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Homogeneous melting in the superheating regime is investigated by using molecular dynamics simulation of
a Lennard-Jones model system. We show that the commonly observed catastrophic melting at the superheating
limit is caused by fast heating rate. By keeping the system isothermally at temperatures below the superheating
limit, we observe intense self-diffusion motions as the precursor of melting. The highly correlated atomic
motions are related to the self-diffusion loops or rings. Two types of loops are observed, closed loop and open
loop, where the latter is directly related to the homogeneous nucleation of the liquid phase. Homogeneous
melting occurs when the number density of diffusion loops reaches a critical value. Our results suggest that
homogeneous melting in the superheating regime is a first-order thermodynamic phase transition triggered by
the self-diffusion loops when the kinetic constraint imposed by heating rate is lessened.
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I. INTRODUCTION

Melting is commonly observed but also one of the least
understood phenomena in nature. When the temperature
reaches the melting point, heterogeneous melting usually oc-
curs at defect sites in solids, such as surfaces, grain bound-
aries, and interfaces.1 The heterogeneous melting can be ex-
plained satisfactorily through the thermodynamic relation
among the interface energies. Namely, the sum of the newly
formed solid-liquid and liquid-vapor interface energies is
less than or equal to the solid-vapor interface energy, or
�sv��sl+�lv, where s, l, v represent solid, liquid, and vapor
phases, respectively.1 The decrease in the total �interfacial�
free energies is the cause for the heterogeneous melting.
However, how a liquid nucleates in a perfect �i.e., surface-
free and defect-free� crystal remains an open question to
date. Specifically, the detailed microscopic mechanisms and
the thermodynamic relations of this seemingly simple phe-
nomenon still remain unanswered, despite extensive studies
made in the past century.2–21

The difficulties originated mainly from the presence of
surfaces. Since all materials have surfaces and the preemp-
tive heterogeneous surface melting is always dominant, ho-
mogeneous melting could not occur without superheating the
solids.4,7,8 Nevertheless, in several cases, superheating was
indeed achieved when special techniques were used to sup-
press the surface melting. For example, Daeges et al.9 coated
a silver sphere with a thin layer of gold. Since the lattice
constants of gold and silver are very close, coating �or pref-
erably epitaxially growing� gold is tantamount to removing
the free surface of the silver particle. Because the melting
temperature of gold is higher than that of silver, the coated
silver core would melt earlier than the gold shell. As a result,
up to 25 K of superheating above the normal melting point
in the silver was observed for a time period of about 1 min.
Superheating can also be achieved by using picosecond
pulsed laser irradiation techniques.10–14 The laser irradiation
heats the materials internally and therefore can initiate melt-
ing from the bulk, or homogeneously. Substantial superheat-
ing �about 20% above the normal melting point� has been
observed from these experiments. However, melting is ex-

tremely fast in these experiments, typically, in just a few
nanoseconds. Thus, many kinetic and thermodynamic param-
eters could not be precisely measured or controlled. Conse-
quently, it is difficult to investigate the detailed microscopic
mechanisms of homogeneous melting in the superheating
regime from these experiments. Recently, computer
simulations15–19,21 have been used for investigating homoge-
neous melting. By employing periodic boundary conditions,
one can “remove” surfaces, so superheating can be achieved
easily. However, the heating rates are extremely high in most
simulations,15–19,21 usually on the order of 1011–1013 K /s.
Under such high heating rates, melting is always observed to
occur catastrophically. Due to the short time window �e.g., a
few hundred femptoseconds� available in the catastrophic
melting, many vital kinetic and thermodynamic properties
are suppressed. As a result, the detailed microscopic mecha-
nism and kinetic behavior related to homogeneous melting
are either missed or only partially accessible.15–19,21

In this paper, we investigate the microscopic mechanism
of homogeneous melting in the superheating regime by using
molecular dynamics simulation. The baseline of this study
begins at the heating rate effects on melting. We show that
while the fast heating rate leads to catastrophic melting at
the superheating limit, slow heating rate can lead to more
detailed observations of the thermodynamic and, in particu-
lar, the kinetic processes at temperatures below the super-
heating limit. To this end, an isothermal heating method is
implemented �see Sec II A for the explanation�. Detailed in-
formation will be examined at fixed temperatures before and
after melting occurs by monitoring various structural and
defect characterization quantities, thermodynamic properties,
kinetic behaviors, and atomic movements. In particular, we
focus on the correlated atomic motions under the isothermal
heating condition and their relation to local disorder or liquid
nucleus formation. Our results reveal that strong diffusive
atomic motions occur in a quiescent period before melting
occurs, which have been missed in the fast heating process.
The highly correlated motions consist of both closed and
open loops of self-diffusing atoms. It is the open loops that
eventually lead to the formation of liquid nuclei. The ther-
modynamic and kinetic properties obtained from this work
allow us to probe into the atomic mechanisms of homoge-
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neous melting with deeper physical insights. Our results sug-
gest that homogeneous melting in the superheating regime is
a first-order thermodynamic phase transition triggered by the
atomic motions in the form of the diffusion loops when the
heating rate is kept sufficiently low.

This paper is organized as follows. In Sec. II, we outline
the simulation methods and procedures used in this study. In
Sec. III, we present our simulation results. Our focus will be
on the structural and thermodynamic properties and diffusive
motions of atoms under isothermal heating condition. In Sec.
IV, we discuss the results with particular attention paid to the
evolution of the liquid phase nucleating from the superheated
solid. The nature of the homogeneous melting will also be
discussed in light of these results and compared with some
previously proposed models. Finally, we summarize the re-
sults and present the conclusions drawn from this work.

II. METHODS

A. Molecular dynamics simulation and system parameters

In this work, we use a perfect crystal to investigate the
homogeneous melting. Initially, all atoms are arranged in an
fcc lattice. The periodic boundary conditions are employed
in all directions. Therefore, the system is both surface-free
and defect-free. The atoms interact via a standard Lennard-
Jones �LJ� potential for solid argon, ��r�=4���� /r�12

− �� /r�6�, where �=119.8kB and �=3.405 Å. The tempera-
ture unit is in � /kB� 120 K. The cutoff distance is set to
2.5�. Molecular dynamics �MD� simulations are performed
in an ensemble with constant number of atoms, constant
pressure, and constant temperature, or NPT ensemble. The
Parrinello-Rahman method22 is used to control the system
volume; and the Nose thermostat23 is used to control the
system temperature. The pressure of the system is kept at
zero in all simulations. The MD time step was set to 5
�10−15 s. As a widely used convention,24 all quantities of
the system are in the reduced LJ units scaled by �, �, and the
mass of argon m �=39.95 amu=6.634�10−26 kg�.

