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The earlier-developed statistical methods for nonequilibrium alloys are generalized to stochastically describe
the evolution of microstructure at the first stages of phase separation in alloys. An important parameter of the
theory is the size of locally equilibrated regions, which is estimated by using simulations at different values of
this parameter. The approach is used to study the microstructural features of both the nucleation and growth
�NG� and the spinodal decomposition �SD� types of evolution, as well as the morphological transition NG-SD
under variations of c and T across the spinodal curve. We also investigate morphology of precipitates and
kinetic features of precipitation at low temperatures. The results obtained agree well with the available experi-
mental observations and Monte Carlo simulations.
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I. INTRODUCTION

Studies of microstructural evolution in phase-separating
alloys attract interest from both fundamental and applied
points of view. From the fundamental side, elucidation of
microscopic mechanisms for the formation and evolution of
embryos of new phases arising under the first-order phase
transitions is one of the principal problems in the statistical
physics of nonequilibrium systems.1–3 From the applied side,
knowledge of details of microstructure formed by new-born
precipitates and elaboration of methods to vary this micro-
structure are often very important for industrial
applications.4–7

There are two main kinetic forms of phase separation for
an initially homogeneous system quenched into the two-
phase equilibrium region: nucleation and spinodal decompo-
sition. For definiteness, we consider the disordered binary
alloy AcB1−c with the concentration-temperature �c ,T� phase
diagram of the type shown in Fig. 1. There are two important
curves in this phase diagram: the two-phase equilibrium
curve, or the binodal Tb�c�, and the stability limit of the
uniform state, or the spinodal Ts�c�. According to classical
ideas,2,8,9 in the metastability region Ts�c��T�Tb�c�, the
homogeneous phase separation is realized via nucleation and
growth �NG� of isolated precipitates of the new phase, while
at T�Ts�c�, the main kinetic mechanism is the spinodal de-
composition �SD� via the development of unstable concen-
tration waves with growing amplitudes. Binder1 noted that
taking into account the fluctuative effects �neglected in the
classical theories� should result in some smearing of the bor-
derline between these two evolution types in the c ,T plane,
though up to now there seems to be “no theoretical approach
to describe the behavior in the transition region from SD to
NG.”1

Theoretical studies of microstructural evolution in the
phase-separating alloys can be divided into two main classes:
those based on some analytical equations describing evolu-
tion of nonequilibrium alloys, for brevity to be called “the
analytical approaches,” and those based on the direct Monte
Carlo modeling of these processes, to be called “the Monte
Carlo approaches.”

Some phenomenological versions of analytical ap-
proaches known as “the phase-field method” or “the stochas-

tic phase-field equations” are now widely used in the mate-
rials science community �see, e.g., Refs. 10 and 11�.
However, as discussed in Sec. II B, the phase-field method
for alloys can be theoretically justified only near the critical
point Tc, which usually has no interest for applications, while
the conventional forms of this approach used at other c and T
correspond to the numerous arbitrary assumptions discussed
in detail in Ref. 12. More importantly, the treatment of fluc-
tuative terms in the stochastic phase-field equations will be
shown below to be inconsistent, while attempts to describe
the NG-type processes strictly following these equations
�which is avoided in actual computations that employ these
equations10,11� lead to the physically senseless divergent re-
sults discussed in Ref. 19 and below. Therefore, this ap-
proach cannot be used to study the first stages of phase sepa-
ration.

More consistent analytical approaches are based on the
master equation for probabilities of various atomic distribu-
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FIG. 1. Concentration-temperature �c ,T� phase diagram of a
phase-separating alloy calculated in the mean-field approximation.
Tc is the critical temperature, Tb�c� is the binodal temperature, and
Ts�c� is the spinodal temperature. Circles, squares, and triangles
indicate the alloy states chosen for simulations described in Secs.
VI B, VI D, and VII, respectively.
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tions in a nonequilibrium alloy.13,14 The statistical develop-
ment of these ideas based on the generalized Gibbs distribu-
tion approach �GGDA� and the quasi-equilibrium kinetic
equation �QKE� enables one to adequately describe many
peculiar features in the alloy phase transformation kinetics
�see Ref. 15 for a review�. However, the QKE neglects the
fluctuations of atomic fluxes violating the second law of
thermodynamics,16,17 while the presence of such fluctuations
is crucial for the first stages of nucleation or for the spinodal
decomposition near the spinodal curve. To describe these
processes, the QKE should be generalized to allow for such
fluctuations.

The most reliable theoretical information about the first
stages of nucleation is presently provided by the Monte
Carlo modeling, in particular, by simulations based on the
kinetic Monte Carlo approach �KMCA�.3–5 A number of mi-
crostructural features of nucleation have been found in these
studies and confirmed by the atomic-resolution
experiments.4,5 However, applications of the KMCA to more
broad studies of phase separation in alloys are limited for a
number of reasons. First, the elastic strain effects important
for many phase-separating alloys cannot be easily taken into
account in the KMCA, while it makes no problem for the
statistical approaches.15 Second, the KMCA is well suited to
simulate the first stages of nucleation, while to describe the
next longer stages of evolution, it should be conjugated to
some analytical approach, such as the cluster dynamics
method used in Ref. 5. Such conjugation can be made more
or less unambiguously only for the well-separated precipi-
tates. It corresponds to the nucleation processes at c ,T values
far enough from the spinodal curve, while describing the
phase separation near or within this curve here meets diffi-
culties. For these, as well as for many other reasons, the
direct Monte Carlo modeling, in spite of its evident achieve-
ments and value, cannot replace the consistent statistical
theory of evolution of microstructure under phase separation.

This work is an attempt to develop such a theory by using
the stochastic generalization of the QKE mentioned above.
To describe fluctuations of diffusion fluxes disregarded in the
QKE, we use the “Langevin-noise-type” approach, which is
often employed to simulate the influence of fluctuations on
evolution in mechanical systems. To properly apply this ap-
proach to our statistical problem, we should thoroughly ana-
lyze the basic notions of statistical theories of nonequilib-
rium systems. This analysis leads to the appearance in the
theory of an important kinetic parameter, the characteristic
size of locally equilibrated regions, which can be estimated
by using simulations of microstructural evolution for the dif-
ferent values of this parameter. The resulting equations pro-
vide the stochastic statistical description of evolution of
atomic distributions in a nonequilibrium alloy. The methods
developed are applied to studies of some concrete problems
in the phase separation kinetics.

The paper is organized as follows. In Sec. II, we present
the basic relations of GGDA needed in what follows. In Sec.
III, we discuss the problem of incorporating the fluctuative
terms into the statistical description of nonequilibrium sys-
tems. In Sec. IV, we formulate the basic equations of our
stochastic approach, while in Sec. V, we present its “continu-
ous” version that can be used when all characteristic lengths

of the problem much exceed the interatomic distance, in par-
ticular, at c ,T values near the critical point. In Sec. VI, we
apply the methods developed to study the morphological
transition NG-SD for a number of concentrations, tempera-
tures, and alloy models. In Sec. VII, we investigate morphol-
ogy of precipitates and kinetic features of precipitation at
low temperatures. The main conclusions are presented in
Sec. VIII. Some preliminary results of this work have been
reported earlier.18–20

II. QUASIEQUILIBRIUM KINETIC EQUATION

A. Quasiequilibrium kinetic equation for the discrete lattice

Let us first present the main equations of GGDA disre-
garding the fluctuative effects. We consider the substitutional
alloy AcB1−c. Various distributions of atoms over lattice sites
i are described by the sets of occupation numbers �ni�, where
the operator ni=nAi is unity when site i is occupied by atom
A and zero otherwise. The interaction Hamiltonian H has the
form

H = �
i�j

vijninj , �1�

where vij are effective interactions supposed to be pairwise
for simplicity.

The GGDA is based on the master equation for the prob-
ability P to find the occupation number set �ni�=�,

dP���/dt = �
�

�W��,��P��� − W��,��P���� , �2�

where W�� ,�� is the �→� transition probability per unit
time for which we use the conventional thermally activated
direct-atomic-exchange model.15 As discussed in detail in
Refs. 12 and 15, for the usual conditions of phase transfor-
mations, the probability P in Eq. �2� can be written in the
following “quasiequilibrium” form:

P�ni� = exp��	� + �
i

�ini − �
i�j

vijninj
� . �3�

Here, � is 1 /T, the parameters �i �being, generally, both time
and space dependent� can be called the “site chemical poten-
tials,” and the constant �=���i� is determined by the nor-
malization.

