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Crystalline piezoelectric dielectrics electrically polarize upon application of uniform mechanical strain.
Inhomogeneous strain, however, locally breaks inversion symmetry and can potentially polarize even nonpi-
ezoelectric �centrosymmetric� dielectrics. Flexoelectricity—the coupling of strain gradient to polarization—is
expected to show a strong size dependency due to the scaling of strain gradients with structural feature size. In
this study, using a combination of atomistic and theoretical approaches, we investigate the “effective” size-
dependent piezoelectric and elastic behavior of inhomogeneously strained nonpiezoelectric and piezoelectric
nanostructures. In particular, to obtain analytical results and tease out physical insights, we analyze a paradig-
matic nanoscale cantilever beam. We find that in materials that are intrinsically piezoelectric, the flexoelec-
tricity and piezoelectricity effects do not add linearly and exhibit a nonlinear interaction. The latter leads to a
strong size-dependent enhancement of the apparent piezoelectric coefficient resulting in, for example, a “giant”
500% enhancement over bulk properties in BaTiO3 for a beam thickness of 5 nm. Correspondingly, for
nonpiezoelectric materials also, the enhancement is nontrivial �e.g., 80% for 5 nm size in paraelectric BaTiO3

phase�. Flexoelectricity also modifies the apparent elastic modulus of nanostructures, exhibiting an asymptotic
scaling of 1 /h2, where h is the characteristic feature size. Our major predictions are verified by quantum
mechanically derived force-field-based molecular dynamics for two phases �cubic and tetragonal� of BaTiO3.

DOI: 10.1103/PhysRevB.77.125424 PACS number�s�: 77.65.�j

I. INTRODUCTION

In response to mechanical stimuli, certain crystalline di-
electrics may electrically polarize. Assuming that the applied
uniform mechanical strain � is “small enough,”1 empirical
evidence and phenomenological considerations suggest the
following relation:

�P�i = �d�ijk��� jk. �1�

Indices �in some suitable Cartesian framework� are explicitly
written to display the order of the matter tensors as preva-
lently understood in the literature. The third order tensor
d is, thus, the piezoelectric matter tensor. Symmetry con-
siderations restrict it be nonzero only for dielectrics
belonging to crystallographic point groups that admit
noncentrosymmetry.3

Centrosymmetric dielectrics evidently are not expected to
polarize under mechanical strain. A nonuniform strain field
or the presence of strain gradients can, however, locally
break inversion symmetry and induce polarization even in
centrosymmetric crystals. This phenomenon is termed
flexoelectrictiy,4,5 inspired by a similar effect in liquid
crystals.6–8 In a naive approach, we may simply append a
term proportional to the strain gradients in Eq. �1�:

�P�i = �d�ijk��� jk + �f�ijkl�l��� jk. �2�

Here, f is the so-called fourth order flexoelectric tensor.
Thus, unlike the components of the third ordered tensor d
�piezoelectric coefficients� which are nonzero for only se-
lected �piezoelectric� dielectrics, the flexoelectric coefficients
�components of the fourth order tensor f� are, in principle,
nonzero for all dielectrics although, of course, they may be

negligibly small for many materials. The reader is referred to
Tagantsev,9,10 who provides an overview of the subject. In a
recent work, one of us11 has discussed a mathematical frame-
work for flexoelectricity in detail, in addition to providing a
review of this subject.

Recently, flexoelectricity has caught the attention of sev-
eral researchers and, indeed, some have proposed tantalizing
notions related to this phenomenon. For instance, Fousek et
al.12 were the first to suggest that flexoelectricity should al-
low fabrication of “piezoelectric composites without using
piezoelectric materials.” One of us has computationally ana-
lyzed such metamaterials, while Cross and co-workers13–15

have fabricated nonpiezoelectric tapered pyramidal struc-
tures on a substrate that “effectively” act as piezoelectric
metamaterials. Flexoelectricity is also seen to play an impor-
tant role in the characteristics of ferroelectrics, e.g., Catalan
et al.5 studied the effect of flexoelectricity on the dielectric
constant, polarization, and Curie temperature in ferroelectric
thin films under in-plane substrate induced epitaxial strain.

Patently, the strength of the flexoelectric size effects cru-
cially depends on either the numerical values of the flexo-
electric coefficients or how large the strain gradients are. The
latter is closely linked with the size scale of the structure.
Consider two embedded triangular inclusions16 �Fig. 1� sub-
ject to a stress at two different length scales but with the
same aspect ratios. While the strain field remains the same
across both length scales, the strain gradients scale as 1 /ai
�where ai designates a distance between two points inside the
inclusion�. This simple notion is the essence of the size effect
displayed by flexoelectricity.

