vector potential is given by
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Âi = i�Û�iÛ = − ��̂ · �n � �in�

and the SU�2� ordinary potential is V̂=−i�Û�tÛ=��̂ · �n
��tn� �setting the particle charge and speed of light to
unity�. p=−i�� is the canonical momentum. If the exchange
field �xc is large and the magnetic
texture is sufficiently smooth and slow, we can project

the fictitious potentials on the z axis as V̂→V�̂z, where V
=�z · �n��tn�=� sin2�	 /2��t
, and similarly for the vector
potential, Ai=−�z · �n��in�=−� sin2�	 /2��i
, where �	 ,
�
are the spherical angles parametrizing m. We thus get for the
effective electric field4,6,9

E = − �tA − �V =
�

2
sin 	 ���t	���
� − ��t
���	�� , �3�

or, written in the explicitly spin rotationally invariant form,

Ei =
�

2
m · ��tm � �im� . �4�

The effective magnetic field is6,9,12

B = � � A =
�

2
sin 	��
� � ��	� =

�

4
�ijkmi��mk � �mj� ,

�5�

where �ijk is the antisymmetric Levi–Civita tensor, and a
summation over repeated indices is implied. The total force
on a spin-↑ �↓� electron moving with velocity v is thus given
by

F↑�↓� = � �E + v � B� . �6�

Equations �3� and �5� were first derived in Ref. 9 and
recently rederived within a semiclassical wave-packet
analysis.6 The gauge-transformation-based approach9 puts
the result into a broader perspective, allowing us, for ex-
ample, to consider the effect of the magnetic field �Eq. �5��
on the quantum transport corrections, such as a weak local-
ization, as well as to include spin-independent electron-
electron interactions, which would not modify fictitious
fields �Eqs. �3� and �5��. Note, in particular, that the magnetic
field �Eq. �5�� can in practice be quite large: For example, for
a static magnetic variation on the scale of 10 nm, the corre-
sponding fictitious field is of the order of 10 T. It is most
convenient to estimate the strength of the electric field �Eq.
�3�� by the characteristic voltage it induces over a region
where the magnetization direction flips its direction: �
 /e,
where 
 is the frequency of the magnetic dynamics. In the
following, we will concentrate on the semiclassical spin and
charge diffusion generated by the effective electric field E. In
order to make a closer connection to the experimentally rel-
evant quantities, we will need to take into account spin re-
laxation and also enforce local charge neutrality for electron
diffusion.

The role of spin relaxation can be twofold. First of all,
spin accumulation, which will generally be generated by the
spin-dependent force �Eq. �6��, will relax, characterized by
the longitudinal spin-flip time T1. There is also another more
subtle effect, which is due to the dephasing of electron spins

following a dynamic magnetic profile, since the exchange
field �xc is not infinite and spins do not perfectly align with
the local magnetization. Hence, there is generally a finite
spin misalignment, which dephases with a characteristic time
T2. This gives corrections to the results obtained by a rigid
projection of spins on the local magnetization direction. We
will see that such corrections turn out to be important for the
currents generated by magnetic dynamics, in the same sense
that analogous corrections are crucial for understanding
current-induced magnetic motion.2

Let us now take a step aside by recalling the general ex-
pression for the dynamics of an isotropic ferromagnet well
below the Curie temperature:2

�tM = − �M � Heff +
�

M
M � �tM

+
���↑ − �↓�

2S
��i���1 −

�

M
M � ��iM , �7�

which is valid for spatially smooth magnetic profiles �the
so-called adiabatic approximation� and weak currents. Here,
� is the Gilbert damping constant, � is another dimension-
less phenomenological parameter whose physical meaning
will be discussed later, � is the electrochemical potential, �s
is the spin-s conductivity �along the local magnetization di-
rection m� relating particle currents to ��, S is the equilib-
rium spin density of the ferromagnet along m, and �=M /S is
the gyromagnetic ratio. Recall that the effective field Heff is
the quantity defined to be thermodynamically conjugate to
the magnetization: Heff=�MF �note the sign difference from
the standard definition�, where F is the free energy and �M
stands for the functional derivative. The other thermody-
namic variable we will consider is the electron density
��r , t�, whose thermodynamically conjugate counterpart is
the electrochemical potential �=��F.