Multiplying Eq. �2� by the operator ni and summing over
all configurational states �which implies neglecting the fluc-
tuative contributions discussed below�, we obtain the QKE,15

dci/dt = �
j

Mij2 sinh���� j − �i�/2� . �4�

Here, the mean site occupation ci corresponds to averaging
the operator ni over distribution �Eq. �3��,

ci = n̄i = �
�nj�

niP�nj� , �5�

and the “generalized mobility” Mij is a similar average of
some other function of occupation numbers.15 To explicitly
find functions �i�cj� and Mij�ck� in Eqs. �4� and �5�, we
should use some method of statistical calculations. For ex-
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ample, in the simplest, “kinetic mean-field” approximation
�KMFA�, we obtain15

�i = T ln�ci/ci�� + �
j

vijcj , �6�

Mij = �ij�cici�cjcj� exp��ui + �uj��1/2, �7�

where ci� is �1−ci�, �ij is the configuration-independent fac-
tor in the probability of an intersite atomic exchange per unit
time defined in Ref. 15, and ui is the “asymmetrical
potential”13 supposed below to be zero. If, to calculate �i�cj�
and Mij�ck� in Eq. �4�, we employ a more refined method
than the KMFA, e.g., the kinetic cluster methods,15 basic Eq.
�4� retains its form but functions �i�cj� and Mij�ck� are given
by more complex expressions. This difference seems to be
unessential for what follows, the more so that the differences
between the MFA and the cluster method results for the dis-
ordered phase-separating alloys are usually small �unlike, for
example, the case of the fcc alloys with L12- or L10-type
orderings where employing the cluster methods is
necessary15�. Therefore, for simplicity, below we use the
KMFA expressions �6� and �7�.

Let us also note that Eqs. �4�–�7� correspond to employing
the simplified “direct-atomic-exchange” model instead of the
more realistic vacancy-mediated atomic exchange model
used in more quantitative treatments.3–5 However, due to the
“equivalence theorem” discussed in Ref. 17, this simplifica-
tion does not seem to be essential for the most of problems
discussed in this paper.

For further generalizations, it is also convenient to rewrite
the QKE �Eq. �4�� in the “finite difference” form, integrating
it over a small time interval 	t,

	n̄i = �
j

Mij2 sinh���� j − �i�/2�	t , �8�

where we use the full notation n̄i instead of the shortened
one, ci.

B. Quasiequilibrium kinetic equation in the continuous
approximation

When the space variations of local occupations ci=c�Ri�
are smooth, that is, when the smallest inhomogeneity length
linh �which in our problem is the interphase boundary width
wipb� much exceeds the interatomic distance d, we can ex-
pand Eqs. �4�–�7� in powers of �c. This approximation,
which corresponds to the generalized Ginzburg–Landau12 or
the Cahn–Hilliard21 approach, will be called below as the
“continuous” approximation. Physically, this approximation
is always valid at high temperatures T near the critical tem-
perature Tc, as the interphase boundary width here is large.
For example, in the MFA used, wipb rises at T→Tc as �Tc
−T�−1/2. At arbitrary temperatures, the continuous approxi-
mation can be true if the interaction range notably exceeds
the interatomic distance.12 For metallic alloys, such extended
interactions are generally not typical, but they can be present
in some polymer mixtures.1

In the continuous approximation, Eqs. �4�–�7� for cubic
alloys �e.g., fcc or bcc ones� take the following form:22

dc/dt = div�M�c�� � ��c�� , �9�

��c� = T ln�c/c�� − 4Tc�c + �r0
2/6��2c� , �10�

M�c� = �cc�. �11�

Here, � is 1
6� j�ijrij

2 with rij = �Ri−R j�, Tc= �−� jvij /4� is the
critical temperature in the MFA, and r0

2=� jvijrij
2 /� jvij is the

mean interaction radius squared. For the nearest-neighbor-
atomic-exchange model used below with �ij =�nn, the value
of � in Eq. �11� for cubic alloys is �nna2, where a is the fcc
or the bcc lattice constant. Equations �9� and �10� show, in
particular, that within the continuous approximation and the
MFA used, the configurational interaction in an alloy is fully
characterized by its mean interaction radius r0, while the
critical temperature Tc determines its scale.

To proceed from the continuous QKE �Eq. �9�� to its finite
difference version similar to Eq. �8�, we rewrite this equation
in the “discrete” form. To this end, we divide the lattice into
the cubic cells of size L �L cells�. Each L cell centered at the
point Ri �“cell i”� is supposed to include a sufficiently large
number of lattice cites equal to NL=4L3 /a3 for the fcc lattice
or NL=2L3 /a3 for the bcc lattice: NL
1. At the same time,
the size L is supposed to be much less than the characteristic
inhomogeneity length linhwipb,

1 � NL, L � wipb. �12�

These two inequalities are evidently compatible only when
wipb
a, i.e., when the continuous approximation is valid.

Then, we sum Eq. �9� over all sites j within the cell i, thus

obtaining on the left-hand side dN̄i /dt, where N̄i=� jcj. On
the right-hand side, we approximate the sum over j by the
volume integral over cell i, and then transform it into surface
integrals over six facets s of cell i. Integrating the result over
a small time interval 	t, we obtain the finite difference ver-
sion of Eq. �8�,

	N̄i = �
s=1

6

�L2/va�ns��M � ��s	t . �13�

Here, va is the atomic volume, ns is the unit vector normal to
the facet s directed off the cell i, the gradient term �� for the
cell j adjacent to cell i can be approximated by the appropri-
ate finite difference, and the mean local occupation ci in the

functions M�ci� and ���ci� is approximated as c�Ri�= N̄i /Nl.
As mentioned, the mesh size L in Eq. �13� should satisfy

to both inequalities �Eq. �12��. In our simulations of phase
separation near the critical point, we employ L=2a or L
=1.5a, where a is the fcc lattice constant. As discussed in
Sec. VI B, the continuous approximation with these L can be
safely used for such simulations.

III. FLUCTUATIVE TERMS AND STOCHASTIC
EQUATIONS

Let us discuss the relation between the quantities ci= n̄i or

N̄i entering Eqs. �4� and �8�, or �13� and the concentration
distribution cobs�R , t� observed experimentally. Note that the
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GGDA, being a statistical approach based on “ensemble av-
erages” ci= n̄i, is physically informative and complete only
for a “macroscopically” nonequilibrium system �see, e.g.,
Ref. 8, Sec. VII� that can be divided into some locally equili-
brated quasiclosed subsystems with the size lle much exceed-
ing the interatomic distance d. Within each subsystem, the
site chemical potential �i is approximately constant, and its
fluctuations have a relative scale �d / lle�3/2�1. Therefore, the
summation over alloy states in Eq. �5� should include not all
distributions �ni� but only those with the limited inhomoge-
neity lengths l� lle, while the long-wave fluctuations with l
� lle remain to be fixed in the macroscopically nonequilib-
rium state under consideration. Therefore, the “diffusive”
term in the right-hand side of Eqs. �4�, �8�, and �13�, corre-
sponds just to a “coarse-grained” averaging in Eq. �5� per-
formed at the fixed distribution of these long-wave fluctua-
tions, and the terms allowing for their dynamics should also
be considered to describe the full cobs�R , t�. These fluctuative
terms were neglected in the previous GGDA-based treat-
ments of phase transformations15 as usually they have little
effect on evolution. However, for the phase separation above
and near the spinodal curve, the presence of such terms is
crucial.

We describe these fluctuative terms by using the stochas-
tic Langevin-type approach. To this end, we proceed from
the average n̄i=ci to an “individual phase trajectory,” that is,
to the actual occupation number ni�t� at site i. It differs from
the average n̄i�t� due to the fluctuations of the atomic transfer
	nfs through each bond s= �i , j� that connects the site i with
some of its neighbor j and along which the unlike neighbor-
ing atoms at sites i and j can interchange their positions �for
the direct-atomic-exchange model used�. Therefore, instead
of Eq. �8�, we have the following expression for the change
of the occupation ni for the time interval 	t:

	ni � ni�t + 	t� − ni�t� = 	ndi�cj� + �
j

	nfs. �14�

Here, the diffusive term 	ndi is given by the right-hand side
of Eq. �8�, and the sum of fluctuative atomic transfers 	nfs is
taken over all bonds s= �i , j� that connect site i with its
neighbors j.

Following Langevin’s idea,23 we treat each fluctuative
transfer 	nfs as a random quantity with the Gaussian prob-
ability distribution

W�	nfs� = As exp�− 	nfs
2 /2Ds� , �15�

where As is the normalization constant and the dispersion Ds
is the same as that for the actual fluctuative transfer 	nfs.

The Ds value can be found as follows. Let us denote for
brevity the total atomic transfer from site j to site i through
the bond s= �i , j� as 	ns and the quantity exp���� j −�i� /2� in
Eq. �8� as x. For a small time interval 	t under consideration,
the transfer 	ns takes either of three values: 0, 1, or −1. One
can also see from the derivation of the QKE �Eq. �4�� given
in Ref. 15, that the term Mijx	t in Eq. �8� is the probability
W1 to find the value 	ns=1, while the term Mij	t /x is the
probability W−1 to find the value 	ns=−1. Thus, for the sta-
tistical averages �	ns� and �	ns

2�, we obtain

�	ns� = W1 − W−1, �	ns
2� = W1 + W−1. �16�

The first equation in Eq. �16� is evidently equivalent to the
QKE �Eq. �8��. In the general expression for the dispersion of
the atomic transfer,

�	nfs
2 � = ��	ns − �	ns��2� = �	ns

2� − �	ns�2, �17�

the first term is given by the second equation in Eq. �16�,
while the second term has the second order in 	t and can be
neglected. Therefore, the dispersion Ds can be expressed via
quantities that enter the QKE �Eq. �8��,

Ds = �	nfs
2 � = 2Mij	t cosh���� j − �i�/2� . �18�

As mentioned, the site chemical potential �i is approximately
constant within each locally equilibrated quasiclosed sub-
system. Therefore, the difference �� j −�i� for the adjacent
sites i and j is typically small, and the argument of cosh in
Eq. �18� is much less than unity. It is illustrated by Figs. 2–4
characterizing the scale of quantities ��� j −�i� averaged ac-
cording to Eqs. �25� and �26�. Thus, the last factor in Eq. �18�
in our calculations was omitted �though the special case of
very low temperatures, when the products � �� j −�i� cannot
be small even though the differences �� j −�i� are small, may
need a separate consideration�. In the KMFA used, the mo-
bility Mij in Eq. �18� is given by Eq. �7�.