Flexoelectric coefficients are not readily available, but
some reasonable estimates are known for some specific ma-
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terials, e.g., atomistic calculations for graphene �Dumitrica
et al.18 and Kalinin and Meunier19� and lattice dynamics for
NaCl �Askar and Lee20�. Kogan21 has argued that for all
dielectrics, e /a ��10−9 C /m� is an appropriate lower bound
for the flexoelectric coefficients, where e is the electronic
charge and a is the lattice parameter. Later experiments
�Ma and Cross22� and simple linear chain models of ions
�Marvan and Havranek23� suggested multiplication by rela-
tive permittivity for normal dielectrics. Much larger magni-
tudes ��10−6 C /m� of flexoelectric coefficients than this
lower bound are observed in certain ceramics.24–26 Flexo-
electricity, of course, also exists in dielectrics that are already
piezoelectric and, in fact, experimental evidence suggests
that flexoelectric coefficients are unusually high in such ma-
terials see the work of Cross and co-workers13,22,24–26 on
ferroelectric perovskites such as barium strontium titanate
�BST� �fBST=100 �C /m�, lead zirconate titanate �PZT�
�fPZT=0.5–2 �C /m at lower and higher strain gradients�,
and lead magnesium niobate �PMN� �fPMN=4 �C /m�. Here,
we note that the flexoelectric coefficient of ferroelectric ma-
terials is quite high even in the paraelectric phase. Quite
remarkably, Zubko et al.27 have recently published the ex-
perimental characterization of the complete flexoelectric ten-
sor for SrTiO3.

In the present work, we analyze the role of flexoelectricity
in both piezoelectric and nonpiezoelectric nanostructures. In
particular, we focus on the illustrative model problem of a
nanoscale cantilever beam to obtain analytical expressions
for the “effective” or “apparent” size-dependent piezoelectric
coefficient and elastic modulus. The simplicity of the chosen
model system allows a facile inference of various physical
insights. On this note, we also observe that cantilever beams
have important technological ramifications as actuators, sen-
sors, and energy harvester among others.28–33 Zhong and
Jinhui34 used atomic force microscopy to deflect the tips of
aligned arrays of piezoelectric cantilever zinc oxide nano-
wires. Due to bending, such nanoharvesting devices show
generated piezoelectric power efficiency up to 30%. To
verify our predictions, we carry out atomistic calculations on
both paraelectric and piezoelectric phases of BaTiO3 �BT�
nanoscale cantilever beams under bending deformation.

The paper is organized as follows. In Sec. II, we summa-
rize the mathematical framework and the governing equa-

tions of flexoelectricity. In Sec. III, we develop solutions for
the model nanoscale cantilever beam. Based on the analytical
results for this paradigmatic problem, we present the key
physical insights in Sec. IV and, in particular, discuss the
possibility of giant piezoelectricity at the nanoscale and the
size-dependent renormalization of the elastic modulus. In
Sec. V, we present our atomistic calculations, and conclude
in Sec. VI.

II. THEORY OF FLEXOELECTRICITY AND GOVERNING
EQUATIONS

In this section, our presentation closely follows Refs.
35–37 including one of our recent papers.11 We note that the
correct incorporation of flexoelectricity naturally necessitates
the inclusion of polarization gradients also �the latter was
first introduced by Mindlin35�. The symbol Lin designates the
set of all linear transformations, and the associated inner
product is defined as �A ,B�=tr�ATB�.

For a dielectric occupying a volume V bounded by a sur-
face S in a vacuum V�, with a total volume V*, Hamilton’s
principle may be written as

��
t1

t2

dt�
V*
�1

2
��u̇,u̇� − H�dV + �

t1

t2

dt	�
V

��f,�u�

+ �E0,�P���V + �
S

�t,�u�dS
 = 0, �3�

where u, P, f, E0, and t are respectively the displacement,
the polarization, the external body force, electric field, and
surface traction.

The electric enthalpy density H was defined by Toupin38

and divided into energy density of deformation and polariza-
tion denoted WL and a remainder. By extending the depen-
dence of WL to include both strain and polarization gradients,
the electric enthalpy density H takes the following form:

H = WL�S,P,��u,�P� −
1

2
�0���,��� + ���,P� , �4�

where S is the symmetric strain tensor, � is the potential of
the Maxwell self-field �MS� defined by EMS=−��, and �0 is
the permittivity of the vacuum.