Suppose we perturb the electron density with respect to an
equilibrium with some static magnetic texture and uniform
chemical potential and consider the ensuing magnetic re-
sponse. Equation �7� then describes the nonequilibrium cou-
pling of the magnetization dynamics to the electron density’s
thermodynamic conjugate, which is slightly out of equilib-
rium. The Onsager reciprocity principle13 allows us to imme-
diately write down the response of the electron density to a
small modulation of the effective field Heff with respect to an
equilibrium configuration. To simplify things, let us for a
moment disregard Gilbert damping � in Eq. �7� and return to
include it later on. An electric response to a magnetic pertur-
bation then becomes14

�t� = −
����↑ − �↓�

2
�i�Heff · ��1 + �m � ��im�� . �8�

By comparing Eq. �8� with the continuity equation
�t�=−�i ji, we can identify the particle current as

ji =
����↑ − �↓�

2
Heff · ��1 + �m � ��im� . �9�

Since for each spin species, js=�sFs, where Fs is the effec-
tive force, we finally get for the latter F↑,↓= �F,15 where
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Fi =
�

2
�m � �tm���1 + �m � ��im�

=
�

2
�m · ��tm � �im� + ���tm · �im�� , �10�

after inverting the magnetic equation of motion �Eq. �7�� in
order to express the effective field Heff in terms of the mag-
netization dynamics m�r , t�. �Note that since the currents
themselves are now generated by the magnetization dynam-
ics, we can neglect their backaction on the magnetic response
when inverting the equation of motion to express Heff in
terms of m, since it would give rise to higher-order terms.�
Equation �10� is a key result of this paper. It is also easy to
show that taking into account Gilbert damping � has no con-
sequences for the final result �Eq. �10�� �after rewriting Eq.
�7� in the Landau–Lifshitz form, in order to eliminate the �t
term on the right-hand side and thus make the equation suit-
able for the Onsager theorem�. This is not surprising, since
the physics of the Gilbert damping � does not have to be
related to the magnetization–particle-density coupling that
determines the force �Eq. �10��.2

Physically, the � correction in Eq. �10� is related to a
slight spin misalignment of electrons propagating through an
inhomogeneous magnetic texture with the local direction of
the magnetization m. In the limit of �xc→�, this misalign-
ment vanishes and so should �, reducing the result, Eq. �10�,
to Eq. �4�. Indeed, a microscopic derivation of Eq. �7� shows
�	� /T2�xc, where T2 is the characteristic transverse spin
relaxation time.2 The � term in Eq. �10� can thus be viewed
as a correction to the topological structure of the electron
transport rigidly projected on the magnetic texture, due to the
remaining transverse spin dynamics and dephasing. Such a �
correction was first reported in Ref. 4, which used a very
different and more technical language and did not benefit
from the reciprocity relation with the current-driven mag-
netic dynamics �Eq. �7��. Our phenomenological derivation
of Eq. �10� based on the Onsager theorem provides a much
simpler framework for studying these subtle spin-dephasing
effects.

Let us now discuss the measurable consequences of Eq.
�10� in two simple scenarios sketched in Fig. 1. Consider a
nontrivial one-dimensional magnetic profile along the x axis,
such as a magnetic domain wall in a narrow wire, with neg-
ligible transverse spin inhomogeneities. First, let us look at a
steady rotation of the entire one-dimensional texture around
the x axis with a constant frequency 
. Then, �tm=
x�m
and

�V = −
 dxFx = −
�


2
x
 �dm + �m � dm� . �11�

In the absence of spin dephasing �, this result can be easily
understood by transforming into the rotating frame of refer-
ence: By the Larmor theorem, this corresponds to a fictitious
field along the x axis: H�=−��
 /2��̂x. For spins
up �down� projected on the local magnetization direction,
this corresponds to the potential V= � ��
 /2�x ·m. It is
equally straightforward to interpret this result in terms of the
rate of the Berry-phase accumulation by spins adiabatically

following the steady exchange field precession,3,16 which is
proportional to the position-dependent solid angle enclosed
by spin precession. The � term in Eq. �11� gives a correction
to these idealistic considerations, which depends on the ge-
ometry of the magnetic texture. Next, we consider the volt-
age induced by a rigid translation of a one-dimensional mag-
netic texture m�x−vt� along the x direction with velocity v.
The corresponding force