Let us now discuss which quantities cj should be used as
the arguments for the local chemical potential �i�cj� and the
local mobility Mij�ck� in the diffusive term 	ndi in Eq. �14�.
The most “natural” �but naive� prescription seems to be just
to replace here cj by nj�t�, that is, to put �i�cj�→�i�nj�t�� and
Mij�ck�→Mij�nk�t��. It corresponds to the treatment of fluc-
tuations of both the occupation number ni and the chemical

0
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0.002

5 10 15 20 25 30

g

Jm

FIG. 2. The inhomogeneity parameter Jm�g� described in the
text versus the cutoff parameter g= l /a for 2D simulations discussed
in Secs. VI B and VI C at te=5·104 /�nn and c=0.4. Squares,
circles, and triangles correspond to the fcc alloy model with the
reduced mean interaction radius r0�=r0 /a equal to 0.707, 1, and 2,
respectively, treated in the continuous approximation �Eqs.
�27�–�32��. Closed symbols correspond to the reduced temperature
T�=T /Tc=0.98, and open symbols to T�=0.94. Crosses correspond
to the discrete lattice approach �Eqs. �19�–�24�� for the fcc-3 model
at T�=0.94 discussed in Sec. VI B.
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potential �i �or the mobility Mij� on the same footing, and
just this recipe is declared in the stochastic phase-field treat-
ments of phase separation.10,11 However, the numerical real-
ization of this “direct” recipe leads to the physically sense-
less results, namely, to totally chaotic evolution with no hints
of a tendency to the thermodynamic equilibrium of any kind
at any T and c. It is illustrated, in particular, by Fig. 2 in Ref.
19.

Let us note that in the actual computations using the “sto-
chastic phase-field” equations,10,11 the fluctuative terms were
switched on after a short initial period. Thus, overestimating
these terms mentioned above leads just to the distortion of
evolution for this short period and to the wrong distribution
of precipitates at its end, but the further evolution �treated

using the QKE-type equations12� can be described more or
less properly.

If one arbitrarily decreases the fluctuation scale Ds in Eqs.
�14�–�18� by 1–2 orders of magnitude, the evolution be-
comes to look more plausible, as illustrated in Fig. 2 in Ref.
19. However, there seems to be no arguments for such drastic
reducing of fluctuations within this direct approach.

The physical origin of the failure of such a direct ap-
proach is the fundamental difference between the fluctua-
tions of the “mechanistic” quantities ni having a direct and
measurable meaning and the fluctuations of the “thermody-
namic” quantities �i describing the locally equilibrated qua-
siclosed subsystems. As mentioned, expression �8� for the
diffusive term is obtained by the statistical averaging over all
fluctuations of occupations �nj� except for those with the
large wavelengths l exceeding the length lle of a local equi-
librium. Thus, it makes no sense to include again the short-
wave fluctuations with l� lle in the diffusive term 	ndi that
has been already averaged over these fluctuations. The fluc-
tuation of the parameter �i in Eq. �3� can have a physical
meaning only if it takes an approximately identical value for
the whole volume Vle lle

3 , that is, if it has a wavelength l
� lle
d.

In other words, the total fluctuative transfer 	nfs through
each bond s described by Eqs. �15�–�18� is by no means
small. However, the main short-wave contribution of these
fluctuations to the microstructural evolution is self-averaging
and is described by the diffusive term 	ndi. Only the long-
wave fluctuations with l� lle remain meaningful for this term
and should be taken into account in the calculations.

IV. COARSE-GRAINED DESCRIPTION: FILTRATION OF
NOISE

To describe this physical picture, we suggest the follow-
ing model. Instead of the full stochastic quantities ni�t� and
	ndi in Eq. �14�, we consider only their long-wave parts, ni

c�t�
and 	ndi

c , determined by a coarse-grained version of Eq. �14�,

ni
c�t + 	t� = ni

c�t� + 	ndi�cj� + �
j

	nfs
c , �19�

where all arguments cj in the diffusive term 	ndi �given by
the right-hand side of Eq. �8�� are substituted by nj

c�t�. To
define the coarse-grained fluctuative transfer 	nfs

c , we divide
all bonds s into several equivalent bond sublattices . Each
of them includes all bonds with the same orientation , and
lattice sites in this sublattice are positioned at the bond cen-
ters Rs. For the fcc alloy, there are six such fcc sublattices
with the bonds oriented along �1,1,0�, �1,−1,0�, �0,1,1�,
�0,1 ,−1�, 1,0,1�, or �1,0 ,−1�, while for the bcc alloy, there
are four bcc bond sublattices with the bonds along �1,1,1�,
�−1,1 ,1�, �1,−1,1�, or �1,1 ,−1�. Then, the last terms in
Eqs. �14� and �19� take the forms

�
j

	nfs = �
j,

	nf�Rs� , �20�

�
j

	nfs
c = �

j,
	nf

c �Rs� . �21�

0
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0 1 2 3 4 5

Jm(g)

g

FIG. 3. Same as in Fig. 2 for the simulations described in Sec.
VI B at te=104 /�nn. Open symbols correspond to 2D simulations at
c=0.25 and the following models and temperatures: squares, bcc-1,
T�=0.86; triangles, bcc-3, T�=0.86; circles, bcc-1, T�=0.7; rhom-
buses, bcc-3, T�=0.7. Solid symbols correspond to 3D simulations
for the bcc-1 model at the following concentrations and tempera-
tures: squares, c=0.25, T�=0.86; circles, c=0.25, T�=0.7; triangles,
c=0.175, T�=0.75; rhombuses, c=0.275, T�=0.75.
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FIG. 4. Same as in Fig. 2 for 3D simulations described in Sec.
VII at te=104 /�nn. Solid symbols correspond to the simulations at
c=0.11, T�=0.5, and the following models: squares, fcc-1; circles,
fcc-3b; triangles, bcc-1; rhombuses, bcc-3a. Open symbols corre-
spond to the bcc-1 model and the following concentrations and
temperatures: squares, c=0.03 and T�=0.18; circles, c=0.1 and
T�=0.3; triangles, c=0.2 and T�=0.3.
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The coarse-grained fluctuative transfer 	nf
c �Rs� in the

last term of Eq. �21� is obtained from the full stochastic
distribution 	nf�Rs� determined by Eqs. �15�–�20� by a
“filtration of noise” procedure, that is, by introducing a
proper cutoff factor Fc�k� in the Fourier component 	nf�k�
of the full function 	nf�Rs�,

	nf
c �Rs� = �

k
exp�− ikRs�	nf�k�Fc�k� ,

	nf�k� =
1

N
�
Rs

exp�ikRs�	nf�Rs� , �22�

where N is the total number of lattice sites �or atoms�. The
factor Fc�k� should sharply decrease at k exceeding some
characteristic reciprocal length 1 / l1 / lc. We also should re-
member that the bond centers Rs at each  form a crystal
lattice similar to that of cites i. Thus, the Fourier component
	nf

c �k� should have the proper crystal symmetry and should
not change under adding any reciprocal lattice vector to k.
For simplicity, we take the factor Fc�k� in the following
form:

Fc�k� = exp�− g2�
n

�1 − cos kR1n�/2� . �23�

Here, R1n are the first-neighbor lattice vectors in the fcc or
the bcc lattice, the sum is taken over all such vectors, and at
large g2
1 used below, expression �23� is reduced to a
Gaussian exp�−k2l2 /2� with l=ga. The explicit forms of Eq.
�23� for the fcc or the bcc lattice are

Fc
fcc�k� = exp�− 2g2�3 − cos �1 cos �2 − cos �2 cos �3

− cos �3 cos �1�� ,

Fc
bcc�k� = exp�− 4g2�1 − cos �1 cos �2 cos �3�� , �24�

where �=ka /2, k is the vector k component along the
main crystal axis , and a is the fcc or the bcc lattice con-
stant.

Equation �19� with the fluctuative terms 	nfs
c defined by

relations �22�–�24� will be called below as “the stochastic
kinetic equation” �SKE�. It differs from the QKE by the pres-
ence of fluctuative terms 	nfs

c .
The “true” cutoff length l= lc for our problem should have

the order of a characteristic local equilibrium length lle, that
is, the minimal size for which the local equilibrium notion
and thus local thermodynamic potentials, in particular, site
chemical potentials �i entering Eqs. �3� and �4�, can be in-
troduced for the process under consideration: phase separa-
tion can take place only when a sufficient thermodynamic
driving force �i.e., supersaturation� is present, which implies
a certain extent of the local thermodynamic equilibrium
within a quasiclosed subsystem. At the same time, all fluc-
tuations with the larger wavelengths l� lle can initiate this
process and thus should be taken into account. The length lle
can generally depend on the concentration c, temperature T,
and the interatomic interactions vij. To estimate the lle value,
we made computer simulations of phase separation based on
Eqs. �19�–�24� for a number of different models, concentra-
tions, and temperatures while varying the parameter g= l /a

in Eq. �24�. In accordance to the considerations above, the
decrease of l from the values l� lle to l� lle should corre-
spond to the loss of the local equilibrium assumed in Eqs.
�3�–�7� and, thus, to sharp violations of the basic condition
�i�const within quasiclosed subsystems.