Assuming an independent variation of the displacement,
polarization, electric potential, and their gradients, the varia-
tion of the electric enthalpy density �H is

�H = �T,�S� − �Ē,�P� + �T̃,� � �u� + �Ẽ,� � P�

− �0���,� � �� + ���,�P� + �P,� � �� , �5�

where

T =
�WL

�S
, Ē = −

�WL

�P
, T̃ =

�WL

� � �u
, Ẽ =

�WL

� � P
, �6�

T is the stress tensor, Ē is the effective local electric force,

and T̃ and Ẽ can be interpreted as higher order stress and
local electric force, respectively.

Using the chain rule of differentiation,

FIG. 1. �Color online� Illustration of size effects due to scaling
of strain gradients. Subjected to the same far field stress, two trian-
gular inclusions kept at the same aspect ratio but at different length
scales will exhibit strain gradients that scale as 1 /ai.
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�H = � · �T · �u� − �� · T,�u� + � · �T̃ · � � u�

− �� · T̃,� � u� − �Ē − ��,�P� + � · �Ẽ�P�

− �� · Ẽ,�P� + � · ��− �0 � � + P����

− �− �0�� + � · P��� . �7�

The kinetic energy in Eq. �3� is written as

��
t1

t2

dt�
V*

1

2
��u̇,u̇�dV = − �

t1

t2

dt�
V*

��ü,�u�dV . �8�

Substituting Eq. �7� into the Hamilton principle Eq. �3� and
by using the divergence theorem, we find that

�
t1

t2

dt�
V*

���− �ü + � · T − � · �� · T̃� + f�,�u� + ��Ē − ��

+ � · Ẽ + E0�,�P� + �− �0�� + � · P����dV

+ �
t1

t2

dt�
S

����− T + � · T̃� · n + t�,�u� − �Ẽ · n,�P�

− �− �0 � � + P,n����dS = 0. �9�

Hence, the equilibrium equations are

� · � + f = �ü where � = T − � · T̃ in V ,

Ē + � · Ẽ − �� + E0 = 0 in V ,

− �0�� + � · P = 0 in V and �� = 0 in V�, �10�

whereas the corresponding boundary conditions on S are

� · n = t where � = T − � · T̃ ,

Ẽ · n = 0,

�− �0
��
 + P� · n = 0. �11�

� may be considered as the actual physical stress experi-
enced by a material point and differs from the Cauchy stress
T. The symbol 
 
 denotes the jump across the surface or an
interface.

Neglecting the contribution of higher order terms �fifth
order tensors and higher�, the strain energy density can be
expanded as

WL�S,P,��u,�P� =
1

2
P · a · P +

1

2
� P:b:�P +

1

2
S:c:S

+ S:e:�P + S:d · P + P · g:�P

+ P · f:��u . �12�

Finally, according to Eq. �6�, the constitutive equations are

T =
�WL

�S
= c:S + e:�P + d · P ,

T̃ =
�WL

� � �u
= f · P ,

− Ē =
�WL

�P
= a · P + g:�P + f:��u + d:S ,

Ẽ =
�WL

� � P
= b:�P + e:S + g · P . �13�

The coefficients of the displacement, polarization, and their
gradients defined above as a, b, c, d, f, g, and e are material
property tensors. The second order tensor a is the reciprocal
dielectric susceptibility. The fourth order tensor b is the po-
larization gradient–polarization gradient coupling tensor and
c is the elastic tensor. The fourth order tensor e corresponds
to polarization gradient and strain coupling introduced by
Mindlin,35 whereas f is the fourth order flexoelectric tensor.
d and g are the third order piezoelectric tensor and
the polarization-polarization gradient coupling tensor,
respectively.

III. MODEL PROBLEM: CANTILEVER NANOBEAM

Piezoelectric materials generally have symmetry lower
than cubic and �even for the latter� analytical calculations are
all but impossible for general three-dimensional bodies. A
cantilever beam is a model system that degenerates to a one-
dimensional problem and is, thus, analytically tractable �al-
beit approximately�. Figure 2 depicts the schematic of such a
cantilever beam. We note that a closed-form solution of a
cantilever predicated on classical piezoelectric theory
�excluding the flexoelectric effect� has been derived by
Weinberg.39 The latter work ignores variation of electric field
through the thickness of the beam and, accordingly, is only
valid for materials with low electromechanical coupling.
Subsequently, Tadmor and Kosa40 have improved upon on
that work by taking into account the variation of the electric
field in the beam layers.