Fx = −
�

2
�v��xm�2 �12�

is then entirely determined by the � term, which drags spins
down along the direction of the magnetic texture motion and
spins up in the opposite direction. This is analogous to the
current-driven domain-wall velocity in one dimension,
which, for smooth walls and low currents, is proportional to
�.2

Finally, we need to include spin-flip relaxation time T1
and derive spin-charge diffusion equations, enforcing local
charge neutrality. Assuming diffusive transport, the force
�Eq. �10�� can now be added as a contribution to the gradient
of the effective electrochemical potential. The diffusion
equation for spin-s particles is then given by

��t − Ds�
2��s + �s�s � · F − �2Vc� =

�−s

�−s
−

�s

�s
, �13�

where �s is the nonequilibrium �spin-s� particle density, Ds is
the diffusion coefficient, and �s is the spin-flip time. Recall
that the conductivity is related to the density of states Ns by
the Einstein’s relation: �s=NsDs. Vc is the electric potential,
which has to be found self-consistently by enforcing local
charge neutrality. Note that the equilibrium considerations
require that �s /�−s=Ns /N−s. We should also stress that the
force �Eq. �10�� may have a finite curl, so that we cannot
generally describe it by a fictitious potential. After straight-
forward manipulations, we can decouple the diffusion equa-

FIG. 1. �Color online� Two simple scenarios for voltage genera-
tion by the magnetic dynamics: �1� Magnetic texture m�x , t�, such
as a domain wall along the x axis, is steadily rotating around the x
axis and �2� the same texture rigidly sliding along the x axis. In the
former case, the force Fx acting on electrons is proportional to the
frequency of rotation 
, with the dominant term having a purely
geometric meaning in terms of the position-dependent Berry-phase
accumulation rate. �An alternative physical explanation can also be
provided by transforming to the rotating frame of reference and
applying the Larmor theorem.� In the case of the sliding dynamics,
the leading contribution to the magnetically induced force is pro-
portional to the spin-dephasing rate �parametrized by �� and the
“curvature” of the texture profile ��xm�2.
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tion for the spin accumulation �� �defined as the difference
between the spin-up and spin-down electrochemical poten-
tials, divided by 2� from the average electrochemical poten-
tial � as follows:

��t + �−1 − D�2��� = − D � · F ,

− �2� = P��2�� − � · F� . �14�

Here, P= ��↑−�↓� / ��↑+�↓� is the conductivity polarization,
D= �D↑+D↓� /2− P�D↑−D↓� /2 is the effective spin-diffusion
constant, and �−1=�↑

−1+�↓
−1 is the characteristic T1

−1 rate for
spin flipping. If ��F=0, we can integrate the second equa-
tion to express the electrochemical potential gradient in
terms of the force F and the spin accumulation gradient as
follows:

�� = P�F − ���� , �15�

assuming the appropriate boundary conditions. According to
Eqs. �14�, the spin accumulation decays in the absence of the
force F on the scale of the spin-diffusion length �sd=�D�.
Away from the dynamic magnetic texture �on the scale of
�sd�, the generated electrochemical potential �Eq. �15�� will
then be determined simply by integrating the force F. In
general, however, especially when ��F�0, one has to
revert to Eqs. �14�.

In summary, we theoretically studied electron transport
generated by a dynamic magnetization texture. We repro-
duced and generalized the results that recently appeared in
literature,3,4,6 revealing an intricate connection with the
theory of the current-induced magnetization dynamics.2 We
expect that in practice it is considerably simpler to solve this
reciprocal problem, especially for including subtle correc-
tions to the topological Berry-phase structure of spins as-
sumed to rigidly follow the time-dependent magnetic profile.
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