The scale of these violations at the given evolution time t
can be characterized, for example, by the value of the re-
duced difference of chemical potentials of neighboring sites
averaged over the whole system,

J�g,t� =
1

Nb
�

s=�i,j�
��i − � j�� , �25�

where Nb is the total number of bonds, and the summation is
made over all bonds s= �i , j�. Then, the “degree of nonequi-
librium” for the whole evolution, or the inhomogeneity pa-
rameter Jm�g�, can be defined as the maximum value of the
quantity J�g , t� in Eq. �25� for some characteristic evolution
time te,

Jm�g� = �J�g,t � te��max. �26�

Then, decreasing l=ga across lle should result in a sharp rise
of Jm�g�. This is illustrated in Figs. 2–4 calculated for vari-
ous alloy models discussed below. The point gsr where this
sharp rise starts can be defined, for example, as the maxi-
mum curvature point for the function Jm�g�. The local equi-
librium length lle� lc=gca should evidently somewhat ex-
ceed the lsr=gsra value and should correspond to the values
of g at which the curvature of Jm�g� becomes small. The
experience of our simulations shows that employing gc
�2gsr usually provides an appropriate description of evolu-
tion, while varying gc, say, between 2gsr and 1.5gsr results
mainly in some rescaling of time and only slight changes of
microstructure. It is illustrated below by comparison of
frames 6�b� and 6�e� to 6�g� and 6�h� or frames 7�a�, 7�b�,
and 7�c� to 7�d�, 7�e� and 7�f�.

In Figs. 2–4, we present the dependence Jm�g� for various
alloy models used in our simulations. In these figures, sym-
bol fcc-1 or bcc-1 means the fcc or the bcc alloy model with
the nearest-neighbor interaction v1�0; symbol fcc-3, fcc-3a,
fcc-3b, bcc-3, or bcc-3a means the three-neighbor-
interaction model on the fcc or the bcc lattice with v1�0 and
the reduced interactions vn�=vn /v1 given in Table I; symbol
“fcc, r0�=0.707, 1, or 2” means the fcc alloy model treated in
the continuous MFA described in Sec. II at the value r0�
=r0 /a indicated. In Table II, we present the cutoff values
gc= lc /a used in our simulations.

Let us discuss the results shown in these figures and
tables. Figure 2 corresponds to the �c ,T� values near the
critical point, Fig. 3 to the intermediate temperatures T�

TABLE I. Values of reduced interactions vn�=vn /v1 for some
alloy models used in Secs. VI and VII.

Model v2� v3� Model v2� v3�

fcc-3 0.8 0.5 bcc-3 0.5 0.25

fcc-3a 0.5 −0.158 bcc-3a 0.5 −0.309

fcc-3b 0.5 −0.208
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=0.7–0.9, and Fig. 4 to the lower temperatures T��0.5. The
figures illustrate the general features of functions Jm�g� men-
tioned above. At large g, these functions flattens, while at g
below some gsr, they start to sharply rise, which reflects the
loss of local equilibrium at l=ga� lle. The detailed form and
the scale of these functions strongly vary with the concentra-
tion c and temperature T, particularly when these variations
correspond to crossing the spinodal curve in the �c ,T� plane,
which implies the change of the evolution type from NG to
SD. In the physically interesting region g�gc, the Jm�g� val-
ues in the SD field of the �c ,T� plane typically exceed those
in the NG field by several times. A more detailed analysis
shows that the maximum values J�g , t� in Eq. �26� at SD are
usually attained at first stages of precipitation when the un-
stable concentration waves start to interact with each
other,15,22 while for the NG-type evolution, this maximum
typically corresponds to the beginning of the growth stage.
For both types of evolution, the maximum values of differ-
ences ��i−� j� in Eq. �25� are attained at the precipitate-
matrix interfaces. With lowering T, the Jm�g� values in the
physically interesting region g�gc notably increase, which
reflects an increase of thermodynamic driving forces propor-
tional to the factors � ��i−� j� in the QKE �Eq. �4��. It is
illustrated, in particular, by dashed curves in Fig. 3. At the
same time, sensitivity of Jm�g� to the interaction type appears
to be weak. For example, the Jm�g� values for the bcc-1 and
the bcc-3 models in Fig. 3, as well as those for the bcc-1 and
the bcc-3a or the fcc-1 and the fcc-3b models in Fig. 4, do
almost coincide with each other, even though some thermo-
dynamic and kinetic characteristics within each of these pairs
of alloy systems differ notably �see Sec. VII�. Solid symbols
and curves in Fig. 4 also show that at the similar values of
thermodynamic parameters, the scale of fluctuations in bcc
alloys exceeds that in the fcc alloys; it can be related to the
less dense atomic packing in the bcc structure, as compared
to the fcc structure.

Figures 2 and 3 and Table II illustrate the well-known
effects of a sharp increase of both the fluctuation effects and
the local equilibrium length with approaching the critical
point. They also demonstrate the larger scale and the stronger
manifestations of these fluctuations in two-dimensional �2D�
systems as compared to three-dimensional �3D� systems. In
particular, the value lle /a�gc=5 in the second column of
Table II �which corresponds to the 2D systems outside the
critical region� is by 4–5 times smaller than gc=20–26 in the
first column �which corresponds to the 2D systems within the
critical region�, but it is by 1.5–2 times larger than the value
gc=3 in the third column �which corresponds to the 3D sys-
tems far from Tc�. At the same time, Figs. 2–4 and Table II

show that for the most interesting case of 3D alloys outside
the critical region, the size of locally equilibrated regions in
the kinetic processes under consideration remains to be ap-
proximately the same for all concentrations, temperatures,
and interaction types studied in this work, lle�3a, and the
scale of this size seems to be physically reasonable.

V. STOCHASTIC KINETIC EQUATION IN THE
CONTINUOUS APPROXIMATION

Employing the continuous approximation mentioned in
Sec. II and used in Refs. 18 and 19 enables us to greatly
simplify treatments of phase separation near the critical point
where all characteristic lengths are large. In this approxima-
tion, instead of the site occupation ni entering Eq. �14�, we
consider the total number of A atoms within an L cell, Ni,
defined in Sec. II and used in Eq. �13�. Thus, the “continu-
ous” version of Eq. �14� takes the form

	Ni � Ni�t + 	t� − Ni�t� = 	Ndi�cj� + 	Nfi. �27�

Here, the diffusive term 	Ndi is given by the right-hand side
of Eq. �13� and the fluctuative term 	Nfi is �s	Nfs, where
	Nfs is the fluctuation of the atomic transfer across facet s for
the time interval 	t.

Following again Langevin’s idea,23 we treat each fluctua-
tive transfer 	Nfs as a random quantity with the Gaussian
probability distribution. Then, instead of Eqs. �15� and �18�,
we obtain the similar relations for the fluctuative atomic
transfer across facet s,

W�	Nfs� = As exp�− 	Nfs
2 /2DsN� , �28�

and the KMFA calculation of the dispersion DsN yields

DsN = �	Nfs
2 � = �nn	tNb2cs�1 − cs� , �29�

where Nbs is the total number of bonds crossed by the facet s
equal to 8L2 /a2 for the fcc lattice and to 4L2 /a2 for the bcc
lattice.

The coarse-grained version of Eq. �27� analogous to Eq.
�19� is

Ni
c�t + 	t� = Ni

c�t� + 	Ndi�cj� + 	Nfi
c . �30�

Here, the local concentration cj in the diffusional term 	Ndi is
Nj

c�t� /NL, while the last term is the sum of coarse-grained
fluctuative transfers 	Nfs

c across all facets s: 	Nfi
c =�s	Nfs

c .
This transfer 	Nfs

c is obtained from the full stochastic distri-
bution 	Nfs determined by Eqs. �28� and �29� by a filtration
of noise procedure, that is, by introducing a proper cutoff
factor Fc�k� in the Fourier component 	Nf�k� of the full

TABLE II. Values of cutoff parameter g=gc in Eqs. �24� and �32� used in our simulations.

Dimension 2D 3D

Alloy model fcc at r0�=0.7,1 and 2, bcc-1, fcc-1, fcc-3a, fcc-3b, bcc-1

fcc-3 bcc-3 bcc-1, bcc-3a

Concentration c 0.4 0.25 0.1–0.2 0.03

T�=T /Tc 0.94–0.98 0.7–0.86 0.3–0.5 0.18

gc 20–26 5 3 3

STOCHASTIC STATISTICAL APPROACH TO THE… PHYSICAL REVIEW B 77, 134203 �2008�

134203-7



function 	Nfs=	Nf�Rs� where Rs stands for the center of
facet s normal to the main crystal axis ,

	Nf
c �Rs� = �

k
exp�− ikRs�	Nf�k�Fc�k� ,

	Nf�k� =
1

Ntot
�
Rs

exp�ikRs�	Nf�Rs� , �31�

and Ntot is the total number of L cells. The cutoff factor Fc�k�
is taken in a Gaussian-type form characterized by the cutoff
parameter gL,

Fc�k� = exp�− 2gL
2�



sin2�kL/2�� . �32�

where we took into account that the facet centers Rs at each
orientation  form a simple cubic lattice. For the large gL

2


1 used below, the cutoff function �Eq. �32�� is effectively
reduced to a Gaussian exp�−k2l2 /2� with the cutoff length l
=LgL. Note that the gL value in Eq. �32� is related to the
quantity g in Eq. �24� as gL=ga /L. Therefore, at L=2a, the
gc values presented in the first column of Table II correspond
to the values gL=10–13, while at L=1.5a, they correspond
to gL=13–17.