We adopt the usual assumptions made in analyzing slen-
der beams, e.g., beam thickness is much less than the radius
of curvature induced by the mechanical and electrical load-
ing, and that beam cross section is constant along its length.
In the adopted Oxyz Cartesian coordinate system �Fig. 2�, Ox
corresponds to the centroidal axis of the undeformed beam, y
axis is the neutral axis, and the z axis is the symmetry axis.
Although a rectangular cross-sectional beam is depicted in
Fig. 2, much of the derivation proceeds for an arbitrary
cross-sectional shape.

The displacement field is u=u�u1�x ,z� ,u2=0 ,u3�x��. As is
typical in the analysis of beams, the displacement is param-

FIG. 2. �Color online� Schematic of a rectangular cantilever
beam. Initial and bent configurations are sketched.
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etrized with respect to the out-of-plane displacement compo-
nent:

u3 = w�x� ,

u1 = − z
du3�x�

dx
= − z

dw�x�
dx

,

u2 = 0. �14�

For narrow beams �b�5h�, it is typical to assume that the
stresses 	33=	3=0 and 	22=	2=0. The only relevant elec-
tric field component is E3. According to the physical stress
defined in Eq. �10�, the nonvanishing component 	11 is

	11 = 	1 = T11 − T111,1 − T113,3. �15�

Without loss of generality, we now assume tetragonal 4mm
material symmetry. Most piezoelectrics are of the latter or
higher symmetry �e.g., PZT 5H�. Accordingly, we can re-
write Eq. �15� as

	1 = c1S1 + �e13 − f13�P3,3 + d31P3, �16�

in which the Voigt notation is used for the different coeffi-
cients and c1, d31, e13, and f13 designate respectively the
elastic modulus, the piezoelectric constant, the polarization
gradient and strain coupling constant, and the flexoelectric
coefficient of the one-dimensional beam.

S1 is the axial strain which can be explicitly written under
the beam assumptions as function of the radius curvature
R�x�:

S1�x,z� = −
z

R�x�
= − z

d2w�x�
dx2 . �17�

Equation �14� may be rewritten with a somewhat simpler
notation as

	1 = YS1 + �e − f�P3,3 − YdP3. �18�

Here, Y =c1, e=e13, f = f13, and d=−d31 /Y.
The notation in Eq. �18� facilitates subsequent comparison

with results obtained by Tadmor and Kosa40 for classical
piezoelectric beams.

Finally, the electric field induced by the polarization due
to piezoelectricity and flexoelectricity �strain gradient term�
is expressed as

E3 = �0
−1
33

−1P3 − f55S11,3, �19�

where 
33
−1=�0a33=
−1 is the reciprocal dielectric susceptibil-

ity.
The total electric displacement in the z direction is given

by

D3 = d	1 + �E3 + f55S11,3, �20�

with �=�33 the dielectric constant. Predicated on one-
dimensional �1D� beam assumptions, we have from Eq. �20�

E�x,z� =
1

�
�D3�x� − d	1�x,z� − f55S11,3� . �21�

We define the “through-layer” average of any quantity as

T̄�x� =
1

h
�

Layer

T�x,z�dz . �22�

Since the applied voltage difference is constant along the
beam,

V = −
D3�x�h

�
+

dh

�
	̄1 +

f55h

�
S̄11,3. �23�

We may, thus, write

D3�x� = −
�V

h
+ d	̄1 + f55S̄11,3. �24�

From Eq. �18�, the average layer stress is then

	̄1 = �e − f�P̄3,3 − YdP̄3. �25�

Assuming a linear variation of the electric field in z and that
the average layer electric field and voltage are respectively
equal to −V /h and V, we find that

Ē3 = −
V

h
, Ē3,3 = −

24V

h2

and, hence, P̄3 and P̄3,3.
Substituting Eq. �24� into Eq. �21� with Eq. �25�, we ob-

tain an equation to solve for the electric polarization

−
V�0


h
−

d

�
�	1�x,z� − 	̄1� = P�x,z� − f�S11,3 �26�

in which f�= f55.
Solving Eq. �26�, we obtain

P�x,z� = −
V�0


h
electrostatic

+
�

d

z

R�x�
pure piezoelectricity

−
f�

R�x�
pure flexoelectricity

−
�2�e − f�
d2YR�x�

−
24V�0
��e − f�

dYh2

piezoelectricity-flexoelectricity interaction

,

�27�

where �=ke
2=k2 / �1−k2� is defined as the square of the expe-

dient coupling coefficient41 ke, and k=�Yd2 /� is the so-
called electromechanical coupling �EMC� coefficient.

