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Existing genetic algorithms for crystal structure and polymorph prediction can suffer from stagnation during
evolution, with a consequent loss of efficiency and accuracy. An improved genetic algorithm is introduced
herein which penalizes similar structures and so enhances structural diversity in the population at each gen-
eration. This is shown to improve the quality of results found for the theoretical prediction of simple model
crystal structures. In particular, this method is demonstrated to find three new zero-temperature phases of the
Dzugutov potential that have not been previously reported.
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I. INTRODUCTION

Genetic algorithms �GAs� are emerging as a useful tool in
the theoretical prediction of crystal structures �see Ref. 1 and
references therein�.2–4 During a GA calculation, it is possible
that the system will stagnate. When stagnation occurs, one or
more local minima dominate the search and the method is
unable to find the global minimum solution. In this paper, we
improve the convergence to the global minimum solution of
the CASTEP-GA1 through the use of a fitness function that is
able to differentiate structures during the course of a GA
minimization.

Binary-encoded GAs such as the method of Hart et al.5

and Blum et al.6 are able to directly compare the binary
strings that make up their population members and determine
if two population members are the same. In this way, it is
possible to remove any highly prevalent local minimum from
the population and prevent its creation in future mating op-
erations. While this method is not possible in the framework
of the CASTEP-GA, we have developed an alternative ap-
proach that significantly reduces the stagnation rate and also
forces the system to explore new minima. This alternative
approach is also broadly transferable to a wide range of other
GAs.

II. METHOD

Our GA method1 is a real-space encoded technique for
crystal structure prediction that takes advantage of the peri-
odicity of the simulation supercell to improve the speed and
accuracy of convergence to the global minimum free-energy
crystal structure. There is a population of structures �or mem-
bers� which are bred together to produce new members, such
that with each subsequent generation, the population evolves
in an attempt to determine the global minimum structure.
The fitness function of the GA is used to determine how good
�“fit”� a structure is and this is then used to weight the prob-
ability of survival of that structure and its probability to pro-
duce offspring.

While this method has been very successful in the past,
we wanted to reduce the stagnation rate and thereby improve
the quality of the solutions produced during a GA structure
search. Since this is a real-space based approach, it is not
possible to directly compare the atomic coordinates of two

population members to determine if they are the same struc-
ture. In our previous work,1 the enthalpy of the structure was
used to calculate the fitness. In this work, we propose aug-
menting this fitness function with an additional function
which is able to determine the similarity of the two struc-
tures. We shall illustrate the effectiveness of this approach by
first studying the Lennard-Jones crystals in comparison with
our previous results and then the high pressure phases of the
Dzugutov potential.7

The enthalpy-based fitness function is

f i =
�1 − tanh�2�i − 1��

2
, �1�

with the variable �i being defined by

�i =
Vi − Vmin

Vmax − Vmin
, �2�

where Vmax is the enthalpy of the highest-enthalpy member
of the population, Vmin is the enthalpy of the lowest-enthalpy
member, and Vi is the enthalpy of the member i being con-
sidered. The fitness of each member i is f i and this is a
function that varies between 0 and 1. Population members
with a fitness close to 0 are less fit, and members with a
fitness close to 1 are more fit. Population members are then
selected �using roulette-wheel selection� for reproduction or
are removed from the population based on this fitness value.

This should mean that only fit members are selected to
remain in the population or are allowed to breed �crossover�.
It is often very likely that during the course of a calculation,
multiple copies of population members are made. In a bit-
string represented GA, duplicate members are very easy to
spot, but in a real-space encoded GA, it is very hard to tell if
two members are the same during the course of a calculation,
since the crystal structure may be orientated or translated in
any way within the simulation cell �due to use of periodic
boundary conditions�. This is even harder if the simulation
cell parameters are also allowed to vary during the course of
a calculation.

Hence, we need a simple measure of structural similarity
so that we can detect when duplicate structures exist within a
population. While this is encouraging from the point of view
of ultimate structural convergence, in the early stages of the
GA minimization, we want to ensure as much structural di-
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versity as possible to enable a broad search of possible solu-
tions and so we want to penalize similar structures.

Since we are using this routine to differentiate between
like and unlike structures, rather than any form of compre-
hensive structural analysis, we can simplify this comparison
somewhat. If we are performing a calculation in which we
allow the number of atoms to vary, then we can make an
educated guess that two structures with different numbers of
atoms are different �or rather in this case any offspring pro-
duced in the crossover procedure will have a greater number
of degrees of freedom to explore the potential energy sur-
face�, so we will have no need to compare these structures.
We also do not need to compare each structure with all other
structures, since we are merely trying to prevent stagnation
rather than give a definitive structural comparison, and so we
can simply compare all structures with the minimum-
enthalpy structure that has the same number of atoms as
itself that exist in the current generation. We will define a
comparison function between structures which returns zero if
the structures are the same and one if the structures are suit-
ably dissimilar. We also want to keep the fact that lower-
enthalpy structures are “better” than higher-enthalpy ones, so
we further weigh the value that any given structure has by
the value of f i of the fittest member in that “set” which is
made up of members with the same number of atoms. Here,
we define our improved fitness function as