Equations �19� and �30� and Table II provide a basis for
the stochastic statistical description of evolution of micro-
structure. In what follows, we employ this approach to con-
sider some principal problems in the phase separation kinet-
ics.

VI. MORPHOLOGICAL TRANSITION BETWEEN THE
NUCLEATION-GROWTH AND THE SPINODAL

DECOMPOSITION EVOLUTION TYPES

A. Theoretical and experimental studies of the transition
nucleation and growth–spinodal decomposition

As mentioned in Sec. I, the problem of understanding the
morphological transition NG-SD is one of the challenges in
the phase transformation theory. This problem was discussed
in a number of theoretical and experimental studies,1,2,24,25

but there seems to be little correlation between the theoreti-
cal and the experimental results. In the series of papers re-
viewed in Ref. 1, Binder and co-workers argued that one
cannot expect any clear-cut changes in the phase separation
kinetics under crossing the spinodal curve in the c ,T plane
and, thus, the NG-SD transition should be typically diffuse.
These authors also suggested that the spinodal curve, “being
a mean-field-based notion,” can be manifested only in sys-
tems with the large interaction range r0 for which the MFA is
valid and, thus, with increasing r0, the NG-SD transition
should become more sharp. At the same time, in the avail-
able experiments,24–26 the temperature or the concentration
intervals for the NG-SD morphological transition, �T or �c,
were found to be rather narrow, �T /T ,�c�10−2, while the
systems studied in these experiments are supposed to have
not too extended interactions.25,27

Below, we use simulations based on our stochastic kinetic
equations �19� and �30� to elucidate the NG-SD transition
problem. All simulations described in this paper include a

“preannealing” stage at the temperature Tann� =1.2 for the in-
terval �tann� =0.5, where t� is the reduced time in the natural
time units defined as t�= t�nn10−3. The time step 	t entering
Eq. �19� or �27� was varied between 0.025�nn

−1 and 0.25�nn
−1,

most often between 0.05�nn
−1 and 0.1�nn

−1, depending on the
alloy system considered and on the stage of its phase sepa-
ration.

B. Phase separation in quasi-two-dimensional systems near the
critical point: Experiments and modeling

Experimentally, the NG-SD morphological transition was
most thoroughly studied by Tanaka et al.25,26 for some highly
viscous liquid mixture of styrene oligomer �OS� and
�-caprolactan oligomer. The critical temperature was Tc
=156 °C and the critical composition was 80 wt % OS,
while the binodal temperature for the �35 /65� composition
used in these studies was 150 °C; thus, the measurements
were made near the critical point. The mixture was sand-
wiched by two glass plates whose gap was several microme-
ters. This gap seems to be of the order or less than the size of
smallest precipitates seen in these experiments; thus, the sys-
tem can be viewed as a quasi-two-dimensional one.

To theoretically study features of phase separation in
quasi-2D systems near Tc, we made simulations for fcc al-
loys by using the continuous version of SKE �Eqs.
�27�–�32��. As discussed in Sec. II and below, near Tc, this
continuous approximation is valid. We consider the concen-
tration c=0.4 and the reduced temperatures T�=T /Tc be-
tween T�=0.98 and T�=0.94, while the MFA spinodal tem-
perature at this c is Ts�=0.96. These c and T� values are close
to those used in experiments;25 thus, our results can be di-
rectly compared to these experiments.

As mentioned in Sec. II, in the continuous MFA used, the
interaction model is fully characterized by the reduced inter-
action radius r0�=r0 /a. We employ three such models: the
nearest-neighbor interaction model with r0�=2−1/2=0.707, the

FIG. 5. Temporal evolution of n�R� described by the continuous
equations �Eqs. �27�–�31� and �30�� for the fcc alloy model with
r0�=1 at L=2a, Vs= �2562�1�L3, gc= lc /a=26, c=0.4, T�=0.98,
and the following t�= t�nn /1000: �a� 20, �b� 50, �c� 100, and �d�
250. The gray level linearly varies with c�R� between nmin=0.3 and
nmax=0.65 from completely bright to completely dark.
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intermediate interaction range model with r0�=1, and the ex-
tended interaction model with r0�=2. At r0�=1 and r0�=2, we
use the mesh size L=2a, and at r0�=0.707, we use the lesser
value L=1.5a. The latter is chosen as at r0�=0.707 and at the
lowest temperature of these simulations, T�=0.94, the second
inequality �Eq. �12�� at L=2a is significantly violated. It is
manifested in a spurious squarelike anisotropy of precipitates
observed in the simulations with L=2a, while at L=1.5a,
these spurious effects are absent.

We made quasi-2D simulations on the fcc lattice with the
simulation volume Vs= �2562�1�L3 and the periodic bound-
ary conditions in all three dimensions �such boundary condi-
tions were used in all simulations of this work�. Some results
of these simulations are shown in Figs. 5–10.

Let us first discuss Figs. 5 and 6 showing the evolution of
the NG and the SD type, respectively. The patterns presented
in these figures reveal all main features of these two types of
evolution illustrated by Figs. 2 and 3 in the paper by Tanaka
et al.25 Discussing their observations, these authors wrote “in
NG the nuclei… are born and grow almost independently.
The density of droplets in NG is much lower than that in SD.
In SD, the spatial concentration fluctuations grow in both
amplitude and size and form droplets, being first gray, be-
come darker with time, and become larger and larger mainly

by coalescence mechanism.” All these features are seen in
Figs. 5 and 6.

The simulations also reveal a number of other microstruc-
tural features. In particular, for the NG-type evolution in Fig.
5, �i� some rare coalescence events are present as well, �ii�
the precipitate shape is often nonspherical, and �iii� a
concentration-depleted bright “halo” is typically adjacent to

FIG. 6. Frames �a�–�f�: same as in Fig. 5 but at T�=0.94, nmin

=0.25, nmax=0.75, and the following t�: �a� 5, �b� 10, �c� 20, �d� 50,
�e� 100, and �f� 200. Frames �g� and �h�: same as in frames �a�–�f�
but at gc=20 and the following t�: �g� 7 and �h� 70.

FIG. 7. Frames �a�–�c� �left column�: same as in Fig. 5 but at
T�=0.96, gc=26, and the following t�: �a� 7, �b� 14, and �c� 43.
Frames �d�–�f� �right column�: same as in frames �a�–�c� but at gc

=20 and the following t�: �d� 5, �e� 10, and �f� 30.

FIG. 8. Same as in Fig. 5 but at r0�=0.707, T�=0.96, L=1.5a,
gc=19, and the following t�: �a� 5, �b� 10, �c� 30, and �d� 500.
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the precipitates. For the SD-type evolution in Fig. 6, we ob-
serve the following: �i� peculiar initial “roelike” arrays of
droplets which later often coalesce forming elongated
tonguelike structures and �ii� many coalescence events via a
“bridge” mechanism noted in Refs. 15 and 22, when the
diffusion fluxes first connect the adjacent precipitates by a
thin gray “bridge” that later starts to sharply grow and
thicken with the formation of a pearlike or a dumbbell-like
precipitate. All of that is seen in the experiments in Refs. 25
and 26.

In our simulation, for the transition region between NG
and SD, in particular, for c=0.4, T�=0.96 just at the spinodal
curve, we obtain a “mixed” type of evolution: first, an NG-
type pattern of a small number of wrong-shaped droplets,
which later form roelike and tongue-like structures charac-
teristic of SD �see Fig. 7�. It seems to agree with the obser-
vations described in Ref. 25.

Let us comment on the smallness of the temperature
width for the NG-SD transition illustrated by Figs. 5 and 6:
�T��0.04�1. It can be explained by the significant differ-
ence in the reduced supersaturation parameter for the alloy
states c ,T considered. This parameter characterizes a ten-

dency to the NG- or the SD-type evolution and can be de-
fined as28

s�c,T� = �c − cb�T��/�cb�T� − cs�T�� , �33�

where cb�T� and cs�T� are the concentrations at the binodal
and the spinodal curves, respectively. For the two states con-
sidered, this parameter takes quite different values, s1=0.42
and s2=1.27, even though the temperature difference �T� is
small. It is because the �c ,T� states considered are positioned
near the critical point where both the binodal and the spin-
odal curves are very flat. It can be still more so for
experiments,25 where the curves Tb�c� and Ts�c� seem to be
still flatter than in our MFA model. It can explain a rather
small value of the NG-SD transition width, �T��0.015,
found in Ref. 25.