For this model system, the equilibrium melting tempera-
ture is at Tm

E =0.618 �in reduced LJ unit, � /kB�, which is
obtained by monitoring the liquid-solid interface motion in
the coexisting liquid and solid phases.25 The equilibrium
melting point is the transition temperature of the �heteroge-
neous� surface melting, which, for historical reasons, is
called the normal melting point of a solid. To obtain homo-
geneous melting, however, it requires us to remove the sur-
faces or interfaces, which can be accomplished by using the
periodic boundary conditions in computer simulations.

Heating rate is a crucial parameter that directly affects the
nature of homogeneous melting. There are two ways for
heating the sample: gradual heating �GH� and isothermal
heating �ISH�. The GH method can be described as “heat
until it melts.”26 In this method, one heats the sample con-
tinuously from a low temperature to a high temperature with
a constant heating rate until the sample melts. Previously,
researchers have made almost exclusive use of this method
for investigating homogeneous melting.15–19 Due to the in-
herent time-scale limitation in MD simulations, the typical
heating rate in the GH method is normally on the order of

1011–1013 K /s which is much faster than the heating rate in
reality. The fast heating rate may suppress the kinetic pro-
cesses in homogeneous melting, which we will explain in
detail later in Sec. III A. To overcome this problem, we em-
ploy the ISH method. In this method, the heating process has
two distinct steps. First, we heat the system from a low tem-
perature to a desired high temperature within the superheat-
ing regime at which melting has not occurred yet. So this
step is the same as the GH method mentioned above. Next, at
this temperature, the heating process is stopped and the sys-
tem temperature is held isothermally �constant� for an ex-
tended time period �e.g., millions of MD steps�. We should
mention that the temperature is not strictly constant during
this period; it fluctuates slightly around the desired tempera-
ture because of the thermal noises. This method allows the
system to have sufficient time to explore the phase space and
execute kinetic motions that are critical to the thermody-
namic phase transitions. Of course, very slow heating rate
can be used, such as in the work of Forsblom and Grimvall20

�e.g., 1.9�1010 K /s, or about 2 K for every 50 000 time
steps, where 1 time step=2.1�10−15 s�, if one knows the
characteristic time scale in the kinetic process such as diffu-
sion. In such cases, the GH and ISH should give the same
results.

In Sec. III A, we show that the fast heating rate of the
gradual heating as employed in other MD simulations leads
to catastrophic melting at the highest temperature Tm

S in com-
parison with isothermal heating. Melting occurring at this
temperature is fast or spontaneous. Usually, Tm

S is called the
upper limit of superheating. For our LJ system, Tm

S is around
0.76 in the GH method. In other words, the maximum super-
heating is Tm

S −Tm
E =0.142, or about 23% above the equilib-

rium melting point for the Lennard-Jones model system. This
value is in good agreement with many previous results re-
ported in the literature.16,18,19,21

B. Structure characterization

Melting of a crystal is a topologically order-to-disorder
transition. During melting, the crystal loses its long-range
translational order and becomes a liquid with a disordered
structure. The structural change can be monitored, among
other ways, by pair distribution functions �PDFs�. PDFs de-
scribe the average atom densities at different interatomic
distances.24 Because they can be measured from x-ray dif-
fraction or other scattering experiments, PDFs are very use-
ful for differentiating the structures in crystal and liquid
states. So using PDFs, one can compare the simulation and
experiment directly. For a monatomic system, the PDF can
be calculated straightforwardly in a simulation as

g�r� =
V

N24�r2dr
�
i=1

N

	Ni�r� , �1�

where V is the volume of the total system, N is the total
number of atoms in the system, and 	Ni�r� is the number of
atoms in a shell between the distance r and r+dr from the
position of atom i. For each atom, we can calculate the atom
densities at different distances from it, and the PDF is the
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average of this density over all the atoms. In addition, we use
direct visualization which is very valuable when other quan-
titative methods, including the PDF, become insufficient.

C. Defect characterization

Number of the first nearest neighbors (1NNs). The pres-
ence of structural defects is an integral part of melting tran-
sition when a crystal is heated toward the melting point. The
number of the 1NNs is an important characteristic of the
crystal symmetry. It is also closely related to many structural
defects and transport properties. A missing nearest-neighbor
atom could form a vacancy that is thought to play an impor-
tant role in melting.5 For a perfect fcc crystal, the 1NN num-
ber is 12. If the crystal structure changes, it becomes differ-
ent. In some previous papers,17,27,28 the authors defined an
atom as a defective atom if the number of its 1NNs is not 12.
In this work, we find that this definition leads to a higher
upper bound. Based on the statistical measurement of the
1NN distribution in a pure liquid whose average number of
1NN is 9.4 �see detailed information in Sec. III C�, we define
an atom as being “liquidlike” when it has nine or less nearest
neighbors. When the temperature is high, thermal fluctua-
tions can aggregate the defective atoms to form clusters,
some of which are thought to form “dislocation lines” or
“dislocation loops” in some previous studies.17,27–29 To cal-
culate the number of the 1NNs, we use the critical cutoff
distance at which the PDF reaches its first minimum. We
chose the base value as 1.33� at T=0.2 and adjusted it ac-
cording to the lattice expansion at different temperatures.

Interstitial defects. The interstitial defects can play an im-
portant role in melting.20,30–34 If an atom inside a solid jumps
from a lattice site to an interstitial site, it could create an
interstice-vacancy pair. The interstitial atom intends to push
the surrounding atoms away from their equilibrium sites.
Thus, an interstitial defect is in a high-energy state and can
cause serious disordering or instability to the crystal. Fors-
blom and Grimvall20,30 have shown that a cluster of ten
interstice-vacancy pairs can trigger melting in aluminum. For
fcc crystals, there are two types of interstitial sites: octahe-
dral site �Fig. 1�a�� and tetrahedral site �Fig. 1�b��.35 The
minimum distance between an octahedral site and its nearest
atom is roct-atom=a0 /2, while the minimum distance between

a tetrahedral site and its nearest atom is rtet-atom=�3a0 /4,
where a0 is the lattice constant of the fcc crystal. If an atom
is sitting on an interstitial site, then the distance between this
atom and its nearest neighbor should be close to either
roct-atom or rtet-atom, depending on the type of the interstitial
site it occupies. In our simulation, by searching the minimum
interatomic distance among all atom pairs during melting
process, we can identify the interstitials: if the distance is
close to roct-atom, there may be an octahedron interstitial, or if
it matches rtet-atom, there may be a tetrahedron interstitial.
Another possible outcome is that the minimum distance is
much larger than either roct-atom or rtet-atom. In such case, the
interstitial defect may not form.

