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A stability analysis based on model calculations of the grand potential finds that the transition from hex-
agonal incommensurate to commensurate monolayer solid of xenon/graphite is continuous with increasing
pressure, in agreement with experimental observations. An atomic-scale interaction model gives an internally
consistent account of the thermal expansion of the solid at the two-dimensional sublimation curve and of the
chemical potential increase for isothermal compression from monolayer condensation to the commensurate
solid. An estimate is given for the corrugation energy of xenon/graphite.
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I. INTRODUCTION

Although many features of the phase diagram of mono-
layer xenon adsorbed on the basal plane surface of graphite
are well-established experimentally and understood in terms
of the atomic interactions,1–3 there remain some troubling
contradictions between experiment and theory. One of the
most conspicuous is for the order of the commensurate-
incommensurate transition. Experimentally, the transition to
a commensurate monolayer solid �C� under increasing pres-
sure is found to be continuous from a hexagonal incommen-
surate �HI� solid to the ��3��3�R30° structure.4,5 The con-
clusion of rather general theoretical arguments6,7 is that a
HI→C transition should be first order �discontinuous� and
that a continuous transition should be via a uniaxially incom-
mensurate �UIC� lattice. In the experiments,4,5 any disconti-
nuity in lattice constant at about 60 K must be smaller than
0.2%.

In this paper, we extend the stability analysis of Bak et
al.6 to cover a transition under pressure using the grand po-
tential. We note that the qualitative density dependencies of
the free energy anticipated by Bak et al. were not present in
the model calculations of Joos et al.,8 which do support the
occurrence of a continuous HI→C transition for Xe/
graphite. Finally, we use the stability analysis to make an
estimate of the energy corrugation of the minimum potential
energy surface of xenon interacting with basal plane graphite
from fits to the chemical potential increase �� at T=60 K
from monolayer condensation to the onset of the ��3
��3�R30°° monolayer solid.

The organization of this paper is as follows. Section II
contains a description of the components of the calculation.
Section III presents the stability analysis and Sec. IV the
application to Xe/graphite. Concluding remarks are given in
Sec. V. There is an appendix on the zeroth-order form of the
self-consistent-phonon, mass-density-wave �SCP-MDW� ap-
proximation for monolayers. The basic ideas of the general
formulation of this approximation are contained in two ear-
lier papers.9,10 The Appendix outlines how this approxima-
tion is derived; it amounts to a simple modification of previ-
ously published work, namely, the linear response version of
the SCP-MDW approximation.9

II. COMPONENTS OF THE CALCULATION

A. Interactions and structures

This is a two-dimensional �2D� calculation in which the
xenon positions are constrained to lie in a plane. The Xe-Xe
interactions are the HFD-B2 pair potential11 augmented by
the McLachlan substrate mediated dispersion energy12 with
parameters Cs1=142 a.u., Cs2=89 a.u., and Lov=1.9 Å. The
overlayer height Lov is constructed from a measured height
of 3.6 Å of commensurate xenon above the surface layer of
carbon atoms13 and the spacing between the graphite basal
planes. No adsorption-induced static dipole moment terms
are included because the work function change14,15 is only
10%–20% of that for xenon on metals and the effect of the
dipole term for Xe /Ag�111� is quite small.16

The corrugation potential energy is parametrized using
only the first shell of reciprocal lattice vectors g of graphite:2

Vs�r� = Vg�
g

exp�ıg · r� , �1�

where the origin of r is at the center of a carbon hexagon and
values of Vg in the range −3.7 to −10 K are used. This range
is similar to that used by Joos et al., with small magnitudes
leading to incommensurate lattices of minimum potential en-
ergy and large magnitudes having the ��3��3�R30° lattice
as minimum potential energy state. The main source of in-
formation on Vg has been calculations17 of the adsorption
energy of Xe/graphite using pair potential models and the
values range from Vg=−4 to −12 K. A value Vg=−4.4 K
was estimated18 by a fit to the intensity of modulation satel-
lites in x-ray diffraction from the incommensurate monolayer
sold, while the value obtained in a recent electronic energy
calculation15 is Vg�−8 K.

Two sets of structures are treated. For that set used in the
quasiharmonic lattice dynamics �QHT� calculations, a series
of higher-order-commensurate �HOC� lattices is constructed
with a rule similar to one adopted19,20 for structures of
Xe /Pt�111�. The unit cell has N2 atoms and primitive vectors

A1 = �N + 1�a1 + Na2, A2 = − Na1 + �2N + 1�a2, �2�

where a1 and a2 are primitive vectors �length �=2.46 Å� of
the basal plane graphite surface and the initial positions of
the xenons, before relaxation of forces, are in a hexagonal
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�triangular� lattice with primitive vectors A1 /N and A2 /N.
The nearest-neighbor spacing in the average lattice is L̄
=Lc�1+ �1 /N�+ �1 /3N2��1/2, with Lc=��3�4.26 Å, and the
misfit m is defined by L̄=Lc�1+m�. As the choice of N
increases from 8 to 30, the average spacing and misfit de-
crease from L̄=4.53 Å, m=0.0631 to L=4.33 Å, m=0.0167.
This covers most of the range of observed monolayer solids
of Xe/graphite,1,4 although the misfits m�0.01 are treated
by extrapolation. These lattices are rotated from the 30°
orientation by angles �=1.9° –0.5°. This construction is an
efficient way to generate HOC unit cells with average den-
sities in the observed range of Xe/graphite, and the align-
ments at modest to large misfits agree well with the results of
the zeroth-order SCP-MDW approximation �Appendix�.9,10

However the experimental data4,18,21 for the orientational ep-
itaxy differ from these model results by generally having
smaller � and a transition to �=0 at large misfit near 100 K.
Nevertheless, the energy shifts that arise from these orienta-
tion differences are small, and we believe that the model
structures are sufficiently realistic to recover the major fea-
tures of the monolayer equation of state of Xe/graphite.