j f i� = �1 − �� j f i + � j f fit � � 1, i � fit

R���kr�� , i�” fit
� , �3�

where the left superscript j above denotes the comparison
between groups with the same number of atoms only, f i is as
defined in Eq. �1�, w is a weighting value between zero and
one, and R���kr�� is a function which compares member i of
the set of atoms j with the fittest member in that set �as
defined by Eq. �1��. This means that the fitness of the fittest
member of each group � j f fit� will be unchanged from its
enthalpy value, and all other values in the group will be
accordingly scaled. If the value of the fitness weight w is set
to 1, then the maximum value of j f i� that any member could
have is the same value of the fittest member of the group j f fit.
If w is set to zero, then this function reduces to that given in
Eq. �1�. The comparison function R���kr�� is

R���kr�� =
�kr

	���kr� − ��kr�	

�kr
���kr�

, �4�

where consideration of the spherically averaged scattering
intensity leads to

��kr� = �2
N�
n=1

N

��2�n� + 2�
n=1

N

�
m�n

N

��2�n���2�m�J0

���3�kr	rn − rm	�� , �5�

which is positive definite �and is based on the Debye scatter-
ing formula8�. In Eq. �5�, there are N ions within the simu-
lation cell which has a volume �, ���n� is the scattering
factor of ion n which has the atomic real-space coordinate of
rn, and J0�r� is a Bessel function. The function ��kr� of a
population member i of each group j is tested against the
function ���kr� of the fittest member in the group j contain-
ing the same number of atoms as member i. Equation �4� is
then used to compare these two functions and returns a
single number between 0 and 1. In a variable-supercell cal-
culation, it is possible for this function to become greater
than one when the structures are highly dissimilar, in which
case we set the value of R���kr�� to 1.

TABLE I. Table of parameters used in the Dzugutov potential
�Ref. 7� �Eq. �6��.

m A c a B d b

16 5.82 1.1 1.87 1.28 0.27 1.94
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FIG. 1. �Color online� Comparison of the Lennard-Jones and
Dzugutov pair potentials.
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FIG. 2. �Color online� Summary of the enthalpies of the differ-
ent Lennard-Jones structures found for different fitness weights,
which controls how much the comparison factor is considered dur-
ing selection for update and crossover. The values for w=0.0 are
those from Abraham and Probert �Ref. 1�. All points are averaged
over 15 independent calculations.
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III. RESULTS

The results presented here will use two different empirical
potentials, the Lennard-Jones potential9,10 and the Dzugutov
potential7 which is defined as

	�Rij� = 	1�Rij� + 	2�Rij� , �6�

where

	1 = �A�Rij
−m − B�exp� c

Rij−a� , Rij 
 a

0, Rij � a ,
� �7�

	2 = �B exp� d
Rij−b� , Rij 
 b

0, Rij � b ,
� �8�

with the constants defined in Table I. A comparison of these
two potentials is shown in Fig. 1. The Dzugutov potential7

was originally formulated to simulate liquid systems; how-
ever, it has also been shown to have some interesting solid
phases11 and can also be used to form quasicrystals.7

The Dzugutov potential7 is designed such that the force
on, and energy of, an atom moving within the potential goes
to zero at b /�. As is reported by Roth and Denton,11 the
Dzugutov potential7 has three known stable phases at vary-
ing pressures: bcc, the � phase, and fcc.

A. Results from the Lennard-Jones potential

The use of the comparison factor in the selection proce-
dure has a marked effect on the quality of the results pro-
duced, as shown in Fig. 2. While the global minimum struc-
ture is hexagonal close packed �hcp�, this structure is nearly
degenerate with the face-centered cubic structure �fcc� �with
an energy difference of less than 0.1% �Ref. 12��. There are
also a number of other stacking-fault structures that exist
in-between fcc and hcp. The use of the comparison factor
encourages the system to explore and hence escape from

TABLE II. Comparison of the number of each ordered structure
type of the lowest-enthalpy structure found �i.e., ignoring higher-
enthalpy structures found during the course of a GA minimization�
for different values of the fitness weighting factor w. Numbers
given are out of a total of 15 calculations.

Fitness
weight

Pure
hcp

Intermediate
hcp-fcc

Pure
fcc

0.00 0 6 0

0.25 3 3 0

0.50 3 6 0

0.75 6 3 0
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FIG. 3. �Color online� Summary of the convergence times for
the results shown in Fig. 2. The values for w=0.0 are those from
Abraham and Probert �Ref. 1�. All points are averaged over 15
independent calculations.
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FIG. 4. �Color online� Plot showing convergence to hcp mini-
mum structure for a Lennard-Jones calculation with w=0.75. The
stacking patterns of the minimum-enthalpy solutions are shown
next to their appearance during the course of the simulation. The
system converged to a hcp structure in 55 generations, and by the
127th generation, all members were the same.

FIG. 5. The unit cell of the Dzugutov potential �Ref. 7� � phase

looking down the �001̄� direction.
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these local minima and find the hcp structure. With a fitness
weight of w=0.75, finding a hcp structure is much more
likely.