The first term in Eq. �27� corresponds to polarization due
to an applied voltage; the second is due to a pure piezoelec-
tric effect; the third term is due to a pure strain gradient or
flexoelectric effect �polarization exists even in the absence of
applied voltage and piezoelectric effect as long as the strain
is nonuniform�, whereas the last two terms correspond to
combined piezoelectric and flexoelectric contributions and,
thus, informs us of the nonlinear interaction between flexo-
electricity and piezoelectricity.

Note that our solution coincides with the results of Tad-
mor and Kosa40 if we neglect the higher order contribution of
polarization and strain gradients �e→0 and f , f�→0�. In ad-
dition, if we further disregard the EMC ��→0�, we recover
the classical result for a simple dielectric in which the elec-
tric field is a constant −V /h.
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To proceed further, it is expedient to define the strain
energy U:

U =
1

2
� �

V
� TijSijdV+

1

2
� �

V
� Tijmui,jmdV . �28�

For the case of the 1D beam, it reduces to

U = −
1

2
�

x=0

L

M̂�x�
d2w�x�

dx2 dx −
1

2
�

x=0

L

P̂�x�
d2w�x�

dx2 dx ,

�29�

where

M̂�x� =� �
A

zT1�x,z�dydz and P̂�x� =� �
A

fP3�x,z�dydz

�30�

are the resultant moment and the higher order resultant mo-
ment, respectively.

In the absence of body forces, the work done by external
forces due only to transverse loading q�x� is

W�x� = �
x=0

L

q�x�w�x�dx . �31�

The total potential energy � is obtained from Eqs. �29� and
�31� as

� = U − W = −
1

2
�

x=0

L

�M̂�x� + P̂�x��
d2w�x�

dx2 dx

− �
x=0

L

q�x�w�x�dx . �32�

Its first variation is derived in a similar form as given by
Ref. 42

� � = �− „M̂�x� + P̂�x�…�w��x��0
L

+ 	�dM̂�x�
dx

+
dP̂�x�

dx
��w�x�


0

L

− �
0

L �d2M̂�x�
dx2 +

d2P̂�x�
dx2 + q�x���w�x�dx . �33�

By using the principle of minimum potential energy ���
=0, e.g., Ref. 43� and the fundamental lemma of calculus of
variation �e.g., Ref. 44�, we have the following governing
equation from Eq. �33�:

d2M̂�x�
dx2 +

d2P̂�x�
dx2 + q�x� = 0, ∀ x � �0,L� . �34�

The corresponding boundary conditions prescribed at the
beam ends �x=0 and x=L� are

M̂�x� + P̂�x� or
dw�x�

dx
,

d„M̂�x� + P̂�x�…
dx

or w�x� . �35�

From Eqs. �30�, �13�, and �28�, we can show that

M̂�x� = − YI�1 + ��
d2w�x�

dx2 ,

P̂�x� = − Af	V�0


h
+

f�

R�x�
+

�2�e − f�
d2YR�x�

+
24V�0
��e − f�

dYh2 
 ,

�36�

where I=��Az2dA is the second moment of cross-sectional
area A.

Thus, the equilibrium Eq. �34� becomes

G
d4w�x�

dx4 = q�x� , �37�

where G is the beam bending rigidity defined as

G = YI	1 + � +
Af f�

YI
+

Af�2�e − f�
d2Y2I


 . �38�

Once again, we point out that if we ignore the polarization
and strain gradient effects �e→0 and f , f�→0�, we recover
the same bending rigidity as in Ref. 40 Also, if we neglect
the EMC ��→0�, we recover the classical bending rigidity
for a beam G=YI. Note that in the absence of piezoelectric-
ity ��→0�, the renormalized bending rigidity is G=YI
+Af f� due to flexoelectric effect.

The preceding derivation is for an arbitrary cross-
sectional beam. As a concrete example, consider a rectangu-
lar cantilever beam subjected to a transversal point load N.
The corresponding boundary conditions from Eq. �35� are

w�0� = 0 and �dw�x�
dx

�
x=0

= 0,

M̂�L� + P̂�L� = 0 and � d„M̂�x� + P̂�x�…
dx

�
x=L

= N .