A different set of initially aligned lattices with small mis-
fits is generated for the molecular dynamics �MD� calcula-
tions. These linear misfits are in the range m=0.001 to m
=0.03. Two classes of systems are examined, both using pe-
riodic boundary conditions on rectangular boxes that include
an integer number of graphite unit cells. In the constrained
class, the xenon lattice fills the entire box and is effectively
under external pressure. In the unconstrained class, a xenon
patch covers from about 50% to about 90% of the box. Since
the unconstrained simulations are done at a relatively low
temperature, there are very few xenon atoms in the 2D-gas
phase and so these patches are at nearly zero pressure. The
time step for all simulations is 32.6 fs �1% of the character-
istic time Rmin

�mXe /� for xenon moving in the HFD-B2 po-
tential�. The thermal averages were done in blocks of 1000
time steps and stored for later analysis and further averaging.
The autocorrelation time for the data reported here is gener-
ally less than the time interval associated with one block, so
that the block averages can be treated as statistically inde-
pendent. The cutoff radius for the force is such that there are,
on the average, 36 neighbors of the central particle within
this radius. While the forces due to particles beyond this
range are ignored, the corresponding potential energy contri-
butions are included by using a uniform density model and
integrating the potential energy out to infinity. With these
parameters, energy conservation is maintained to at least five
significant figures over a minimum of 200 000 time steps at
the highest temperatures considered here.

In all the simulations, the initial xenon configuration is a
centered rectangular lattice that is constrained to be a super-
lattice of the graphite basal plane surface lattice. For the
unconstrained class, the aspect ratio of the simulation cell is
nearly 1:1, and there are approximately 20 K �20064� xenon
particles initially arranged in a configuration of 152 rows by
132 columns. On the other hand, the aspect ratio of the simu-
lation rectangle for the constrained class is approximately
1:�3 /2, except for those simulations in which the system is
forced into the UIC structure �see Sec. IV C 3�. The initial

configurations for the constrained class have n rows by n
columns of xenon atoms with n=64, n=128, or n=256. We
refer to these sizes as 4 K �4096�, 16 K �16 384�, and 64 K
�65 536�, respectively. Most of the simulation data reported
here are for the 16 K size, and no serious size dependence
was observed in these data as judged by comparisons of low-
order polynomial fits to the isochores. The fit parameters for
the 16 K and 64 K systems �for the same density� are almost
the same within statistical uncertainty, and the ground state
and low temperature values of the energy for these systems
are the same to nearly five significant figures.

B. Energy and free energy

The first step is to find the minimum potential energy
structure for a given HOC cell. For both sets of structures,
this is obtained using a modified MD calculation, in the QHT
series by successively relaxing the positions to reduce the
force on a configuration and in the MD series by reducing an
effective temperature to let the dynamics seek out the lowest
energy configuration.

Then, the Helmholtz free energies are constructed in the
QHT approximation2,22 for the structures obtained using Eq.
�2�. The frequencies come from the eigenvalues of real sym-
metric matrices of order 4N2, i.e., for N=8–30 the order
increases from 256 to 3600. A basic stability and conver-
gence check on the force relaxation is that all the eigenvalues
must be positive. The summation over the Brillouin zone is
evaluated by a special point sampling.23 The Helmholtz free
energy is used to determine the monolayer equation of state.
It yields the zero temperature structure, the thermal expan-
sion of the average lattice constant Lu of the unconstrained
�minimum free energy� solid, and the chemical potential of
the compressed solid. The QHT approximation is known to
overestimate the thermal expansion as the melting tempera-
ture is approached, but tests in the present work show that
the Lu�T� remains accurate up to 60 K. Various aspects of the
QHT calculations are checked against two very different
types of calculations, namely, a set of self-consistent-phonon
calculations �SCP for the C-lattice and SCP-MDW for the HI
lattices� at T=0–60 K and a set of MD calculations near T
=60 K.

The MD calculations are standard two-dimensional NVE
ensemble simulations,24 using periodic boundary conditions,
for the xenon layer in the presence of the graphite substrate.
The temperature is obtained from the kinetic energy using
the equipartition theorem. The MD calculations for the con-
strained cells provide, in the limit of zero temperature, a
check on the potential energy obtained for the HOC cells in
the initial stage of the QHT calculations. Static potential en-
ergies from the two calculations for a given density agree to
0.5–1 K out of approximately 800 K per xenon, Table I.
Finite temperature MD results compare well to the average
energies of both SCP and QHT calculations as discussed be-
low. The MD calculations for the unconstrained cells are
used to check the structures and zero pressure lattice con-
stants Lu obtained in the higher temperature range of the
QHT calculations.