Vacancies and dynamic 1NN disorder. When an atom is
missing from the lattice site, an open space forms, which
suggests that by using the 1NN number we may define a
vacancy. However, a vacancy should also have a long life-
time. Therefore, this open space is not necessarily a stable
vacancy. If its lifetime is as long as a few nanoseconds, we
should treat it as a vacancy. If it only lasts for a short time
period, such as a few hundred femptoseconds, we define it as
dynamic 1NN disorder. As shown below, the dynamic 1NN
disorder plays an important role in homogeneous melting.

D. Mean square displacement

From the atomic point of view, melting basically involves
atoms moving away randomly from their equilibrium lattice
positions under thermal agitation so that a crystal loses its
translational order. The atomic displacement is a key param-
eter for characterizing and understanding the melting pro-
cess. The mean square displacement �MSD� can be calcu-
lated by taking the average of the square displacement over
all atoms in the system,

S2�t� =
1

N
�
i=1

N

�r�i�t� − r�i�0��2, �2�

where r�i�0� stands for the initial �or equilibrium� position of
atom i at time 0 and r�i�t� represents the new position at time
t. Lindemann theory3 considers that the MSD is mainly con-
tributed from the lattice vibration. It states that when the
vibrational root mean square displacement �RMSD� exceeds
a critical value, melting occurs. Typically, the critical RMSD
is about 20% of the nearest-neighbor distance.3,16 However,
as we show in Sec. III B, diffusive motions of atoms also
induce atomic displacement, which can become significant at
high temperatures in the superheating regime. Under certain
conditions, the system does not melt even though the RMSD
is much larger than the critical value. It is this realization of
the diffusive MSD that led us to focus on the use of isother-
mal heating and the discovery of the connection between
homogeneous melting and the self-diffusion.

III. RESULTS

A. Heating rate effects: Gradual heating
versus isothermal heating

In order to test the heating rate effects on melting at su-
perheating, we use both the GH and ISH methods to heat a

FIG. 1. �Color online� Two types of interstitial sites in fcc crys-
tals. The distance between the interstitial site �filled circle in green
�gray�� and its nearest atom �filled circle in black� is indicated by a
dashed line in each figure, where a0 stands for the lattice constant.
�a� Octahedral site and �b� tetrahedral site.
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crystal sample of 4000 atoms. �Note that a smaller system of
500 atoms is also used for the purpose of easy visualization
and short simulation time. We shall make note for these cases
when they occur.� Figure 2�a� shows the melting process
under the GH condition. The sample is heated continuously
from T=0.2 �=24 K� to 0.9 �=108 K� with a heating rate of
1.33�1011 K /s �where T increases 0.2 K every 300 MD
steps�. As the temperature increases, the system volume ex-
pands. At T=0.76 �or after 0.55 ns�, the system volume
jumps to a larger value, indicating that melting occurs at this
temperature. This temperature is usually called the upper
limit of the superheating, Tm

S . In most previous studies,16–19

the GH method was used to determine Tm
S .

For most solids, the typical lattice vibration frequency is
about 1012–1014 Hz. Generally, to achieve full relaxation or
thermal equilibration for atomic configuration at a given
temperature, hundreds to thousands of cycles of lattice
vibration are needed, which corresponds to about
10−10–10−12 seconds, or 103–105 MD steps in a typical MD
simulation �1 MD step=5�10−15 s in our system�. In the
superheating regime, the lattice vibration frequency becomes
lower,35 typically by at least an order of magnitude, and thus

the minimum time needed for relaxation is an order of mag-
nitude higher. However, under extremely high heating rate in
MD simulation �e.g., 1011 K /s or higher�, the allowed relax-
ation time at each temperature is only about 103 MD steps or
less, which may become insufficient for the relaxation. Ad-
ditionally, as revealed by this work, the relaxation time is
further constrained by the diffusion motion needed to reach
melting at each fixed temperature, which could be millions
of MD steps �see Sec. III B�. Therefore, the atoms have little
time to sample the phase space at each temperature before
the system is elevated to a new temperature. This serious
lack of relaxation is usually manifested as strong hysteresis
at the melting temperature. In other words, the system is
simply ushered to the limit of the superheating, Tm

S . There-
fore, only transient thermodynamic properties can be ob-
tained at the temperatures toward Tm

S . Moreover, the kinetic
processes, in particular, the atomic movements, which are
important for understanding the detailed microscopic mecha-
nisms of melting, are hindered or suppressed because the
atoms are not given enough time to relax �or move afar�.
Indeed, as shown in Sec. III D, the complex diffusion mo-
tions will not be fully revealed if the isothermal heating
method �or slow heating rate20� is not used.

To overcome this fundamental limitation, we employed
the isothermal heating method. As we mentioned in Sec.
II A, first, the GH method is used to bring the system to a
specific temperature in the superheating regime, and then the
heating process is stopped and the system is held isother-
mally at this temperature for a long period of time �up to
106–107 MD steps�, which amounts to an infinitely slow
heating rate at this temperature. Figure 2�b� shows the melt-
ing process using the ISH method. First, the system is heated
from 0.2 to 0.739, which is about 3% below Tm

S �=0.76�, with
a heating rate of 1.33�1011 K /s. Then, at T=0.739, the
gradual heating is stopped and the system is held isother-
mally. At the beginning of the isothermal regime, the system
is still in the crystalline state. After about 1.4 ns, the system
volume increases suddenly, indicating that the system trans-
forms from crystal state to liquid state. Therefore, keeping
the system isothermally would lead to lower homogeneous
melting temperatures that fall within the superheating regime
below Tm

S .36 Using the ISH method, we find a quiescent or
incubation period when melting can occur at lower tempera-
tures below Tm

S . Figure 2�b� shows that the time needed to
observe melting increases dramatically as the isothermal
temperature becomes lower. This quiescent period could last
millions of MD steps or longer depending on how far the
temperature is from Tm

S . �This is also why we only focused
on a few temperatures slightly below Tm

S in this study.� In
contrast, there is no such quiescent period observed in
gradual heating with high heating rate. Thus, using the GH
with high heating rate would surely miss the important ki-
netic information in the quiescent period.