�39�

In the absence of distributed transverse loading �q�x�=0�, the
homogeneous equilibrium equation becomes

G
d4w�x�

dx4 = 0, �40�

where the solution is in the form

Gw�x� =
a1

6
x3 +

a2

2
x2 + a3x + a4. �41�

By means of the boundary conditions in Eq. �39�, the beam
deflection is then

w�x� =
Nx2�3L − x�

6G
, �42�

in which the bending rigidity G is defined by Eq. �38� with
I=bh3 /12 and A=bh.
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Thus, we may use the classical well-known beam equa-
tion for deflection provided the rigidity �or, in effect, the
elastic modulus� is renormalized according to Eq. �38�.

IV. PHYSICAL INSIGHTS, POSSIBILITY OF “GIANT”
SIZE-DEPENDENT PIEZOELECTRICITY, AND

SCALING OF ELASTIC MODULUS

Based on the derivation in the preceding section, we may
define an effective or “renormalized” piezoelectric constant
which has contributions from both classical piezoelectricity
and flexoelectricity.

From Eq. �38�, we define the effective coupling coeffi-
cient as

�ef f = � +
12f�e − f��2

Y2d2h2 +
12f f�

Yh2 . �43�

Consequently, the effective piezoelectric coefficient is

def f =��

Y

�ef f

�1 + �ef f�
. �44�

Figure 3 shows that for piezoelectric PZT cantilevers
�dashed line�, the effective piezoelectric constant is increased
by 75% of the PZT bulk value �dPZT=−274 pC /N� at 20 nm.
Even though cubic BT is not piezoelectric �red solid line�,
we still see a large apparent piezoelectric response below
10 nm. At 8 nm, the apparent piezoelectric response of BT is
50% that of the bulk BT piezoelectric constant �dBT
=−78 pC /N�. At 2 nm, the apparent piezoelectric response
is double the one generated by a piezoelectric BT beam.
An extremely high apparent piezoelectric response is seen
at smaller sizes, reaching almost five times the piezoelec-
tric BT constant.

Ma and Cross report that ferroelectric phase �piezoelec-
tric� BT has a high flexoelectric constant estimated45 to be
fBT=50 �C /m. Figure 4 shows that for piezoelectric BT, the
effective piezoelectric response increases by 20% of its bulk

value at 8 �m and exhibits a giant 500% increase at 5 nm.
Our theoretical results indicate that the apparent piezo-

electric response is determined by a synergistic addition be-
tween piezoelectricity and flexoelectricity �e.g., Eq. �27��. By
comparing PZT and piezoelectric BT results, the noteworthy
increase in the piezoelectric response occurs at vastly differ-
ent length scales. The effective piezoelectric constant as de-
fined previously in Eq. �44� depends on both piezoelectric
constant �EMC� and the flexoelectric constant. The piezo-
electric constant for PZT is higher than BT but it is of the
same order of magnitude. However, the flexoelectric constant
of BT is 2 orders of magnitude higher than that of PZT
�fBT=100fPZT�, which explains the difference in the length
scales at which the enhancement is observed. In the case of
nonpiezoelectric �paraelectric� BT, the only contribution to
the effective piezoelectric response is due to flexoelectricity.
Therefore, the effect is smaller and only occurs at small
scales �tens of nanometers�.

We now show that flexoelectricity also impacts the ob-
served or apparent elastic modulus. The normalized effective
Young’s modulus �with bulk value� is defined as �see Eq.
�38� also�

Y� =
G

YI
= 	1 + � +

12f�e − f��2

Y2d2h2 +
12f f�

Yh2 
 . �45�

To illustrate our results, we pick the following values for the
different parameters: A PZT 5H beam with rectangular cross
section defined by b=2h �b�5h, plane stress� and L=20h,
loaded with a force magnitude N=100 �N so that we remain
in the elastic domain. The flexoelectric coefficient f is ob-
tained from Ref. 12, fPZT=0.5 �C /m. A 1 /h2 scaling is evi-
dent in Eq. �45� and is illustrated in Fig. 5: smaller beams
appear stiffer due to the flexoelectric effect �dashed line�.
Note that the normalized effective Young’s modulus accord-
ing to Tadmor and Kosa40 is a little larger than 1 because of
the EMC contribution.

V. ATOMISTIC SIMULATIONS

In previous sections, based on the phenomenon of flexo-
electricity and an appropriate mathematical description, we

FIG. 3. �Color online� Normalized effective piezoelectric con-
stant of deformed PZT �dashed blue; dashed dark gray in print� and
nonpiezoelectric BT beams �solid red; light gray in print�. The nor-
malization is done with respect to the bulk piezoelectric constant of
PZT �solid blue; dark gray in print� �dPZT=−274 pC /N� and piezo-
electric phase of BT �dBT=−78 pC /N�.