The zeroth-order SCP-MDW approximation treats the dis-
tortions of the xenon layer resulting from Vs�r� in an ap-
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proximate but realistic fashion. These SCP-MDW calcula-
tions provide tests of the QHT free energy calculations in the
large �m�0.02� misfit region, as well as providing estimates
of temperature-dependent shifts in the phonon spectrum and
of substrate-driven modulation energies of the incommensu-
rate monolayer for small distortions. The zero pressure SCP-
MDW values Lu agree with the QHT values to 0.01 Å up to
40 K and to 0.02 Å at 60 K, where the QHT values are
greater than the SCP-MDW values. We consider this to be
good agreement and consistent with previous experience
with application of the QHT approximation to monolayer
thermal expansion.2

A direct comparison of the SCP and QHT results for the C
lattice shows the Helmholtz free energies agree to a couple
tenths of a Kelvin at low temperatures and to a couple of
Kelvin at the highest temperatures used here �T�60 K�. For
the HI structures, the zeroth-order SCP-MDW results for Lu
and the free energy merge with the QHT results at low tem-
peratures and moderate to large misfit values. Both the QHT
and SCP-MDW values for Lu�T� merge with the MD results
for unconstrained layers at temperatures of 50–60 K. The
QHT and SCP-MDW results for the dynamical Helmholtz
free energy term differ by about 10 K out of 90 K per xenon
at T=60 K, which is consistent with previous comparisons of
approximations for Xe /Ag�111�.25 The MD, QHT, and SCP-
MDW methods give very similar values for the average po-
tential energy at the same average kinetic energy in the
near-classical limit �T�60 K�. This is evident in the results
for three average lattice constants and three values of the
corrugation amplitude Vg presented in Table I. The increase

�	 �MD� in the MD average potential energy relative to its
static lattice value is nearly equal to the temperature. This is
the result expected for a harmonic lattice and shows that the
lattice remains nearly harmonic at 60 K. Also, as expected,
the anharmonic effects are larger for more dilated lattices.
The QHT and SCP-MDW values bracket �	 �MD�, with the
SCP-MDW approximation most likely overestimating the
amount of anharmonic shift. The values �	 �SCP-MDW�
have more dependence on Vg than the QHT values at T
=60 K, where a variation of 0.2 K with Vg is found at con-
stant L; this appears to be a consequence of the temperature-
dependent shifts in the SCP phonon spectrum. However,
these differences do not affect the conclusions of this paper.
In summary, there appear to be no major unresolved discrep-
ancies between the various approaches.

III. STABILITY ANALYSIS

The stability comparisons are for adsorption on an area A
at temperature T as a function of chemical potential �. The
2D density n is expressed as the ratio to the commensurate
density nc, 
=n /nc. We assume the Helmholtz free energy
per atom f at temperature T can be approximated for 
�1 by

f � fc + �
 − 1�f1 +
1

2
�
 − 1�2f2. �3�

�In terms of the domain wall energy per length w1 at very
small misfit and the commensurate length Lc, the first coef-
ficient is f1=−3Lcw1 /2�. In the following discussion, we

TABLE I. Xenon/graphite QHT and MD static potential energies 	0 and MD and SCP-MDW increments

�	 in average potential energy at the specified average kinetic energies 	KE
 and lattice constants L̄. The
QHT and MD incommensurate lattices have slightly different orientations �; unless otherwise noted �=0.
MD values are classical mechanical time averages with temperature equal to 	KE
 /kB. The SCP-MDW and
QHT energies 	KE
 and �	 include quantum corrections, and the temperatures near 60 K are 2–3 K less
than 	KE
 /kB. Lengths are in Å and energies �per atom� are in Kelvin.

L̄a Vg 	0 �QHT� 	0 �MD� 	KE
 �	 �MD� �	 �SCP�b,c

4.2608 0.0 −755.1 −755.1 63.2 62.7 60.1

−5.0 −785.1 −785.1 62.8 60.4

−8.0 −803.1 −803.1 62.8 60.6

4.3385 0.0 −780.3d −780.3 62.4 61.3 58.2

−5.0 −788.1d −788.0 61.3 60.1

−8.0 −797.6d −797.6 61.5 60.7

4.4606 0.0 −772.5e −772.5 61.6 59.1 54.8

−5.0 −774.8e −774.6 59.0 56.2

−8.0 −778.5e,f −778.1 58.8 58.0

aNearest-neighbor spacing in the corresponding average triangular lattice.
bIncrement in average potential energy relative to the static lattice evaluated using the zeroth-order MDW
approximation.
cFor the QHT approximation, �	�QHT�= 	KE
.
d�=0.58°.
e�=1.44°.
fThe Novaco-McTague perturbation theory gives a difference of 0.5 K in the mass-density-wave energy

between �=1.44° and �=0° at this L̄ and Vg.
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have in mind the situation for monolayer Xe/graphite where
the adatoms condense in an incommensurate lattice of lower
density than the commensurate one, i.e., 
�1, and at suffi-
ciently low temperature �T�65 K� can be compressed into a
commensurate lattice before the bilayer solid forms. For Eq.
�3�, this becomes a condition f1�0, i.e., w1�0 and domain
walls form spontaneously.

The potential energy calculations of Joos et al.8 �which
are consistent with our work, Fig. 1� show that uniaxially
incommensurate �UIC� and hexagonal incommensurate �HI�
lattices of the same density, near the commensurate �C� value
�
=1−� and �↓0�, have the same values of f1 and that the
curvature is larger for the UIC lattice, f2�UIC�� f2�HI�. In
the language of Bak et al.,6 the properties f1�0 and
f2�UIC�� f2�HI� would be attributed to attractive domain
wall crossings in the HI lattice. However, the following
analysis shows that, for a model with these properties, the HI
lattice is stable relative to the UIC lattice for 
 near 1 and
that the HI→C transition is continuous as a function of in-
creasing pressure �or ��.