Let us still make a methodical comment about the appli-
cability of the continuous approximation �Eqs. �27�–�32�� for
the simulations described above, in particular, at our lowest
temperature T�=0.94. To check this point, we repeated some
of these simulations by using the general discrete lattice ap-
proach �Eqs. �19�–�24�� and the fcc-3 interaction model de-
fined in Table I. For this model, the reduced interaction ra-
dius r0� is unity, just as for the model used in the simulations
illustrated by Figs. 7–9. The discrete and the continuous ap-
proaches were found to yield very similar results seeming to
be statistically identical. It is illustrated in Fig. 2 by the re-
sults for Jm�g� at r0�=1, c=0.4, and T�=0.94, which are
shown by crosses for the discrete approach and by open
circles for the continuous approach. In the physically inter-
esting region g�gc=20–26 where the above-discussed local
equilibrium takes place, these results do virtually coincide
with each other. Thus, the continuous approximation can be
safely used for the above-described simulations at T near Tc.

C. Dependence of the type of microstructural evolution on the
interaction range

To study the influence of varying the interaction range r0
on the microstructural evolution, in particular, to check the
considerations about the “sharpening” of the NG-SD transi-
tion with increasing r0 mentioned above,1 we made simula-
tions of phase separation similar to those described above but
for several other models with the different r0 values. Some
results of these simulations are shown in Fig. 8 for the short-
range-interaction model with r0�=0.707, and in Figs. 9 and 10
for the extended interaction model with r0�=2. These figures
can be compared to Figs. 7–9, which illustrate the evolution
of systems with the “intermediate” r0�=1. As the real physical
parameters of an alloy, such as the number of atoms within
the interaction range, Nint, or the critical embryo volume Vc,
depend on the r0 value rather sharply, Nint ,Vc�r0

3, the three
times change in r0 can enable us to see how the evolution
type varies with the interaction range.

The comparison of Figs. 5–10 shows that both the mor-
phological and the kinetic characteristics of evolution
strongly depend on the interaction range. With increasing r0,
all characteristic lengths in the microstructures, in particular,
sizes of smallest precipitates, rise approximately linearly in
r0. The evolution rate notably decreases, particularly at very

FIG. 9. Same as in Fig. 5 but at r0�=2, gc=24, T�=0.98, and the
following t�: �a� 20, �b� 50, �c� 100, and �d� 250.

FIG. 10. Same as in Fig. 9 but at T�=0.94 and the following t�:
�a� 7, �b� 10, �c� 20, and �d� 200.
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first stages of phase separation. The precipitate shape be-
comes more regular and more spherical, while the formation
of roelike structures at SD mentioned above is suppressed.
All these effects can be qualitatively explained by an in-
crease of the interfacial energy � with increasing r0, which is
discussed below in Sec. VII.

At the same time, we see no hints of “sharpening” or
“narrowing” the morphological transition NG-SD with in-
creasing r0. On the contrary, the comparison of Figs. 5 and 6
to Figs. 9 and 10 seems to imply that at larger r0, this tran-
sition becomes more smeared and more wide. In particular,
both morphological and temporal characteristics of micro-
structural evolution at two temperatures considered, T�
=0.98 and T�=0.94, for the intermediate-interaction-range
model with r0�=1 seem to differ with each other more
strongly than those for the extended-interaction-range model
with r0�=2.

The disagreement with the previous considerations1 can
be due to that these considerations were mainly based on the
thermodynamic arguments, while the strong dependence of
the kinetic factors on the interaction range was disregarded.
Our results show that this dependence can be actually more
sharp and more important for the microstructural evolution.

D. Morphological transition nucleation and growth–spinodal
decomposition at intermediate temperatures

Studies of quasi-2D phase separation at T near Tc de-
scribed in Sec. VI B enable us to suggest that the type of the
microstructural evolution under phase separation is mainly
determined by the reduced supersaturation parameter s value
defined by Eq. �33�. Values s�s1�0.5 seem to correspond
to NG, and values s�s2�1.2 to SD, while varying s be-
tween s1 and s2 leads to the gradual transition between these
two types of evolution.

To check this point in more detail, in this section, we
consider phase separation in both 2D and 3D systems in a
more broad temperature interval, 0.7�T��0.9, for brevity
to be called “the intermediate temperatures.” At the lower
temperatures, T��0.5, the crystalline anisotropy effects be-
come important, and these effects are discussed in the next
section.

Outside the critical region, the interphase boundary width
wipb and the lattice constant a generally have the same order
of magnitude, and the second inequality �Eq. �12�� does not
hold. Thus, the continuous approximation �Eqs. �27�–�32��
becomes inapplicable, and the general discrete lattice ap-
proach �Eqs. �19�–�24�� should be used.

To study the influence of various factors on the phase
separation kinetics at intermediate T, we made simulations
based on the SKE �Eqs. �19�–�24�� for a number of different
concentrations c, temperatures T, and the models of interac-
tions vij, keeping the reduced supersaturation s close to ei-
ther of the two above-mentioned values, s1 or s2. The simu-
lations seem to confirm that the evolution type is mainly
determined by the value of s, but at the given s, the kinetic
characteristics and the details of microstructure can strongly
vary with c, T, and vij.

To illustrate these points, in Figs. 11–14, we present some
results of such simulations made at the concentrations and

temperatures given in Table III and shown in Fig. 1 as �c ,T�
points A, B, C, and D. These four points form an asymmetric
“cross” in the �c ,T� plane near the spinodal point S, and
points A and D correspond to the NG-type value s�0.47,
while points B and C correspond to the SD-type value s
�1.18.

Figures 11 and 12 correspond to quasi-2D simulations
similar to those discussed in Sec. VI B. Thus, these figures
enable us to compare the evolution at intermediate T to the
evolution near Tc shown in Figs. 5 and 6. Figures 13 and 14
correspond to the 3D simulation, but for simplicity, they
show only one crystal plane. We made also some checking
runs by using the larger simulation volume, Vs= �642

�16�a3, and the results were found to be very similar to

FIG. 11. Temporal evolution of ni described by the discrete lat-
tice equations �Eqs. �19�–�24�� for the bcc-3 model described in the
text at Vs= �1282�1�a3, gc=5, c=0.25, T�=0.86, s=0.47, nmin

=0.15, nmax=0.85, and the following t�: �a� 0.3, �b� 1, �c� 2, and �d�
10.

FIG. 12. Same as in Fig. 11 but at c=0.25, T�=0.7, s=1.17,
nmin=0.05, nmax=0.95, and the following t�: �a� 0.08, �b� 0.2, �c� 1,
and �d� 4.
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those shown in Figs. 13 and 14. Therefore, the “finite-size”
effects in these simulations seem to be unessential, and Figs.
13 and 14 can represent a true 3D microstructural evolution.

Let us discuss the results presented in Figs. 11–14. Com-
paring quasi-2D microstructures at intermediate T shown in
Figs. 11 and 12 to those near Tc shown in Figs. 5 and 6, we
first note that the scale of frames in Figs. 5 and 6 �at the
given lattice constant a� is by four times larger than that in
Figs. 11 and 12. Therefore, all microstructural lengths char-
acteristic of phase separation, such as the sizes of initial
�“critical”� precipitates at NG or the wavelengths of unstable
concentration waves at SD,9,22 in the critical region T�Tc
much exceed those at intermediate T. It illustrates a sharp
increase of all these lengths with approaching Tc, which was
repeatedly mentioned above.

Let us also note that the analogous quasi-2D microstruc-
tures simulated for model bcc-1 �not shown here to save
space� are rather similar to those for model bcc-3 presented
in Figs. 11 and 12. It agrees with the relatively small differ-
ence in the interaction range between these two models:
r0��bcc-3��1.2r0��bcc-1�.

Discussing 3D simulations of the NG-type evolution illus-
trated in Fig. 13, we first note that in spite of the general
similarity of this evolution for c ,T point A and point D
shown in frames 13�a�–13�c� and �13d�–�13f�, respectively,
the quantitative characteristics of nucleation for these two

points notably differ. The size of initial precipitates for point
D, Rc�D�, seems to significantly exceed that for point A,
Rc�A�, while the reduced incubation time �the time needed
for the formation of first precipitates3� for point D, tinc� �D�,
appears to exceed the analogous time tinc� �A� by an order of
magnitude. At the same time, for points B and C with the
SD-type evolution, both space and time characteristics of
microstructures shown in Fig. 14 seem to be very similar.

In spite of all the differences mentioned above, the results
presented in Figs. 5, 6, and 11–14 seem to strongly support
the above-mentioned conjecture that the type of microstruc-
tural evolution under phase separation, both near Tc and at
intermediate T, is mainly determined by the reduced super-
saturation s value. It is supported, in particular, by comparing
to each other Figs. 5, 11, and 13 for the NG-type evolution
and Figs. 6, 12, and 14 for the SD-type evolution. For each

FIG. 13. Same as in Fig. 11 but for 3D simulations using the
bcc-1 model at Vs= �642�8�a3, gc=3, and shown for the crystal
plane z=0. Frames �a�–�c� correspond to c=0.25, T�=0.86, s
=0.47, nmin=0.15, nmax=0.85, and the following t�: �a� 2, �b� 5, and
�c� 10. Frames �d�–�f� correspond to c=0.175, T�=0.75, s=0.46,
nmin=0.05, nmax=0.95, and the following t�: �d� 20, �e� 22, and �f�
30.