FIG. 4. �Color online� Normalized effective piezoelectric con-
stant of tetragonal �piezoelectric� BT beam. An enhancement of
20% of its bulk value at 8 �m and a 500% increase at 5 nm are
observed.
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have argued the possibility of giant piezoelectricity in piezo-
electric nanostructures and certainly an enhancement even in
nonpiezoelectric ones. In this section, we present discrete
atomistic calculations based on a �quantum mechanically de-
rived� force field to confirm some of our predictions. We
have avoided atomistic calculation of PZT since the core-
shell potential available for it is not parametrized appropri-
ately for the physical insights sought by the present work.
Therefore, we focused our attention mainly on BT. At tem-
perature above the Curie temperature TC of 393 K, BT is in
its stable paraelectric cubic phase �Pm3m�. Below TC, BT
undergoes three ferroelectric phase transitions. The cubic
structure changes to tetragonal �P4mm� symmetry at TC,
orthorhombic �Amm2� at 278 K, and the last phase transi-
tion, rhombohedral �R3m�, occurs at 183 K. In prior work,46

one of us has developed a suitable polarizable charge distri-
bution force field for BT to use in molecular dynamics �MD�
simulations based on ab initio quantum mechanical calcula-
tions. One distinctive feature of this force field is that charge
transfer and atomic polarization are treated self-consistently
and is, thus, quite appropriate for studying ferroelectrics. The
charge is described as a Gaussian distribution for each of the
core and the shell. The total core charge has positive fixed
amplitude centered on the nucleus, whereas the negative va-
lence �shell� charge is determined via charge equilibration
and is allowed to move off the nuclear center. The two
Gaussian charge distributions interact with Coulombic �elec-
trostatic� forces. Nonbonded interactions between neutral at-
oms and molecules �short range Pauli repulsion and long
range attractive van der Waals dispersion� are described by
the Morse potential. Our previous MD calculations46 indicate
that the polarizable charge distribution force field potential
for BT is able to correctly predict experimentally observed
paraelectric �cubic� to ferroelectric �tetragonal� phase transi-
tion among other features. One of us has also recently suc-
cessfully used it to study antiferroelectricity in cubic and
ferroelectric phases of BT.47

Our calculations were carried out using MST package.48

Beam thicknesses were varied from 1 single unit cell �4.01 Å

as lattice parameter� to 2 nm, while length was set to 4 nm.
Several simulations were performed and results were aver-
aged over all the runs. To reproduce our theoretical work
conditions, simulated rectangular cantilevers were held fixed
at one side then bent to the shape dictated by the simple 1D
deflection solution defined previously in Eq. �40� �Fig.
6—deflection amplified for clarity�.

For a given strain gradient, we determine the average po-
larization for different runs with different BT beam sizes in
both ferroelectric and paraelectric phases. In the case of non-
piezoelectric BT �Fig. 7�, MD calculations are in good agree-
ment with the predictions of our theoretical model from the
previous section. Only a few points calculated by MD are
shown, and the solid line is interpolated using the least
square technique, providing a guide for the eye.

For piezoelectric BT, as shown in the previous section, the
effective piezoelectric response shows an enhancement at a
higher length scale of a few micrometers and reaches gigan-
tic proportions at the nanoscale �Fig. 8�. Such giant enhance-
ments are duly confirmed by atomistic calculations.

There are, of course, some �inconsequential� differences
between the theoretical model and MD results. The theory is

FIG. 5. �Color online� Normalized Young’s modulus of a rect-
angular PZT cantilever beam. The dashed line illustrates the size
dependency of the elastic modulus and exhibits a 1 /h2 scaling
where h is the beam thickness. The horizontal solid line is for the
results of Tadmor and Kosa, for a classical piezoelectric beam that
excludes the flexoelectric effect.

FIG. 6. �Color online� Atomistic representation of a cantilever
beam under bending. The square dotted block is for aesthetic
perspective.

FIG. 7. �Color online� Normalized effective piezoelectric con-
stant of cubic �nonpiezoelectric� BT. Only a few points are obtained
from atomistic simulations. The least square fit shows good agree-
ment with the predictions of the theoretical model.
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developed under the assumptions of a simplified 1D prob-
lem, whereas the simulations are carried out on three-
dimensional nanostructures. In addition, our model sensi-
tively depends on several material properties �Young’s
modulus, dielectric, and piezoelectric and flexoelectric con-
stants�, the values of which could be over- or underestimated
by the experimental values we have used. At such small
scales, other phenomena, in particular, surface piezoelectric-
ity and/or flexoelectricity,9 which are not taken into account
by our model, may become important.