The grand potential for N atoms at chemical potential �
and temperature T is expressed in terms of the total Helm-
holtz free energy FN=Nf by

� = FN − N� = N�f − �� = Nc
�f − �� . �4�

At specified total area and temperature, the equilibrium state
has minimum �. If �as we assume�26 the dependence of f on

 is smooth enough that the first two derivatives exist, the
stationary condition is

��

�

= 0 ⇒ � = f + 


�f

�

, �5�

and the minimum condition is

�2�

�
2 � 0 ⇒ 2
�f

�

+ 


�2f

�
2 � 0. �6�

Close to the commensurate density, 
�1, Eq. �6� becomes
2f1+ f2�0. This stability requirement is satisfied in the re-
sults of Joos et al.8 for condensation into states of 
�1.

Now, examine the results of the stability analysis for Eq.
�3� at densities near the commensurate density. The station-
ary condition �Eq. �5�� becomes

� = fc + f1 − �2f1 + f2�� +
3

2
f2�2. �7�

Define 
�=�− fc− f1; then, 
��0 as the C phase is ap-
proached by compression �increasing ��. Inverting Eq. �7�
gives an estimate for � at specified 
� �Ref. 27�:

� = −

�

�2f1 + f2�
+

3

2

f2�
��2

�2f1 + f2�3 + ¯ . �8�

To decide the relative stability of the UIC and HI phases
at specified chemical potential, we compare the grand poten-
tials

�

Nc
� f1 − 
� −

2�
��2

�2f1 + f2�
. �9�

The HI structure has the smaller f2 and thus the lower �.
Therefore, the HI structure is stable relative to the UIC phase
as �↓0.

We cannot exclude the possibilities that the considerations
of Bak et al. become dominant at exceedingly small �, i.e.,
much smaller misfits than are treated in the model calcula-
tions or found in the experiments, or that very different in-
teraction models would show the features they described. We
do note that the strong interatomic repulsions in the Xe/
graphite models lead to rather broad domain walls, and
therefore the discussion in terms of wall energies and wall
crossing energies must allow for density dependence of those
parameters.

IV. MODEL CALCULATIONS AND EXPERIMENT

A. Summary of experimental data

In Sec. III, we assert that the Xe/graphite transition from
incommensurate to commensurate solid �HI→C� is continu-
ous, based on qualitative features of the density dependence
of the potential energy and the free energy. Here, as another
application of the stability analysis, we make a quantitative
comparison of experimental data for Xe/graphite with the
results of our calculations. There are three major points: �1�
The monolayer condenses as an incommensurate solid at
least down to temperatures T�20 K.18,28,29 �2� The mono-
layer condenses as an incommensurate solid with lattice con-
stant Lu very similar to that of Xe /Ag�111� for T
=40–80 K.29,30 �3� The increment in chemical potential as

FIG. 1. Potential energy per particle versus scaled area �inverse
number density 1 /
� for both HI and UIC structures, with the
HFD-B2 pair potential augmented by the McLachlan interaction
and Vg=−5 K. Energies are those for the zero temperature limit of
finite temperature MD runs on constrained cells of size 128�128
�HI� and 10�1024 �UIC�. Note that the HI and UIC energies merge
to within the accuracy of the calculation at 1 /
�1.015. Uncertain-
ties in the energies are much smaller than the plotted symbols.
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the monolayer solid is compressed from condensation to the
commensurate solid is31 ���675 K at 60 K and �590 K at
50 K.

Diffraction experiments definitely show that the Xe/
graphite solid at monolayer condensation is incommensurate
at low temperatures. There is some uncertainty in the lattice
constant: Hong et al.18 report Lu=4.32 Å at 25 K. Ellis et
al.28 give Lu=4.42 Å at 15 K, and Mowforth et al.29 give
Lu=4.43 Å at 20 K. The low temperature value of Lu in the
model calculations is strongly affected by the value of Vg,
and it is unfortunate that there is such a spread in the experi-
mental values of Lu. We believe that the experimental condi-
tions are such that the larger values of Lu should be relied on
more because extraneous sources of compression could lead
to smaller values of L and, in fact, this was observed in some
preparations of the monolayer.28

The values of Lu at 40 and 60 K are reported to be21,29

4.44 and 4.47 Å, respectively. These are within 0.01 Å of the
values reported for Xe /Ag�111� by Unguris et al.30 The
Xe-Xe interaction model used here for Xe/graphite is very
similar to the one used for Xe /Ag�111�, so that the similarity
of the two sets of data becomes understood if �as does hap-
pen in the calculations� the thermal excitation effects greatly
diminish the consequences of the substrate corrugation Vg for
T�50 K.

Finally, we note that the chemical potential increment
from monolayer condensation to bilayer condensation de-
rived from the phase diagram of Suzanne et al.3,32 is 780 K
for T=60–70 K.

B. Quasiharmonic lattice dynamics free energies

The experimental value for �� at T=60 K is based on the
experiments of Hamichi et al.4 for the HI→C transition near
60 K and an extrapolation of the Suzanne et al. data33 for the
monolayer condensation pressure from the lowest observa-
tion temperature of 75 K. The value at T=50 K is based on
further extrapolations. Thus, T=50–60 K is probably as low
a temperature as can be used for the thermodynamic con-
struction. It also corresponds to a rather high temperature for
using quasiharmonic free energy constructions. We believe
that the various checks on energy and free energy using the
MD and SCP-MDW approximations ensure the utility of the
QHT for calculating �� at these temperatures and that our
analysis supersedes that of Kariotis et al.34

Results based on cubic spline interpolations to the quasi-
harmonic free energies for the C lattice and nine values of N
in the range 8–30 are presented in Table II. For the potential
energies listed there, the lateral interactions are summed ex-
plicitly up to a cutoff distance of 12–15 Å and larger dis-
tances are included using a uniform lattice approximation.