FIG. 14. Same as in Fig. 13 but at nmin=0.05, nmax=0.95.
Frames �a�–�c� correspond to c=0.25, T�=0.7, s=1.17, and the fol-
lowing t�: �a� 0.05, �b� 0.1, and �c� 5. Frames �d�–�f� correspond to
c=0.275, T�=0.75, s=1.18, and the following t�: �d� 0.05, �e� 0.1,
and �f� 5.

TABLE III. Values of thermodynamic parameters used in the
simulations of phase separation at intermediate temperatures.

Point in Fig. 1 c ,T� s

S 0.25, 0.75 1

A 0.25, 0.86 0.47

B 0.275, 0.75 1.18

C 0.25, 0.7 1.17

D 0.175, 0.75 0.46
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of these two evolution types, the microstructures shown in
the three figures reveal a striking similarity in all main fea-
tures, even though the alloy models used and their thermo-
dynamic and kinetic characteristics are sometimes rather dif-
ferent.

Once the evolution type is mainly determined by the re-
duced supersaturation s, the concentration or the temperature
width for the NG-SD transition, �c or �T�, should signifi-
cantly vary under variations of c or T� along the spinodal
curve. In particular, in vicinity of the spinodal point S con-
sidered in this section, these widths are estimated as �c
�0.1 and �T��0.16, while in vicinity of the spinodal point
�cs ,Ts��= �0.4,0.96� discussed in Sec. VI B, the temperature
width is much smaller: �T��0.04.

VII. MORPHOLOGY OF PRECIPITATES AND KINETIC
FEATURES OF PRECIPITATION AT LOW

TEMPERATURES

By discussing manifestations of anisotropy in morphology
of precipitates, we first note that here we do not consider the
anisotropic effects related to the long-ranged elastic interac-
tion induced by the precipitate-matrix lattice misfit. At early
stages of phase separation being studied in this work, such
effects are typically small due to the small size of
precipitates,10,15 the more so if the misfit is small which is
the case, in particular, for the Al-Ag and Fe-Cu alloys dis-
cussed below. Here, we consider the anisotropic effects re-
lated to the short-ranged “chemical” interaction, which can
be manifested at sufficiently low T��0.5. These effects were
discussed in several experimental29 and theoretical4 studies.
Below, we consider them by using the SKE �Eqs. �19�–�24��.

Let us first discuss the way of visualization of our results
for the 3D patterns. For the 2D patterns, each lattice site i in
Figs. 11–14 was represented as an elementary square with
the area a2 /2 for the bcc lattice �or a2 /4 for the fcc lattice15�.
The gray level for each square was linearly varied with the
site occupation ni defined by Eqs. �19�–�24� between some
minimal and maximum values, nmin and nmax, from com-
pletely bright to completely dark. For the 3D patterns, it is
more convenient to represent lattice sites as nonoverlapping
spheres. For each sphere, the gray level again linearly varies
with ni between some nmin and nmax, but to make the figures
transparent, it is convenient to omit all “almost empty” sites
with ni�nmin. Therefore, the proper choice of the cutoff
value nmin is here important for the adequate representation
of evolution, but this choice can be optimized for each par-
ticular system. In Figs. 15–19 and 21 discussed below, nmin is
chosen to slightly exceed the mean concentration c.

By considering morphology of precipitates, we first dis-
cuss the influence of varying the interfacial energy scale on
this morphology. A possible importance of such influence
was mentioned by Ernst and Haasen29 in their study of phase
separation in the disordered fcc Al-Ag alloys by the high
resolution electron microscopy methods. After annealing at
T��0.5, the precipitates were clearly facetted, and straight
interfaces parallel to �100� and �111� planes were often ob-
served. At the same time, for the most of phase-separating
alloys, anisotropic effects at such relatively high tempera-

tures are not revealed. Ernst and Haasen noted that “this
observation confirms the relatively small value of the inter-
facial energy” for these alloys �found from other measure-
ments� but did not discuss this point. Below, we consider the
relation between the scale of the interfacial energy and the
degree of anisotropy of precipitates in more detail.

To study this problem, we made the SKE-based simula-
tions of phase separation at T�=0.5 for several alloy models
with the different scale of the interfacial energy. The concen-
tration value was chosen so that the volume fraction of pre-

FIG. 15. Temporal evolution of ni according to Eqs. �19�–�24�
shown in the 3D representation described in Sec. VII for the fcc-1
model at Vs= �642�32�a3, gc=3, nmin=0.147, nmax=1, c=0.11,
T�=0.5, s=0.71, and the following t�: �a� 0.2, �b� 0.25, �c� 0.3, and
�d� 0.5.

FIG. 16. Same as in Fig. 15 but for the fcc-3a model described
in the text at the following t�: �a� 0.05, �b� 0.07, �c� 0.1, �d� 0.2, �e�
0.3, and �f� 0.5.

STOCHASTIC STATISTICAL APPROACH TO THE… PHYSICAL REVIEW B 77, 134203 �2008�

134203-13



cipitates was similar to that observed in experiments:29 c
=0.11. It corresponds to the reduced supersaturation s
=0.71, that is, to the NG region in the �c ,T� plane not far
from the spinodal curve. The surface energy � was estimated
in the continuous approximation by using the Ginzburg–
Landau �or Cahn–Hilliard21� free energy functional F,12

F =
1

va
� d3R�gcc��c�2 + f�c�� . �34�

Here, va is atomic volume, c=c�R� is the local concentra-
tion, and f�c� is the free energy per site, which in the MFA
used has the form

f�c� = T�c ln c + �1 − c�ln�1 − c�� + V0c2/2, �35�

where V0=� jvij is the MFA interaction parameter. Micro-
scopic expressions for the coefficient gcc in Eq. �34� were
discussed in Ref. 12. In the MFA used, this coefficient is
some constant proportional to the mean interaction radius
squared r0

2 that enters Eq. �10�. The interfacial energy �
=��T� for the functional �Eq. �34�� is given by the following
expression:12,21

��T� =
1

va
�

c01

c02

dc�gcc���c� − �0��1/2. �36�

Here, c01 and c02 are the equilibrium concentrations for the
two phases under consideration, ��c� is f�c�−c�0, the
chemical potential �0 and �0 are the values of ��c�=�f /�c
and ��c�, respectively, at c=c01 or c=c02, while the relations
��c01�=��c02� and ��c01�=��c02� are the phase equilibrium
conditions.

Formally, the Ginzburg–Landau expression �Eq. �36�� is
valid only at high temperatures near Tc when the interphase
boundary width much exceeds the interatomic distance and
the interfacial energy is isotropic.12 However, this expression
can also be used to estimate the average surface energy at
lower T, in particular, at T�0.5 under consideration.

FIG. 17. Same as in Fig. 15 but for the fcc-3b model described
in the text at the following t�: �a� 0.05, �b� 0.07, �c� 0.1, �d� 0.2, �e�
0.3, and �f� 0.5.

FIG. 18. Same as in Fig. 15 but for the bcc-1 model at the
following t�: �a� 0.05, �b� 0.07, �c� 0.18, �d� 0.3, �e� 0.5, and �f� 1.

FIG. 19. Same as in Fig. 15 but for the bcc-3a model described
in the text at the following t�: �a� 0.01, �b� 0.02, �c� 0.06, �d� 0.1, �e�
0.2, and �f� 0.5.
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In our simulations, we employed three alloy models: the
nearest-neighbor-interaction model fcc-1 and the two three-
neighbor-interaction models, fcc-3a and fcc-3b, described in
Table I. For the fcc-1 model, the reduced surface energy
��=�a2 /Tc with � given by Eq. �36� at T�=0.5 is ��=0.91.
For the two other models, the interaction constants are cho-
sen so that the reduced surface energies at T�=0.5 take the
following values:

�fcc-3a� = 0.7, �fcc-3b� = 0.5. �37�

Thus, the interfacial energies for these three models differ
notably, and simulations of phase separation for these models
enable us to follow the influence of varying the interfacial
energy on the microstructural evolution and morphology of
precipitates.

In Figs. 15–17, we present some results of these simula-
tions. First, we see that for the fcc-1 model for which the
interfacial energy has the “normal” scale ��1, the shape of
precipitates at T�=0.5 is almost spherical, and their aniso-
tropy is weak. For the fcc-3a model with the lower ��, we
observe, first, the smaller size of new-born precipitates and
some acceleration of nucleation with respect to the fcc-1
model. It qualitatively agrees with the decrease of both the
critical size and of the nucleation barrier under lowering the
surface energy, which are the well-known conclusions of the
classical nucleation theory.3 Second, we note a much more
pronounced faceting of precipitates in �100� planes. Finally,
for the fcc-3b model with the lowest ��, the nucleation rate
seems to still more increase, the precipitate shape is typically
highly anisotropic, and, in addition to that, at later stages of
evolution some precipitates have a number of wrong-shaped
facets. The latter again agrees with the experimental
observations.29

To elucidate the influence of the crystal lattice type on the
above-mentioned effects, we also made similar simulations
for the bcc alloys with the same values of thermodynamic
parameters: c=0.11, T�=0.5, and s=0.71. We used two mod-
els: the nearest-neighbor-interaction model bcc-1 and the
three-neighbor-interaction model bcc-3a described in Table I.
The reduced average surface energies �estimated by the
above-described method� for these models are

�bcc-1� = 0.56, �bcc-3a� = 0.3, �38�

differing by about twice.
Some results of these simulations are shown in Figs. 18

and 19. For the short-range-interaction model bcc-1, the pre-
cipitates again are almost spherical, though the fusion pro-
cesses, such as that seen in the left lower corner of frames
�c�–�e�, can lead to an elongation of some of them. For the
bcc-3a model with the lower ��, we again observe the
smaller size of new-born precipitates and the higher nucle-
ation rate, as well as much more pronounced faceting in the
�110� planes.