In Fig. 2�b�, we pick three representative times for inves-
tigation: time A at T=0.3 in the gradual heating period, time
B at T=0.739 in the isothermal regime and before melting
occurs, and time C at T=0.739 in the isothermal heating
regime but after melting occurs. In Fig. 3, we show the snap-
shots �two-dimensional �2D� projections along the �100� di-
rection� of the atomic configurations at these times, and in

FIG. 2. Atomic volume change during melting in gradual heat-
ing and isothermal heating methods. �a� Gradual heating method.
The bottom x axis shows the time from the beginning of the simu-
lation, and the top x axis shows the corresponding temperature at
each time. Tm

E stands for the normal �or equilibrium� melting point
and Tm

S represents the upper limit of superheating obtained at high
heating rate. �b� Isothermal heating method. The isothermal heating
starts at T=0.739. Three moments �marked by A, B, and C� are
picked for investigation in Figs. 3 and 4.
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Fig. 4 we show the corresponding PDFs. At time A where the
temperature is still low, the atoms vibrate around their equi-
librium sites and the structure is nearly a perfect fcc crystal
�Fig. 3�a��. The PDF at this temperature �Fig. 4� has very
sharp peaks. The distance at which the first peak reaches its
minimum is used as the cutoff distance for locating the 1NNs
at this temperature. At time B where the melting has not
occurred in the isothermal regime, some atoms are disor-
dered but the overall crystal structure still remains �Fig.
3�b��. The crystal peaks of the PDF at this temperature be-
come broader, but one is still able to identify them. At time C
where the melting has occurred, most atoms have moved
away from their equilibrium sites and the system becomes a
liquid �Fig. 3�c��. Most peaks in the PDF disappear and ap-
proach the uniform atomic density at large interatomic dis-
tance. There is, therefore, a long incubation time before melt-
ing occurs in the isothermal regime, during which the system
still keeps the crystal symmetry, despite large distortions. As
shown below, this quiescent period provides a valuable win-
dow for us to investigate the kinetics and detailed atomic
motions leading to the final melting.

B. Atom movements

Melting is a spatial transition with atoms moving away
randomly and permanently from their equilibrium lattice po-

sitions under thermal agitation. There are two types of dis-
placements in the thermally agitated crystals, vibrational and
diffusive displacements. The former was recognized earlier
by Lindemann3 in relation to melting. The criterion named
after him states that a crystal becomes a liquid when the ratio
of the RMSD of the vibrating atoms to the average nearest-
neighbor distance reaches a critical value, which is usually
around 0.2 for most metals.21 With the MD simulation in
conjunction with the isothermal heating, we can look into
more detailed atomic movements in the superheating regime
other than just the MSD from lattice vibrations. The infor-
mation will furnish the basis for our understanding of micro-
scopic mechanisms of homogeneous melting.

We have calculated the MSD under both the gradual heat-
ing and isothermal heating conditions. It is worth noting that
the reference atom positions for calculating the MSD should
be adjusted with temperature as the system volume expands
at each elevated temperature. In this work, the reference po-
sitions are the perfect fcc lattice sites. The lattice constant of
the reference lattice at each temperature is calculated from
the temperature-dependent crystal volume:

a0 = �4V�T�/N�1/3, �3�

where V�T� is the fcc crystal volume at temperature T from
the MD simulation and N is the number of atoms in the
system.

In the GH case, the system temperature increases continu-
ously from 0.2 to 0.8 with a heating rate of 1.33
�1011 K /s. Figure 5�a� shows the MSD during the gradual
heating as a function of both time �bottom x axis� and tem-
perature �top x axis�. The rapid increase of the MSD at
0.55 ns �T=0.76 accordingly� indicates melting transition.
The critical MSD for melting �indicated by the arrow in Fig.
5�a�� is about 0.04�2. So the RMSD, 	rRMSD, is about 0.2�.
At T=0.76, the average volume per atom, 
, is about
1.13�3, so that the average first nearest-neighbor distance is
rNN=2−1/2�4
�1/3=1.17�. Thus, the critical Lindemann ratio
for melting is �

L
*=	rRMSD /rNN=0.171, which is in good

agreement with the previous result.16 So the Lindemann cri-
terion appears to be satisfied in the GH method.

In the ISH case, the system temperature is held isother-
mally at T=0.738. Note that at T=0.739, a homogeneous
melting occurs after 1.45 ns in the isothermal period, as
shown in Fig. 2�b�. However, at T=0.738 in the isothermal
regime, the sample does not melt for at least 3.5 ns �about
700000 MD steps�. It may be possible to observe melting at
this temperature or even lower temperatures if the simulation
time is sufficiently long. However, the long simulation time
needed for observing melting at lower temperatures exceeds
our computing capacity. Thus, in this work, we treat the sys-
tem at T=0.738 as a nonmelting system within the achiev-
able simulation time. In addition, we performed several runs
for the systems with different initial conditions. For all the
simulations, melting occurs at 0.739 but does not at 0.738
within 3.5 ns isothermal period. The incubation time before
melting, however, is found to range from 0.33 to 1.5 ns at
T=0.739. So the mean time is around 0.90 ns in a statistical
sense. The calculated MSD as a function of time is shown in
Fig. 5�b�. The isothermal condition is set after about 0.55 ns

FIG. 3. �Color online� Two-dimensional projected snapshots of
the atomic configurations along the �100� direction at the three
times marked in Fig. 2�b�. �a� At time A, T=0.3; �b� at time B,
T=0.739 and before melting occurs; and �c� at time C, T=0.739 and
after melting occurs.

FIG. 4. �Color online� Pair distribution function �PDF� at the
three times marked in Fig. 2�b�. Blue �black� short dash dot line:
T=0.3 �time A�. �b� Red �dark gray� solid line: T=0.739 and before
melting occurs �time B�. �c� Green �light gray� short dash line: T
=0.739 and after melting occurs �time C�.
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from the beginning of the simulation. In the isothermal re-
gime, the MSD keeps increasing with time. At the end of the
simulation �4.6 ns�, the MSD is about 0.8�2, which is much
larger than the critical value predicted from the Lindemann
criterion �	0.04�2�. In addition, there are sporadic increases
in the MSD that, as we discuss in Sec. III D, are from cor-
related atomic motions. It is worth noting again that during
the entire isothermal heating, the system still remains in
crystalline state. Therefore, the Lindemann criterion is not
satisfied under the ISH condition, which is quite different
from the GH case.

More detailed information can be obtained regarding the
movements of the atoms that contribute to the extraordinarily
large MSD at T=0.738. To do so, in Fig. 6, we plot the
distributions of the atomic displacements at three times
marked by A–C in Fig. 5�b�. The displacement distribution
function measures the fraction of the atoms that travel a dis-
tance r at an elapsed time from their original equilibrium
sites. Note that the original equilibrium sites are obtained by
averaging atom positions over the first 0.025 ns period in the
isothermal regime. Then, we calculated the distributions at
three elapsed times: �a� time A after 0.025 ns isothermal run
�right after obtaining the equilibrium atomic positions�, �b�
time B after 1 ns isothermal run, and �c� time C after 2 ns
isothermal run. Distribution �a� shows that the first �main�

peak is very sharp and its center is at r�0.03�, which is
about 2.6% of the first-nearest-neighbor distance, indicating
that all atoms vibrate around their original equilibrium sites
at that time. After 1 ns isothermal run, Distribution �b� shows
that the height of the first peak decreases to a certain extent
and the width increases slightly. Overall, most atoms still
vibrate around their original sites with very small displace-
ments. However, one can find that some atoms have traveled
a distance of about 1.15�, as indicated by the arrow at the
second peak in Fig. 6. This displacement is very close to the
first-nearest-neighbor distance, �2 /2a0�1.16� �where a0
�1.647� at T=0.738�, implying that some atoms have
hopped to their first neighboring lattice sites. After 2 ns iso-
thermal run, the height of this peak increases in distribution
�c�, indicating that more atoms have traveled to their first
neighboring sites. Moreover, another peak appears at r
�1.64�, which is very close to the second-nearest-neighbor
distance, a0�1.647�, indicating that some atoms have made
a second-order hopping from their first-nearest-neighbor
sites.