There are four main conclusions to be drawn from Table
II. �1� The range Vg�−10 K is excluded35 by the fact that
Xe/graphite is incommensurate at monolayer condensation at
20 K. �2� The role of the corrugation in setting Lu becomes
negligible above 40 K, which is the reason for the similarity
of Lu for Xe /Ag�111� and Xe/graphite. �3� The change in
�� from T=50 to 60 K is about 100 K, in good agreement
with the extrapolations in the experimental phase diagram

TABLE II. Quasiharmonic theory �QHT� for the thermal expansion and compression of Xe/graphite �Lu

is the average �HI� lattice constant for minimum free energy f�Lu�; ��Lc� is the chemical potential for the
commensurate lattice obtained by compression, Eq. �7�, and �����Lc�− f�Lu�� for several corrugation
energy amplitudes Vg. See Sec. IV B for discussion. Lengths are in Å and energies in Kelvin.

Vg

T
�K� 	a 1b 20 40 50 60c

−3.7 Lu 4.36 4.39 4.40 4.44 4.45 4.47

f�Lu� −786 −752 −763 −806 −837 −872

��Lc� −535 −317 −255 −130 −68 −6

�� 251 435 508 676 769 866

−5.0 Lu 4.35 4.38 4.40 4.43 4.45 4.47

f�Lu� −788 −753 −765 −807 −838 −873

��Lc� −683 −465 −402 −273 −208 −145

�� 105 288 363 534 630 728

−8.0 Lu 4.26 4.35 4.38 4.42 4.44 4.47

f�Lu� −803 −760 −770 −811 −841 −876

��Lc� −803 −735 −665 −524 −459 −393

�� 0 25 105 287 382 483

−10.0 Lu 4.26 4.26 4.26 4.40 4.44 4.47

f�Lu� −815 −771 −777 −816 −845 −880

��Lc� −815 −771 −777 −660 −589 −520

�� 0 0 0 156 256 360

aInterpolate in slope f1, Eq. �3�, to onset of commensurate ground state at Vg=−6.2 K.
bInterpolate in slope f1 to onset of commensurate ground state at Vg=−8.4 K.
cAt 60 K, interpolate to ��=675 K at Vg=−5.6 K.
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which give �85 K. �4� The window in � for the presence of
the commensurate phase diminishes as the temperature in-
creases; combining an extrapolation of the calculated
�� to T�60 K with the experimental chemical potential in-
crement from monolayer to bilayer at 70 K, the calculations
are consistent with the window closing before 70 K.

By interpolation of the results for the initial slope f1 �Eq.
�3�� as a function of Vg, and allowing for uncertainties in the
free energy and the spline calculation of f1, we estimate that
the commensurate lattice is the minimum potential energy
configuration for Vg�−�6�0.5� K and is the lowest total
energy configuration for Vg�−�8�0.5� K. The optimal
choice of Vg to fit the experimental data is in the range
−5 to −8 K, and probably close to −6 K. This gives �� rea-
sonably close to the empirical values.31

C. Molecular dynamics simulation of domains

1. Energies and structure factors

The MD simulations of the constrained system are used to
check the zero temperature QHT results for the energy and
chemical potential and to examine domain structures of the
incommensurate monolayer. Most of the simulation results
reported here are for the 16 K system at various densities and
kinetic energies. The system is usually initialized at moderate
temperatures �well below melting�, cooled to almost zero
temperature, heated above the original temperature, typically
above 60–70 K, and then cooled. A polynomial fit to the 15
points lowest in temperature �15–20 for the UIC series in
Sec. IV C 3� is used to find the zero temperature energy and
its uncertainty. There was no observable hysteresis for the
constrained cells.

The MD and QHT configurations usually have slightly
different orientations �. The difference in the static potential
energies 	0 of MD and �interpolated� QHT configurations of
the same density but different � gives an estimate of the
effect of small misorientations. Some examples are given in
Table I; such comparisons show that energy terms due to
misorientation of the monolayer are probably negligible, be-
ing about 1 K or less in the range �=0° –3° that is relevant
here. The SCP-MDW results have a similar variation of the
energy with �. Thus, for the range of � treated here, the
error due to misalignment of the xenon monolayer is small
enough that it may be ignored for determining Lu and ��.

The MD data also provide a check on the calculation of
�� at zero temperature. Two simple numerical differentia-
tion schemes were used to find the �classical� chemical po-
tential at T=0 K and these values are compared to the QHT
results �HOC static potential energies� for the change ��
between the value at Lu and the value at the commensurate
lattice constant Lc. For Vg=−5.0 K, both schemes give ��
�91 K, rather than the value of 105 K listed in Table II. The
14 K difference is probably a good estimate of the uncer-
tainty in the results. In addition, the MD energies agree with
the QHT result, Table II, that the commensurate lattice is the
minimum potential energy state for Vg=−8 and −10 K.