We have also computed and contrasted the effective elas-
tic modulus with our theoretical results. The energy differ-
ence between the bent beam configuration and the unde-
formed one is the strain energy or the work done by the
applied force. The strain energy U is

U =
1

2
�

V

	Sdv =
1

2
YI�

0

L 1

R2�x�
dx . �46�

We estimate the normalized effective Young’s modulus from
the following relation:

Y� =� N2L3

6YIU
. �47�

We note that a similar technique was used by Miller and
Shenoy49 to explain atomistically the size dependency of
Young’s modulus of nanosized elements and the flexural ri-
gidity of beams in bending due to surface energy effects.

The atomistic results for Young’s modulus for BT are con-
trasted with theoretical ones in Fig. 9. Once again, down to
about 2 nm or so, there is good agreement �and below which,
as already explained, results diverge�.

VI. SUMMARY

We have argued that flexoelectricity exhibits a size effect
and, thus, should have important ramifications for the appar-
ent piezoelectric and elastic behavior of nanostructures. Cer-

tainly in some dielectrics where flexoelectric coefficients are
quite high and coupled with large strain gradients possible at
the nanoscale, the effect of flexoelectricity can be nontrivial.
In particular, using a model system of a cantilever nanobeam,
we are able to analytically show that in materials that are
already piezoelectric, the effect of flexoelectricity is multipli-
cative and combines nonlinearly with the intrinsic piezoelec-
tricity. The nonlinear flexoelectric-piezoelectric interaction
manifests itself as a giant increase in the apparent piezoelec-
tric response at small sizes for materials that are intrinsically
piezoelectric �duly confirmed via accurate atomistic calcula-
tions for BT�. As is well known in the classical piezoelec-
tricity literature, a polarized elastic solid shows a renormal-
ized �size independent� elastic constant. This is true in
flexoelectricity induced elasticity renormalization as well, al-
though the behavior is size dependent and scales as �1 /h2.

We find it interesting that classical piezoelectric theory
when supplemented with flexoelectricity is able to capture
the electromechanical behavior of nanostructures almost
down to 2 nm. Needless to say, without incorporation of
flexoelectricity, the size effects observed in the atomistic cal-
culations cannot be reconciled. An auxiliary benefit of the
present work, thus, is that continuum piezoelectricity duly
supplemented with flexoelectricity may be employed to
study nanoscale piezoelectricity in a computationally expe-
dient manner rather than using atomistic calculations which
have clear computational limits in terms of system size and
computational expense.

Currently, very little experimental work is available on
piezoelectricity bent nanobeam as it is highly challenging to
perform controlled experiments at that scale. In that regard,
we note that in some cases �e.g., in piezoelectric phase of
BaTiO3�, the size effect predicted by us are also manifest at
micron size beams, thus providing a facile route for experi-
mental verification of our presented scaling laws. Further-
more, the approach and conclusions of this work will remain
relevant for same order of magnitude structures such as
lattice-mismatched epitaxial thin films.50 The latter work ex-
amined the influence of strain gradients �through flexoelec-
tric coupling� on the ferroelectric properties of films with
decreasing thickness. Another example is the case of asym-

FIG. 8. �Color online� Normalized effective piezoelectric con-
stant of tetragonal �piezoelectric� BT. Since the atomistic calcula-
tions were carried for very small sizes, the right inset corresponds to
a zoomed-in view around 3 nm. The atomistic results fluctuate
around a constant value �least square fit �solid line�� and qualita-
tively match the theoretical predictions.

FIG. 9. �Color online� Normalized Young’s modulus for a BT
cantilever beam. The least square fit of the atomistic simulations
demonstrates reasonable agreement down to 2 nm.
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metric three-component ferroelectric superlattices,51 where
authors confirm enhancement in polarization by similar phe-
nomena �breaking the inversion symmetry of the lattice�.

Our theoretical model neglects some effects that may be-
come important at small sizes, e.g., surface flexoelectricity
and surface piezoelectricity.9 Regarding the latter, we have
minimized its influence in atomistic calculations by ensuring
the centrosymmetry of surfaces. Surface flexoelectricity has
been discussed at length by Tagantsev9 and is not included in
our theoretical model �although this phenomenon is auto-
matically accounted for in the atomistic calculations�. Evi-
dently, surface flexoelectricity is likely to be important only

below 2 nm or so for the materials we have investigated
�given the close agreement up to that point between our ato-
mistic and theoretical results�.
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