The above results clearly show that diffusion is a major
foreplay in the quiescent period before homogeneous melting
occurs. The Lindemann criterion derived from lattice vibra-
tion is therefore inadequate in predicting homogeneous melt-
ing under the isothermal heating or low heating rate condi-
tion. In order to reveal the connection between the long-
range diffusive motion and melting itself, more detailed
characterization of defects is needed.

C. Defect process

For atoms to hop or diffuse in a crystal, some extra open
spaces are needed. These spaces can be vacancies, interstitial
sites, or, as shown below, dynamic 1NN disorder. Since the
initial crystal is perfect in our simulation, the atomic hopping
must be helped with some thermally activated defects with

FIG. 5. Mean square displacement �MSD� in both gradual heat-
ing and isothermal heating methods. �a� Gradual heating. The bot-
tom x axis is the time, and the top x axis is the temperature. The
upper superheating limit is marked by Tm

S . �b� Isothermal heating
method. The isothermal heating starts at T=0.738. No melting was
observed in the isothermal regime despite of the large MSD. Three
times �A–C� are picked for investigation in Fig. 6.

FIG. 6. �Color online� Distributions of the atom displacements
at different times �marked by A, B, and C in Fig. 5�b�� in the
isothermal regime. The time is scaled to zero at the beginning of the
isothermal regime. Blue �black� short dash line: after 0.025 ns from
the beginning of isothermal heating; red �dark gray� short dot line:
after 1.0 ns; green �light gray� solid line: after 2.0 ns.
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open spaces. The first candidate is the interstitial. In Sec.
II C, we have discussed that the interstitial can be identified
from the characteristic distance between an interstitial site
and its nearest lattice atom. As shown in Fig. 1, the distance
between an octahedral site and its nearest atom is roct-atom
=a0 /2, and that between a tetrahedral site and its nearest
neighbor is rtet-atom=�3a0 /4. At T=0.739 �note that melting
eventually occurs in the isothermal regime at this tempera-
ture�, the average crystal lattice constant is a0�1.647�.
Therefore, the respective characteristic distances are
roct-atom=0.82� and rtet-atom=0.71�. Prior to melting, if the
thermal fluctuations generate an interstitial defect, the mini-
mum distance between the defective �interstitial� atom and
its surrounding atoms should be close to one of the charac-
teristic interstitial-atom distances.

In order to check whether some atoms occupy the inter-
stitial sites before melting, we did the following investiga-
tion. We heated a perfect crystal from T=0.2 to 0.739 and
then held the system isothermally at this temperature, and the
heating procedure is shown in Fig. 2�b�. At T=0.739, ini-
tially the system is in the crystal state and finally becomes a
liquid after 1.4 ns. During this process, we calculated the
interatomic distances of all pairs of the atoms in the system
at every MD step and subsequently sorted out the shortest
distance among all pairs. The minimum interatomic distance
is logged during this process as shown in Fig. 7. As the
temperature increases, the shortest interatomic distance de-
creases in the gradual heating regime �from T=0.2 to 0.739�.
This means that atoms displace farther and farther away from
their equilibrium sites and the vibrating atoms are getting
closer momentarily, which was originally used by Linde-
mann in his melting criterion.3 So the shortest interatomic
distance among all atom pairs becomes smaller and smaller.
In the isothermal heating regime before melting, the shortest
distance is found to be about 0.89�, which is still much
larger than both roct-atom=0.82� and rtet-atom=0.71�. This re-
sult indicates that atoms have not occupied any interstitial

sites before melting occurs. It is also worth mentioning that
even after melting occurs, the shortest interatomic distance in
liquid state is still about 0.89�.

The next candidate is vacancy. Vacancy formation in crys-
tals is closely related to the number of the first nearest neigh-
bors. A missing neighbor of an atom would be a necessary
sign for the formation of a nearby vacancy. Using the method
outlined in Sec. II C, we have calculated the average number
of the 1NNs as a function of time, as shown in Fig. 8. The
heating process is the same as that shown in Fig. 2�b�. At low
temperatures, the 1NN number is exactly 12, indicating that
the crystal has a perfect fcc structure. As the temperature
increases, the thermal fluctuations displace atoms away from
their equilibrium sites, so some atoms lose some of their
1NNs. After 0.25 ns �at T=0.42�, the number starts to devi-
ate from 12. After the temperature reaches the isothermal
regime �T=0.739�, the average number decreases to 11.7. In
the quiescent period before melting, the average number re-
mains at 11.7 with slight fluctuations. After melting occurs,
the average number drops abruptly to 9.4.

Figure 9 shows five distributions of the number of the
1NNs at different times marked by A to E in Fig. 8. At time
A �T=0.2�, 100% of the atoms have 12 1NNs. At time B
�T=0.64�, about 75% of the atoms have 12 1NNs, about 16%
of them have 11 1NNs, 8% of them have 13 1NNs, and 1%
of them have 10 1NNs. This means that the crystal structure
has some distortions at this temperature, but the fcc structure
is still maintained. At time C �T=0.739, before melting oc-
curs� and time D �T=0.739, when melting begins�, the dis-
tributions are almost identical. About 52% of atoms have 12
1NNs. The percentages for the rest of the numbers are 1%
for 9 1NNs, 9.5% for 10 1NNs, 28% for 11 1NNs, and 9.5%
for 13 1NNs. At time E �T=0.739, after melting occurs�, the
distribution is very flat because the liquid is highly disor-
dered. The number of the 1NNs ranges from 6 to 13 and the
average number is about 9.4. From time D �crystal� to time E
�liquid�, the change in the distribution becomes very obvious
during the melting transition. Thus, one can define, in a sta-
tistical sense, an atom with nine or less 1NNs �which is

FIG. 7. The shortest interatomic distance as a function of time
during the isothermal heating at T=0.739. The ideal distance be-
tween an octahedral interstitial site and its neighboring atom is in-
dicated by roct-atom, and that between a tetrahedral interstitial site
and its neighboring atom is indicated by rtet-atom.

FIG. 8. Evolution of the average number of the first nearest
neighbors during the isothermal melting process at T=0.739. Five
times �A–E� are picked for investigation as shown in Fig. 9.
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approximately the mean value for the liquid, see time E in
Fig. 9� as a liquidlike atom.