The MD simulations for the unconstrained system are
used to test the results of the QHT and SCP-MDW approxi-
mations at the higher temperatures, especially for the thermal

expansion of the average �unconstrained� lattice constant
Lu�T�. Structure factor calculations for the three smallest
nonequivalent reciprocal vectors of these lattices are used to
determine values of Lu with an estimated uncertainty of
�0.01 Å. The static structure factor S�q� is calculated using
50 000–100 000 time steps �1.63–3.26 ns� for q vectors that
are on a finer grid than those that satisfy the periodic bound-
ary conditions. Thus, the structure factors are those of a finite
patch and not the periodic continuation of the basic system.
The peak positions in S�q� are determined by a graphical
analysis of contour plots of S�q� in the q plane. The widths
of these peaks are consistent with the size of the system, and
the placement of the peaks reflects the basic hexagonal struc-
ture of the system, often showing a slight lattice rotation,
typically ��1°. For the larger values of �Vg�, small satellite
peaks are observed but the signals tend to be noisy and dif-
ficult to analyze. Analysis of the constrained system typically
shows a hexagonal lattice that is aligned with the C lattice,
having a lattice constant consistent with the HI structure of
the parent lattice.

There is significant hysteresis in the simulations for Vg=
−8 and −10 K cases of the unconstrained system. For these
values of Vg, the initial structure at very low temperatures is
the commensurate lattice, in agreement with the static poten-
tial energy calculations presented in Table II. As the system
is heated, domain walls form and, at high enough tempera-
tures, the structure is an array of nearly regular hexagonal
domains of roughly the same size. However, as the tempera-
ture of the system is lowered, the structure does not repro-
duce that on the heating curve, even when the system is
allowed to anneal for about 25 000 time steps between heat-
ing and cooling steps. Between the lowest �T�0 K� and
highest �T�100 K� temperatures, there are about 25–30 an-
nealing steps. Upon cooling, the system remains in the in-
commensurate phase, although the lowest energy state at T
=0 K is clearly the commensurate one. Long runs �up to 2
�106 time steps� often show continuing relaxation of the
system. This relaxation occurs at the transition from the com-
mensurate to the incommensurate solid. At the higher tem-
peratures used for the structure factor �S�q�� calculations, the
simulations show little evidence of significant hysteresis.

For temperatures near 60 K, the average structure of the
unconstrained system is reproducible enough that reliable es-
timates of S�q� are obtained. The S�q� are calculated from
runs of about 105 time steps, sampling every 100 steps.
Sometimes, to test the effects of relaxation, the sampling
begins after 2�106 equilibrating steps. The average lattice
constant is determined to �Lu� �0.01 Å and the orientation
to ���0.1° at T�60 K. The Lu is in the range of
4.45–4.47 Å, relatively independent of the value of Vg.
These results agree with the QHT values in Table II to
0.02 Å. When nonzero, � is about 0.2°–0.4°, relative to the
commensurate orientation. This angle tends to fluctuate dur-
ing the simulation, perhaps indicating that the system jumps
back and forth between two or more orientations as the simu-
lation proceeds.

2. Domains and mappings

The configurations of the finite temperature MD simula-
tions can be analyzed in a number of ways for evidence of
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domain structure. The simplest approach is to look at the
domain structure in direct space, examining both the instan-
taneous positions and the time-averaged positions using a
four-color map. Given the periodic boundary conditions, the
calculation of the time-averaged positions needs to be done
with some care to correct for the movement of particles
across the boundary. Results reported here are typically gen-
erated by averaging the positions from simulation runs of
about 100 000 time steps �3.26 ns�. This is generally long
enough to average out the thermal motion of the adatoms.
The rules used to assign the adatom positions on the map are
as follows. A �somewhat arbitrary� reference distance of one-
fourth of the graphite lattice constant � is used to determine
which sublattice to associate with any given adatom. That is,
if the adatom distance from the nearest adsorption site is less
than � /4, the adatom is assigned to the sublattice of that
adsorption site. If the adatom is further than � /4 from any
adsorption site, it is assigned to a domain wall. There are
three sublattices for the adsorption of the xenon atom, and
the assignment of an adatom to a sublattice is displayed in a
color unique to that sublattice, while a fourth color is used
for adatoms that are assigned to a domain wall. Domains and
domain walls clearly stand out, especially for the time-
averaged positions. The instantaneous positions show a more
irregular structure as a result of thermal motions but, even
then, the four-color map displays the basic topology of the
structure. With this scheme, a uniform hexagonal lattice that
is incommensurate with the substrate generates a map that
has domain wall widths about equal to the domain sizes.
Systems with a well-developed domain structure have do-
main walls that are narrower or much narrower than the do-
main size and, especially at low temperature, the domains
themselves have the expected hexagonal shape.

For the MD simulations of the constrained system, the
domain topology is dominated by the hexagonal network of
�superlight� domain walls that is characteristic of the HI
phase. Figure 2 shows a map for moderate misfit and low
temperature using the time-averaged positions. It has a very
regular HI structure with clearly defined domains and do-
main walls.37 On the other hand, when the misfit has the

smallest value consistent with the boundary conditions �with
the superlattice constraint, only certain densities are al-
lowed�, there typically is a single wall which is roughly par-
allel to one of the boundary walls and is almost always along
the x̂ axis. Figure 3 shows such a case. The stability of the
uniaxially dilated lattice is sensitive to the boundary condi-
tions and, except for the smallest misfits, the lattice reorga-
nizes into a 2D HI array of misfit when the system size is
increased. For instance, when the size of the system is in-
creased by doubling the lengths of the sides �the system is
also reinitialized and annealed�, the single wall case occurs at
a new density which is that of the smallest nonzero misfit
allowed by the boundary conditions, but at all other misfits
the hexagonal structure is found. Further, the domains of the
smallest misfit systems �typically at m�0.005 for the 16 K
system� are irregular hexagons even at T=0 K. In such cases,
e.g., Fig. 4, the linear dimensions of the domains are com-
parable to the linear size of the system, which suggests that
system size and periodic boundary conditions are affecting

FIG. 2. �Color online� Domains and domain walls for HI struc-
ture with moderate linear misfit m�0.016 and low temperature
�T�1 K�, Vg=−5 K and pair potential and cell as in Fig. 1. The
reduced density is 
=0.9695, and the average lattice is a regular
hexagon with L=4.3274 Å. Plot is for the time-averaged positions.