Therefore, the effects of variations of interfacial energy
on the kinetics of phase separation in the fcc and the bcc
alloys turn out to be similar, and the manifestations of these
effects in morphology of precipitates agree well with the
observations by Ernst and Haasen.29

Let us now discuss the kinetics of phase separation at low
T��0.2–0.3. This problem attracts interest, in particular, in
connection with the copper precipitation in the dilute iron-
copper alloys, which is important for a number of industrial
applications.4,6,7 This problem was thoroughly discussed by
Soisson et al.,4 who made detailed Monte Carlo simulations
of this process by using the KMCA mentioned in Sec. I.
Some results of these simulations are presented in Fig. 20.
These results illustrate a number of peculiar features charac-
teristic of precipitation at low temperatures, in particular, �i�
a very small size of initial �critical� precipitates that often
include 2–5 atoms, �ii� the nonspherical shape of these initial
precipitates with nonplanar precipitate-matrix interfaces, and
�iii� a strong tendency to the formation of �110� facets at
longer precipitation times and other features discussed in
Ref. 4.

To study this problem within our stochastic statistical ap-
proach �SSA�, as well as to compare this approach to the
KMCA, we made the SSA-based simulations of phase sepa-
ration for the alloy model and thermodynamic conditions
similar to those considered in Ref. 4. We use the bcc-1 model
at T�=0.18 within simulation volume Vs=643a3, just as Sois-
son et al. did, but consider a bit higher concentration c
=0.03 that corresponds to the reduced supersaturation s
=0.64. The results discussed below seem to show that em-
ploying this c value can be sufficient to study the problem
under consideration. At the same time, at lower c�0.015
used in Ref. 4 �which corresponds to the reduced supersatu-
ration s�0.3�, the incubation time in our simulations be-
comes too large to observe any precipitation for our typical
simulation times t��10. Thus, elaboration of methods for
the SSA treatments of phase separation at low supersatura-
tions is a separate methodical problem �similar to that en-
countered in the KMCA treatments5�.

FIG. 20. Evolution of precipitate microstructure for the bcc-1
model of Fe-Cu alloy with the vacancy-mediated atomic exchange
according to the Monte Carlo simulation made in Ref. 4 at Vs

=643a3, c=0.0134, T�=0.182, and the following times t �in 107 s�:
�a� 0, �b� 5.8, �c� 24, and �d� 270. Each dot represents a copper
atom.
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Some results of our simulation are presented in Fig. 21.
Before to compare the SSA and the KMCA results, we note
that the two approaches use the different methods of describ-
ing the alloy states. In the KMCA, each alloy state at time t
is characterized by the positions of all minority �copper� at-
oms, while in the SSA, the local mean occupations ni�t� are
presented. These ni�t� correspond to the averaging of site
occupations ni over some locally equilibrated regions. It also
implies a temporal averaging for the appropriate time inter-
vals �t �see Ref. 8, Sec. VII�, being much greater than one
interatomic exchange time texc�nn

−1 but much less than the
characteristic time tc needed for a significant variation of
ni�t�,

�nn
−1 � �t � tc. �39�

Figures 5–19 and 21 show that the relation �nntc
1 implied
by these inequalities is well satisfied for all evolution pro-
cesses considered in this paper.

The alloy systems shown in Figs. 20 and 21 also differ in
a number of other respects. In addition to the composition
difference mentioned above, their critical temperatures differ,
too. In the SSA simulation, the Tc value for the bcc-1 model
is calculated by using the MFA, while in the KMCA, it is
taken from Monte Carlo simulation; it yields Tc

KMCA

=0.79Tc
MFA. The kinetic mechanisms are different, too. The

SSA employs the simplified direct-atomic-exchange model,
while the KMCA uses a more realistic model of the vacancy-
mediated atomic exchange.

In spite of all these differences both in the alloy model
and in the way of describing its states, the main features of
evolution shown in Figs. 20 and 21 seem to reveal a great
similarity, and the SSA description appears to complement

the KMCA one in some respects. In particular, frames 21�a�
and 21�b� present a visualization of some initial and some
more advanced “incubation” stages, respectively, illustrating
an increase of the composition fluctuations with time.
Frames 21�c� and 21�d� show the first stages of precipitation
and seem to approximately correspond to the stage shown in
frame 20�b�. The microstructure shown in frame 21�e� re-
sembles that presented in frame 20�c�, while the microstruc-
ture shown in frame 21�f� seems to be similar to that in frame
20�d�. The smallest precipitates in frames 21�c� and 21�d�
seem to include three to five atoms, in accordance to point �i�
mentioned above, and their shape reveals neither sphericity
nor the planar interfaces, in accordance to point �ii�. At later
stages shown in frames 21�e� and 21�f�, the growing precipi-
tates demonstrate a pronounced faceting in �110� planes, in
agreement with point �iii�, as well as with other results by
Soisson et al.4 presented in their Fig. 4.

Therefore, the SSA and the KMCA treatments of precipi-
tation at low temperatures discussed above seem to agree
with each other in all main respects. At the same time, the
comparison of these treatments illustrates some complemen-
tary features of these two approaches to the description of
evolution of microstructure.

VIII. CONCLUDING REMARKS

Let us summarize the main results of this work. The
earlier-suggested generalized Gibbs distribution approach
and the QKE for nonequilibrium alloys are generalized to
stochastically describe the evolution of microstructure at first
stages of phase separation in alloys. The influence of fluc-
tuations of diffusion fluxes �neglected in the QKE� is simu-
lated by using the Langevin-type method similar to that used
for the mechanical systems. However, here this method
should be supplemented by the “filtration of noise” proce-
dure that physically describes the statistical averaging of site
occupations ni over the appropriate locally equilibrated re-
gion with the characteristic size lle lc. Thus, the theory in-
cludes the size lc as an important kinetic parameter. The re-
sulting stochastic kinetic equation for the mean site
occupations ni�t� generalizes the QKE to the case when the
fluctuations of diffusion fluxes mentioned above are impor-
tant, in particular, when the concentration c and temperature
T values are positioned above or near the spinodal curve in
the �c ,T� plane. For each c ,T and the model of interatomic
interaction vij, the size lc is estimated by using simulations of
evolution at different values of this size. The resulting lc are
usually weakly sensitive to the c ,T and vij values, but they
sharply rise when the �c ,T� point approaches the critical
point cc ,Tc.

The methods developed are used to study some general
problems in the phase separation kinetics. First, we investi-
gate the microstructural features of both the NG and the SD
types of evolution, as well as the morphological transition
NG-SD under variations of c and T across the spinodal
curve. The results obtained agree well with the available ex-
perimental studies of the NG-SD transition.25,26 Both near
the critical point and at intermediate temperatures, 0.7
�T /Tc�0.9, the microstructural evolution type seems to be

FIG. 21. Same as in Fig. 15 but for the bcc-1 model at Vs

=643a3, gc=3, nmin=0.04, nmax=1, c=0.03, T�=0.18, s=0.636, and
the following t�: �a� 0.01, �b� 0.02, �c� 0.05, �d� 0.1, �e� 0.2, and �f�
0.5.
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mainly determined by the reduced supersaturation parameter
s value defined by Eq. �33�. We also study the influence of
varying the scale of the interfacial energy on the precipita-
tion kinetics at temperatures T�0.5Tc. When the interfacial
energy decreases, the size of new-born precipitates decreases
and the nucleation rate increases, which is in qualitative
agreement with the ideas of the classical nucleation theory,
while anisotropy in the morphology of precipitates sharply
rises, which is in agreement with the experimental
observations.29 Finally, we investigate the kinetic features of
precipitation at low T for the Fe-Cu alloy model studied
earlier by using the KMCA.4 The results of our SSA for this
model agree well with the KMCA results. The comparison
also illustrates the complementary character of these two ap-
proaches.

Finally, let us make some general remarks about the SSA
described in this paper. The main notions used in this ap-
proach, such as the macrononequilibrium state consisting of
locally equilibrated quasiclosed subsystems, the master equa-
tion for the probability distribution, Langevin’s method for
simulating the influence of fluctuations on evolution, etc., are
well known and are described in textbooks and reviews.8,15,23

Basing on these notions, we attempt to develop an explicit
and theoretically consistent approach to study the micro-

structure of alloys at those concentrations, temperatures, and
stages of evolution, at which the role of statistical fluctua-
tions in the phase separation kinetics is crucial. The results
described in this paper seem to show that this approach, even
in its present form employing just simplest methods and sim-
plest models �such as the mean-field approximation, the
direct-atomic-exchange model, etc.�, can be rather fruitful
and useful for both the understanding and the predictions of
many new and nontrivial microstructural phenomena that
take place in the course of the phase separation in alloys.
Thus, further developments of this approach seem to be
promising.
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