A vacancy in the fcc structure corresponds to a missing
atom from the lattice site, or a missing neighbor for the at-
oms surrounding the vacancy. If we follow this argument, the
fraction of the vacancies is approximately 1 /12 of the frac-
tion of the atoms with a missing 1NN. At T=0.739 before
melting, there are about 40% atoms that have less than 12
1NNs, which leads to the vacancy concentration of about
3%–4%. This concentration is at the same order of magni-
tude as those estimated for most metals at melting.5 The
experimental measurement of the vacancy concentration of
copper37 is only about 1.9�10−4. However, the measurement
was for heterogeneous melting and was performed at tem-
peratures below the equilibrium melting point. In the hetero-
geneous melting, the presence of surface suppresses the
formation of vacancies inside the crystal. Thus, this measure-
ment cannot be used as the reference for homogeneous melt-
ing. To the best of our knowledge, no experimental measure-
ment is available yet for homogeneous melting.

On the other hand, to form a vacancy in a perfect crystal
without surface �if the crystal has surface or interface, the
atoms can escape to these places�, an interstitial should also
be present. The lack of interstitials as seen in this work sug-
gests that the so-called vacancies as we mentioned in last
paragraph may consist mainly of the open spaces in the su-
perheated crystal in the form of some transient disorder.
These open spaces cannot be classified as the vacancies de-
fined conventionally that have long lifetimes. As mentioned
in Sec. II C, we define this kind of transient open space as
the dynamic 1NN disorder. The dynamic 1NN disorder gives
rise to the missing neighbor on a statistical sense as mea-
sured from the distributions over a short period of time �Fig.
9� and plays an important role in homogeneous melting.

D. Self-diffusion rings or loops

By far, we have established the following important re-
sults from a superheated crystal before melting: �1� the pres-

ence of open spaces, including the dynamic 1NNs and va-
cancies; �2� the diffusive motions involving atom hopping to
neighboring lattice sites while the crystal lattice remains
largely intact; and �3� the subsequent evolution of the atoms
in this environment leads to homogeneous melting. Since the
atom hopping is closely related to destroying the stability of
the crystal, it is reasonable to expect that it is the diffusive
motion that eventually leads to liquid phase nucleation and
melting. In the following, we will further illuminate this pro-
cess with a particular emphasis on establishing its relation
with homogeneous melting. For clear visualization, in this
section, we use a smaller system of 500 atoms at the isother-
mal temperature of 0.725. Note that in the gradual heating,
the upper superheating limit Tm

s is at about 0.76 for different
size systems. In the isothermal heating, however, the smaller
system can melt at a lower temperature in the isothermal
regime. The system of 500 atoms melts at 0.725, while a
system of 4000 atoms melts at 0.739. This is because the
smaller system has larger thermal fluctuations and is more
vulnerable to distortions during the isothermal heating. When
the number of atoms is greater than 4000, the finite-size ef-
fects become insignificant and the isothermal melting tem-
perature approaches 0.740.

When the temperature reaches the isothermal heating re-
gime at 0.725, the position of each atom is averaged over the
first 0.025 ns �5000 MD steps� period to get the equilibrium
positions, which are used as the reference positions through-
out the isothermal heating simulation. In Fig. 10�a�, we show
the 2D projection of the equilibrium or reference atomic po-
sitions projected along �110� direction. The atoms are repre-
sented by small blue �black� spheres. Apparently, the atomic
positions at the beginning of the isothermal heating are well
ordered and form a nearly perfect fcc lattice. Next, we
mapped out the atomic trajectories, which are done by aver-
aging the position of each atom over every 100 MD steps
�0.5 ps�. Here, we use the “averaged” positions instead of
“instantaneous” ones because the former are relatively free
of the “noises” from thermal fluctuations. As time elapses in
the isothermal regime, the thermal fluctuations cause atoms
to wander away. Figure 10�b� shows the atomic displace-
ments after 2.65 ns from the beginning of the isothermal
heating. For visualization purpose, we still use small blue

FIG. 9. �Color online� Distributions of the number of the first
nearest neighbors at different times �marked by A–E in Fig. 8�
during the isothermal melting process. time A: at T=0.2; time B: at
T=0.64; time C: at T=0.739 and before melting occurs; time D: at
T=0.739 and when melting occurs; time E: at T=0.739 and after
melting occurs.

FIG. 10. �Color online� Atom hopping in a crystal consisting of
500 atoms during the isothermal heating. The snapshots are 2D
projections along the �110� direction. The smaller spheres in blue
�black� represent the equilibrium atom positions. The bigger spheres
in other colors represent hopping atoms. �a� Equilibrium atom po-
sitions and �b� clusters �indicated by bigger atoms� formed by the
atom hopping. The vectors connect the equilibrium and new posi-
tions. The arrowheads of the vectors mark the new atom positions.
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spheres to show the equilibrium positions as we did in Fig.
10�a�. However, the new atom positions are not shown with
spheres. Instead, we use vectors to connect the new atom
positions and the equilibrium positions. Therefore, in Fig.
10�b�, the actual new atom positions are at the arrowheads of
the vectors. Using this way, we can clearly see how far the
atoms displace from their equilibrium positions and which
atoms become disordered. One can see that most atoms only
displace slightly around their equilibrium positions. How-
ever, a few atoms clearly become diffusive and their dis-
placements are about one nearest-neighbor distance, which is
in good agreement with the prediction drawn from Fig. 6. In
other words, these atoms have hopped to their neighboring
lattice sites. To make these atoms more visible, we use big-
ger spheres to represent them. The extraordinary large mag-
nitude of the MSD seen in Fig. 5�b� is mainly caused by this
kind of atom hopping in the isothermal regime.

Figure 10�b� also shows that the atom hopping occurs in a
collective way. Since there are no preformed vacancies in the
superheated crystal, a hopping atom needs to “kick” a neigh-
boring atom away in order to occupy its lattice site, or to put
it differently, to take advantage of the open space formed at
the neighboring atom. The neighboring atom also needs to
kick the third atom away, and so forth. As a result, these
atoms form a diffusion ring or diffusion loop. This formation
of the diffusion loops only requires some short-lived open
spaces, or dynamic 1NN disorder. In Fig. 10�b�, the atoms
belonging to the same loop are shown with the same color.

There are two types of the diffusion loops, closed loop
and open loop, as illustrated in Fig. 11. In the closed loop,
each atom displaces one first-nearest-neighbor distance. Af-
ter the hopping completes, the original lattice site of the first
hopping atom is occupied by the last hopping atom. Thus,
there is no vacancy, or other permanent disorder, left in the
crystal after the loop forms completely. Clearly, the closed
loops do not cause topological disorder to the lattice �or
melting�, because atoms in the closed loops have already
finished hopping from lattice to lattice sites. However, they
contribute a large fraction to the MSD as shown in Fig. 5�b�.
In the open loop, the first hopping atom leaves an open
space, or a dynamic 1NN disorder, and the last atom moves
less than one nearest-neighbor distance from its initial lattice
site. For example, loop A in Fig. 10�b� is a closed loop �note
that the bottom atom in green color is part of this loop due to
the periodic boundary conditions�, while loops B and C are
open loops. An open loop can also be considered as being in
a transient state of forming a closed loop.