FIG. 3. �Color online� Domains and domain walls for single
wall case �very small uniaxial misfit m=0.0052� and low tempera-
ture �T�1 K�, Vg=−5 K and pair potential and cell as in Fig. 1.
Plot is for the time-averaged positions.

FIG. 4. �Color online� Domains and domain walls for HI struc-
ture with small linear misfit and low temperature �T�1 K�, Vg=
−5 K and pair potential and cell as in Fig. 1. The reduced density is

=0.9870 and the fractional misfit is m=0.0078 along x̂ and m
=0.0052 along ŷ, so the domain structure is not regular hexagons.
Plot is for the time-averaged positions.
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the geometry of walls. The domain wall structure becomes
more regular as the �two-dimensional� misfit increases, and
for the largest misfits examined here, the array has nearly
regular hexagons. Nonetheless, the effect of system size on
the energy per adatom is small for the sizes and misfits used
in this work.

A second mapping technique also clearly distinguishes the
hexagonal and uniaxial structures. The mapping is defined by
starting with the position of each adatom and using the
primitive translational vectors of the commensurate lattice to
map each position into the Wigner-Seitz cell of the commen-
surate phase. This cell is a hexagon with its center associated
with one sublattice. Three of its vertices �forming an equilat-
eral triangle with one vertex up� are associated with another
sublattice, and the other three vertices �forming an equilat-
eral triangle with one vertex down� are associated with the
third sublattice. A uniform hexagonal lattice, incommensu-
rate with the substrate, generates a uniform distribution of
points in the hexagon. A true HI structure gives a high den-
sity of points surrounding the center and vertices of the hexa-
gon �resulting from many atoms near adsorption sites� and
broad lines with a high density of points connecting the ver-
tices to each other along the edges and connecting the verti-
ces to the center. This can be seen in Fig. 5. For the time-
averaged positions, the map points lie along distinct, wavy
lines instead of being smeared out. The pattern becomes less
distinct as the temperature of the system is increased, even
for the time-averaged positions. In contrast, the map for the
UIC structure has stripes parallel to the ŷ axis and connecting
two or more sublattice points, e.g., Fig. 6. This mapping
technique can be used on both the instantaneous and the
time-averaged positions; it has much in common with return
maps and Poincaré sections and was motivated by those
maps. Although such maps might also show the existence of
chaotic behavior, no evidence of chaos, other than normal
thermal chaos, was found in the Xe/graphite simulations.

A third approach to the determination of the structure is
simply to calculate the static structure factor, as described in

IV C 1. This is a very time consuming calculation, so it was
done only at selected n ,T pairs. Our S�q� results generally
confirm the results of the other two approaches.

3. Relative stability of uniaxially incommensurate and hexagonal
incommensurate

The MD approach finds the equilibrium structure of the
system if there are no metastable states. Thus, to compare the
energies of the UIC and HI domain wall arrays at similar
densities requires some constraint to stabilize both structures.
This is done here by a judicious choice of boundary condi-
tions in which the system is forced into the UIC structure by
using a very long and thin simulation cell. Because these
boundary conditions severely constrain the thermal excita-
tions of the domain walls, only the zero temperature classical
energies are reliable. To avoid differences that might arise
due to changes in the radius used to limit the force calcula-
tion or the radius used to build the nearest-neighbor list, the
minimum width in the x̂ direction must accommodate about
ten columns of xenon atoms. A length along the ŷ axis cor-
responding to 1024 rows of xenon atoms in the periodic cell
gives a reasonably fine density grid. With these parameters, a
UIC phase is stabilized for a range of relative densities, 

=n /nc, from about 0.9523 to about 0.9993. �Systems with

�1.0 were not generated since they do not seem relevant to
the experiments on Xe/graphite, where the commensurate
monolayer is succeeded by a bilayer rather than a further
compressed incommensurate monolayer.� With this size and
the periodic boundary conditions, the domain walls are par-
allel to the x̂ axis and move dynamically parallel to the ŷ
axis. Joos et al.8 also found this to be the optimum orienta-
tion of the domain walls for the UIC phase.

The ground-state energy is determined for a specified den-
sity of the constrained system using the energies evaluated as
a function of the temperature along an isochore as described

FIG. 5. Return map for the regular HI structure with moderate
linear misfit and low temperature �T�1 K� with domains shown in
Fig. 2. Plot is for the time-averaged positions.

FIG. 6. Return map for UIC structure with small linear misfit
and low temperature �T�1 K�, 
=0.9935; m=0.0066, Vg=−5 K,
and pair potential and cell as in Fig. 1. Plot is for the time-averaged
positions.
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in Sec. IV C 1. This yields ground-state energies to at least
five significant figures �statistical uncertainty only, not sys-
tematic�. Figure 1 compares the zero temperature energies of
the UIC and HI phases as a function of the area per atom
�inverse number density� for Vg=−5.0 K. The HI phase is
definitely the more stable one over most of the density range
shown, as the energy differences at moderate to large misfits
are much greater than the uncertainties in the energies. At

=0.9523, the UIC phase is higher in energy than the HI
phase by about 4 K per xenon. Further, as the density ap-
proaches that of the commensurate phase, the two curves
cannot be distinguished within statistical uncertainty. While
we have not made a thorough examination of the entire pa-
rameter space, preliminary full nonlinear SCP-MDW calcu-
lations are consistent with the assertion that for the range of
Vg and misfit values considered here, the HI phase is the
stable phase. On the other hand, the general behavior of the
simulations leaves the reservation that the relative stability at
very small misfit might be altered by changes in the bound-
aries of the theoretical models, or in the experimental condi-
tions, that caused changes of order of 0.1 K per atom in the
relative energies.