The effect on convergence is interesting, as shown in Fig.
3. There is little increase in the mean number of generations
required for convergence, although there is a greater spread
in the values.

Figure 4 shows the results from a calculation performed
with w=0.75. We have included these results, in particular,
because it shows the system going from an fcc structure to a
hcp structure through two intermediate stacking-fault struc-
tures.

These results are summarized in Table II. The results from
w=0.00 are those presented by Abraham and Probert.1

B. Results from the Dzugutov potential

For results obtained by using this potential, an additional
modification was made to the GA in the crossover step. Pre-
viously, the atom number could either be kept fixed or be
allowed to vary in an unconstrained manner. For these
Dzugutov calculations, a third option was added, which is to
allow the atom number to vary within an allowed percentage
of the original number of atoms within the simulation super-
cell.

While this is not necessary in a fixed-cell size and shape
calculation, for a variable-cell calculation, it is essential.

Without this constraint, it would be possible for the number
of atoms to keep decreasing with the cell getting smaller and
smaller until the minimum image convention is violated, at
which point the calculation will stop. It might also allow a
calculation to keep adding atoms at the crossover stage and
then allow the cell to grow to accommodate them. In this
way, the calculation would increase in size and take a longer
and longer time for each minimization step. This percentage
cutoff keeps the advantages of a variable-atom-number cal-
culation without these problems.

It is already known that the Dzugutov � phase has a com-
plicated 30-atom unit cell �see Fig. 5� and so all calculations
had to have at least this many atoms. To prevent any bias of
the final results, we started each run with 62 atoms in the unit
cell and allowed the number of atoms to vary, in order to
have an unbiased search of a large enough phase space.

A summary of the Dzugatov results is given in Table III.
Calculations were performed at four pressures, 0, 50, 100,
and 150 MPa, which allows each of the three structures sug-
gested by Roth and Denton11 to be the most stable at least
one point during the experiment.

As can be seen in Table III, a number of GA minimiza-
tions found structures with a lower enthalpy than the previ-

TABLE III. Summary of results for 62-atom variable-cell, constrained variable-atom-number calculations.
22 independent GA calculations were performed at each pressure.

Pressure Lowest enthalpy Higher enthalpy Number of each phase found Lower enthalpy

�MPa� phasea phase bcc � fcc phaseb

0 bcc 13 8 1 0 0

50 bcc 2 16 1 0 3

100 � 1 9 11 0 1

150 fcc 1 0 0 15 6

aData taken from Roth and Denton �Ref. 11�.
bWhere the term “lower enthalpy” refers to having lower enthalpy than the phase in column 2.
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FIG. 6. �Color online� Convergence plot of a variable-atom,
variable-cell calculation, starting from 62 atoms. This gives rise to a
previously unknown phase �labeled as phase a in Fig. 8�. The inset
shows the complete calculation. The minimum-enthalpy structure
found has 65 atoms and is shown in Fig. 7.

FIG. 7. The structure of the new phase a, a 65-atom phase found
in generation 64 of the calculation shown in Fig. 6.
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ously reported minimum-enthalpy structure. In total, three
distinct new structures were found. A plot showing the
progress of a GA minimization down to the new lowest-
enthalpy structure found is shown in Fig. 6 with the structure
itself shown in Fig. 7.

A plot comparing the radial distribution functions of all
the known and unknown phases of the Dzugutov potential7 is
shown in Fig. 8, as well as the hcp phase. The three new
phases found are all significantly different from the estab-
lished phases of this potential. Examination of these phases
suggests that the simulation cells correspond to primitive
cells and not to supercells, but attempts to further character-
ize these structures by space group that have so far been
unsuccessful. The atomic coordinates of these structures are
available online.13

A plot showing the energy-volume curves for the six
phases of the Dzugutov potential7 found in the course of this
study is shown in Fig. 9. Phase a is the most stable phase at
all positive pressures.

IV. CONCLUSIONS

In this paper, we have developed a fitness function that
combines a traditional approach to fitness based upon en-
thalpy, with a simple structural comparison factor to find
new, more stable crystal structures within a GA for crystal
structure prediction. This method penalizes the presence of
similar structures within the population which prevents the
GA stagnating in some local minimum. The GA method it-
self was also extended to allow both the simulation supercell
and the number of atoms within that supercell to vary. The
number of atoms must only be varied within fixed limits to
prevent the system size becoming too large or too small.

Studies using the Lennard-Jones potential showed the cal-
culation progressing through the fcc local minimum and two
other stacking-fault local minima before finding the hcp glo-
bal minimum-enthalpy structure. This was shown to be re-
peatable and efficient.

When this GA was used to study phases of the Dzugutov
potential7 at different pressures, all the previously reported
zero-temperature phases were found, along with three new
phases, one of which is the most stable phase at all positive
pressures. These new structures are markedly different from
the three previously known phases. This clearly illustrates
the power of this GA to find new crystal structures that were
hitherto unexpected.
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function g�r� for the distinct lower-enthalpy structures found with
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also shown.
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