The detailed process of the loop formation can be seen
from four snapshots in Fig. 12. The pictures are tilted slightly

for better visualization. In all snapshots, the spheres �both
red and blue� represent the original equilibrium atom posi-
tions at the beginning of the isothermal regime. The blue
spheres represent nonhopping atoms, and the red spheres
represent hopping atoms. The new atom positions are at the
arrowheads of the vectors. As shown in Fig. 12�a�, initially
an atom �indicated by red color� moves to one of its nearest
neighboring sites. We define the first hopping atom as the
head atom of the loop. The atom at that neighbor site is
“pushed” away, or “moved” away, as indicated by the long
blue vectors. In addition, another atom tends to fill the open
space created by the first hopping atom. After 1.6 ps, six
atoms have hopped from their initial positions, as shown in
Fig. 12�b�. The six atoms form a transient or open loop while
the crystal lattice remains intact. The two atoms in blue color
near the end �the sixth hopping atom� of the loop have al-
ready moved away from their original positions but have not
arrived at the new lattice sites yet. After 4.4 ps, eight atoms
have hopped from their initial positions, as shown in Fig.
12�c�. After 6.1 ps, 11 atoms have hopped away from their
initial positions, as shown in Fig. 12�d�. Due to the periodic
boundary conditions, the 11 atoms form a closed loop. From
this process, we can estimate the average time of one atom
hopping, which is about 6.1 ps /11�0.55 ps. Using systems
of different sizes, we found that the number of atoms in a
diffusion loop depends on the sample size. It could be as
small as a few atoms in small systems and as big as a few
hundred atoms in large systems. This is because the diffusion
loops can percolate across the entire system. Therefore, it is
not surprising to find bigger diffusion loops in a larger sys-
tem.

E. Homogeneous melting caused by ring diffusion

Without preexisting defects or surfaces in a perfect crys-
tal, melting must nucleate from internal defects caused by
thermal agitation. In Sec. III C, we have ruled out the possi-
bility of forming interstitials in perfect fcc crystals. Instead,

FIG. 11. Schematic illustrations of two types of diffusion loops.
�a� A closed diffusion loop and �b� an open diffusion loop.

FIG. 12. �Color online� Four snapshots of forming a diffusion
loop. The viewing angle is tilted slightly from the �110� direction.
The blue �black� spheres represent original equilibrium sites. The
red �dark gray� spheres represent the hopping atoms. The vectors
represent the atom displacements and the arrowheads indicate the
new atom positions. �a� At the beginning of forming a loop, �b� after
1.6 ps, �c� after 4.4 ps, and �d� after 6.1 ps.
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we observed enhanced self-diffusion at elevated tempera-
tures. The atomic motions take place predominantly in the
form of self-diffusion ring or loop in which the atoms hop to
its nearby lattices with the help of the thermally agitated
open spaces, or dynamic 1NN disorder. In the following, we
show that it is the hopping atoms that cause nucleation of the
liquid phase and thus the homogeneous melting when they
reach a critical number density.

The evolution of the diffusion loops at T=0.725 in a sys-
tem of 500 atoms is shown with four three-dimensional snap-
shots in Fig. 13. For clear visualization, only the hopping
atoms are shown. As same as in Fig. 10, the spheres repre-
sent the initial equilibrium atom positions, and the vector
pointing from each atom indicates the displacement direction
of that atom. The new atom positions are at the arrowheads
of vectors. Figure 13�a� shows a closed diffusion loop in
which each atom moves one nearest-neighbor distance. After
the closed loop forms, the hopping stops and all the atoms in
the loop vibrate around their new positions. Thus, the closed
loop does not affect the stability of the crystal after the loop
completes. After 7 ps, three new diffusion loops appear, as
shown in different colors in Fig. 13�b�. The three new loops
are all open loops. In addition, the loop in green color and
the loop in red color are very close to each other. The closed
loop shown in Fig. 13�a� is still there, indicating that the
atoms in this loop did not make further hopping within this
time period. Note that it is possible for the atoms in closed
loops to hop again later, and there is no history effect on the
future hopping: A previously hopping atom does not have the
advantage or disadvantage for a new jump. After additional
2 ps, the green and red loops shown in Fig. 13�b� joined to
form a single loop, which is shown in green color in Fig.
13�c�. However, just 0.2 ps after the two open loops merge to
one loop, it collapses and some new small open loops appear,
as shown in Fig. 13�d�. At this moment, the system starts to

melt. Thus, it seems that the interaction of open loops can
cause instability to the system. On the other hand, one can
also find that the closed loop in Fig. 13�a� is stable through-
out the nucleation process. Thus, the closed loop does not
destabilize the system.

The connection between the open loops and liquid
nucleus formation can be further illuminated through the en-
thalpy change of atoms. When atoms become disordered or
lose some neighbors, their enthalpies increase. If the en-
thalpy of an atom is high, it is more liquidlike, and vice
versa.25 At each stage shown in Fig. 13, we calculated the
enthalpy of each atom averaged over every 0.5 ps �100 MD
steps�. Then, each atom is colored according to its individual
enthalpy in the snapshots. The color continuously changes
from bright green �for solidlike atoms� to dark purple �for
liquidlike atoms�. The details of the coloring scheme can be
found in our previous work.25,38 In Fig. 14, we show the
corresponding snapshots projected along the �110� direction.
In Fig. 14�a�, most spheres are in light green color, which
means that these atoms are more solidlike. One also can find
that the atom displacements are very small, and the atoms in
the closed loop are also solidlike ones. In Fig. 14�b�, some
atoms displace away from their equilibrium sites. It can be
clearly seen that most displaced atoms �especially the atoms
in the open loops� are in dark green colors, indicating that
these atoms are in the intermediate state between the solid
and liquid. In Fig. 14�c�, more displaced atoms appear and
some of them are in dark purple color, indicating that they
become liquidlike atoms. In Fig. 14�d�, almost all atoms dis-
place largely away from their equilibrium sites. At the mean
time, the colors of these atoms are close to dark purple, in-
dicating that they become liquidlike atoms. Therefore, the
displaced atoms coincide with the atoms of high enthalpies.
In other words, the liquidlike atoms prefer to appear and
grow at or in the vicinity of the open diffusion loops.