V. CONCLUDING REMARKS

With an estimate of Vg�−6 K, based on the discussion
in Sec. IV B, the corrugation energy of Xe/graphite from
minimum to maximum is Ecorr=54 K �48 K from mini-
mum to saddle�. A recent electronic energy calculation15

gives 73 K for the increment from minimum to maximum
of Xe/graphite. Estimates3 for some related systems are
Ecorr�55 K for krypton/graphite and 200–300 K for
Xe /Pt�111�.

We have concluded that the HI→C transition for Xe/
graphite is continuous as the pressure increases. There are
two qualitative theoretical discussions that come to the op-
posite conclusion. The first, by Bak et al.,6 is based on ideas
of attractive wall-wall intersections, and the schematic
energy-misfit diagram is contrary to what the calculations of
Joos et al.8 and our Fig. 1 show. While we cannot exclude
that their scenario might arise at very small misfit �m
�0.005�, the calculations with realistic interaction models
do exclude it for m�0.005 and thus disagree with the ex-
perimental findings of Hong et al.5 and agree with those of
Hamichi et al.4 The second, by Coppersmith et al.,36 shows
that a weakly incommensurate solid �HI with small misfit�
should be unstable with respect to the spontaneous formation
of dislocations and thus that there should be a fluid phase
between the C and HI solids. We can only remark that the
lattices of the QHT series are dynamically stable at misfits
down to m=0.017 �although a zero temperature consider-
ation� and that the compressed lattices with small misfit of
the MD series show no dynamical anomalies. The uncon-
strained �isolated patch� simulations for the larger two values
of �Vg� show significant hysteresis as the system progresses
from a commensurate structure to an incommensurate one,
and, in the initial stages of this progression, the wall struc-
tures are irregular with no clear structural pattern. Whether
this is a signal of the predicted instability is difficult to say.

However, the most extensive analysis of electron diffraction
line shapes for Xe/graphite at small misfit and 60 K does not
give any evidence for mobile dislocations.38
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APPENDIX: ZEROTH-ORDER SELF-CONSISTENT-
PHONON, MASS-DENSITY-WAVE APPROXIMATION

The self-consistent-phonon �SCP� calculation for a mono-
layer with mass-density-wave �MDW� distortions has been
described earlier for the case of small amplitude distortions
using a linear response approximation to evaluate the MDW
terms, denoted paper I.9 The extension of the MDW ap-
proach to the nonlinear regime has been described for a one-
dimensional classical system in paper II.10 The SCP-MDW
approximation used here is a partial melding of those two
approaches and is the lowest-order approximation to an ex-
tension of the work in II to two dimensions and also to
systems where quantum effects cannot be ignored. We use
the notations of papers I and II in describing how the current
SCP-MDW calculations are carried out.

Starting with the SCP calculation in paper I,9 the first
modification occurs with Eq. �I23�. That equation is obtained
by carrying out a power series expansion of the exponential
term in Eq. �I19� that depends on the average displacement
of the atoms from the parent lattice positions. As described in
paper II, a better starting point for this term is the Bessel
function expansion written out in Eq. �II6� and explained in
detail in the text there. When extended to two dimensions,
the arguments of the Bessel functions become scalar prod-
ucts of a given reciprocal lattice vector �g� of the substrate
and the set of MDW displacement Fourier amplitudes �u j�.
Each of these displacement amplitudes is associated with a
particular misfit wave vector �q j� in the MDW expansion. As
described in paper I, there is one such q j for each reciprocal
lattice vector g j associated with a nonzero amplitude in the
Fourier expansion for the substrate field. Following the argu-
ments of paper II with respect to the reordering of these
Bessel function expansions, we have kept only the lowest-
order terms and then implemented the calculation as outlined
in paper I. The algebraic details are tedious but the result is
relatively transparent, namely, Eq. �I25� is modified by re-
placing the Ug term in that equation �Vg here� with the more
complex expression

Vg

j=1

6

J0�g · u j� , �A1�

where J0 is the zero order Bessel function of the first kind.
The resulting equation for the u j is solved by successive
iterations.
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The main effect of this alteration is to limit the amplitude
of the MDW distortions, which the linear response approxi-
mation overestimates, and to cause � to remain zero at small
but finite misfit. However, the coupling between these distor-
tions, which is present in the full nonlinear expansion,10 is
not present here. For these reasons, the MDW distortions
treated here do not generate the higher-order harmonics
found in the full nonlinear expansion and thus these MDWs
are simple sine wave distortions, one for each vector g j used
in the expansion of the substrate potential field. Because this

is a low-order expansion, we have restricted the SCP-MDW
calculations to moderate and large misfit cases where the
MDW amplitudes are relatively small and where the higher
harmonic terms, which give rise to distinct domains and nar-
row domain walls, are not crucial.

Preliminary calculations using the full nonlinear SCP-
MDW theory have been used as checks on the SCP-MDW
and QHT approximations as well as the MD results. No se-
rious discrepancies have been observed.
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