In open loops, atoms move in an asynchronized fashion.
The head, or the first hopping atom in an open loop, leaves
an open space behind it. The tail, or the last moving atom in
the loop, displaces away from its original position but has

FIG. 13. �Color online� Three-dimensional snapshots of the dif-
fusion loops during the isothermal melting process. In order to il-
lustrate the diffusion loops more clearly, only the atoms in the dif-
fusion loops are shown. Different loops are distinguished by
different colors. �a� At t=0 �the beginning of isothermal regime�,
�b� after 7.0 ps, �c� after 9.0 ps, and �d� after 9.2 ps.

FIG. 14. �Color online� Enthalpy change of each atom during
the formation of the diffusion loops. Each sphere is colored accord-
ing to its enthalpy. The bright green �light gray� is for low enthalpy
�solidlike� atoms and the dark purple �dark gray� is for high en-
thalpy �liquidlike� atoms. The vectors represent the atom displace-
ments and the arrowheads represent the actual atom positions. �a�
At t=0, �b� after 7.0 ps, �c� after 9.0 ps, and �d� after 9.2 ps.
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not arrived at the new position yet. The other atoms in the
open loop have hopped to their neighboring sites. Thus, the
head and tail positions in an open loop are most potent to
cause the instability to the crystal. In order to cause sufficient
disorder to nucleate a liquid phase, certain density of the
head and tail atoms �or open loops� is needed. The number
density is defined as the fraction of the number of these
atoms, which is twice of the number of open loops, to the
number of atoms in the system.

As an example, we have investigated the density of these
atoms in a system consisting of 4000 atoms at both T
=0.738 and T=0.739. The crystal does not melt at T
=0.738 but does at T=0.739 within the time period of 4.5 ns.
At both temperatures, extensive self-diffusion takes place
and the corresponding snapshots of the open diffusion loops
are shown in Fig. 15. Although many atoms have made hop-
ping at T=0.738 �Fig. 15�a��, there are only three open loops
and each loop is very long �consisting of a few hundred
atoms�. At T=0.739 �Fig. 15�b��, there are more open loops,
which means that there are more head and tail atoms. So the
system is less stable at this temperature. We have calculated
the time evolution of the number of open loops at both tem-
peratures, as shown in Fig. 16�a�. Note in this graph the time
is scaled to zero when the temperature is in the isothermal
regime. At T=0.738, the number of the open loops is usually
less than 10. At T=0.739, the number of the open loops is
around 5 before melting occurs but increases rapidly when
melting occurs. Figure 16�b� shows the zoom-in view during
the short transition period at T=0.739. Before melting oc-
curs, the number of the open loops is 21. One can also find
that if the number is greater than 43, the system melts very
quickly. So the number of 43 can be viewed as the upper
bound of the critical number of the open loops, and the num-
ber of 21 can be viewed as the lower bound. Since each open
loop has two defective atoms �head and tail�, the upper
bound of the critical density of unstable atoms is 0.022 and
the lower bound is 0.011. Using this method, we have esti-
mated the critical densities of the defective atoms in the sys-
tems of different sizes, N=500, 864, 1372, 2048, 2916, and

4000, and the result is shown in Fig. 17. One can find that
the average upper bound of the critical density of defective
atoms is around 1.8%, and the lower bound of the critical
density is around 1.1%. So, in general, we estimate that the
critical fraction of the defective atoms to cause homogeneous
melting is about 1%–2%.

IV. DISCUSSION AND CONCLUSIONS

As mentioned in the Introduction, the main obstacle in our
understanding of homogeneous melting in the superheating
regime comes from the omnipresence of the surfaces, other
crystal defects, and the fast transition dynamics in the super-
heating regime. The fast heating rate employed in computer
simulations, and in experiments as well, imposes a strict ki-
netic constraint on phase space sampling, which causes
strong hysteresis in homogeneous melting and suppression of

FIG. 15. �Color online� Open diffusion loops in a system of 4000 atoms at two isothermal temperatures: �a� T=0.738 and �b� T
=0.739� /kB. Atoms in the same color belong to the same loop.

FIG. 16. �Color online� Evolution of the number of open loops
at two isothermal temperatures. �a� Overall evolutions at T=0.738
and T=0.739 and �b� zoom-in view of the transition period enclosed
by the blue rectangle.
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kinetic process. As a result, the system is ushered to the
superheating limit Tm

S and homogeneous melting becomes a
catastrophic transition. Using the isothermal heating method,
in conjunction with various characterization techniques, we
are able to study homogeneous melting with a particular fo-
cus on atomic mechanisms in the superheating regime. The
results suggest that it is a thermodynamic transition triggered
by self-diffusion loops. The nucleation of liquid nuclei is
directly related to the critical number density of the dynamic
1NN disorders which appear at and around the ends of the
open loops. The kinetic behavior involving self-diffusion
loops is not entirely a surprise as it may be the most efficient
way to move atoms in a perfect crystal.

In light of these findings, we revisit some theoretical mod-
els proposed earlier and are able to make some remarks: �1�
As we showed, homogeneous melting involves considerable
diffusive atomic motions to nucleate the liquid phase. The
Lindemann criterion,3,16 which is based on the mean-square-
displacement from the lattice vibration, is inadequate in ex-
plaining homogeneous melting in the superheating regime
when the heating rate is slow, or for a thermodynamic tran-

sition. �2� Interstitial mediated melting20,30–34 is unlikely due
to the high formation energy in one-component fcc crystals.
Similarly, the thought of vacancy mediated homogeneous
melting may be shadowed by the overwhelming 1NN dy-
namic disorder, which may appear like vacancies but with
very short lifetime. �3� Despite certain geometric similarities,
the self-diffusion loops are not dislocation loops or disloca-
tion lines17,27–29 that have been hypothesized as the major
defects to cause melting. The self-diffusion loops do not pos-
sess the characteristic atomic structures and strain fields of
dislocations. In addition, the collective motion in disloca-
tions involves other atoms on the atomic planes either per-
pendicular or parallel to the defect lines. However, in diffu-
sion loops, such a feature does not exist. �4� The nature of
being a first-order transition allows us to revise some previ-
ous predictions. For example, Born perceived that melting is
caused by the elastic instability with the gradual vanishing of
a shear modulus at the transition.2 However, the nucleation-
and-growth model36 of the first-order melting confirmed in
this work predicts that the elastic modulus should be finite at
melting, even at the superheating limit.16,20,21,39

The atomistic simulation results also provide a basis for
the formulation of a thermodynamic understanding of homo-
geneous melting. As a result, we can cast the transition in a
classical nucleation theory.40 Conversely, the thermodynamic
formulation allows us to consider variables and factors that
are difficult to obtain directly from atomistic simulations,
such as the interface energy,25 internal elastic energy caused
by the volume change at melting,36 and curvature effect at
the liquid-solid interface.38 The complement of these works
at different length scales has led to a deeper understanding of
melting at superheating regime.
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