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The coherence time of an electron spin decohered by the nuclear spin environment in a quantum dot can be
substantially increased by subjecting the electron to suitable dynamical decoupling sequences. We analyze the
performance of high-level decoupling protocols by using a combination of analytical and exact numerical
methods, and by paying special attention to the regimes of large interpulse delays and long-time dynamics,
which are outside the reach of standard average Hamiltonian theory descriptions. We demonstrate that dynami-
cal decoupling can remain efficient far beyond its formal domain of applicability, and find that a protocol
exploiting concatenated design provides best performance for this system in the relevant parameter range. In
situations where the initial electron state is known, protocols able to completely freeze decoherence at long
times are constructed and characterized. The impact of system and control nonidealities is also assessed,
including the effect of intrabath dipolar interaction, magnetic field bias and bath polarization, as well as
systematic pulse imperfections. While small bias field and small bath polarization degrade the decoupling
fidelity, enhanced performance and temporal modulation result from strong applied fields and high polariza-
tions. Overall, we find that if the relative errors of the control pulse flip angles do not exceed 3%, decoupling
protocols can still prolong the coherence time by up to 2 orders of magnitude.
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I. INTRODUCTION

Electron and nuclear spin degrees of freedom are promis-
ing candidates for a variety of quantum information process-
ing �QIP� devices.1–3 While the wide range of existing mi-
crofabrication techniques make solid-state architectures
extremely appealing in terms of large-scale integration, such
an advantage is seriously hampered by the noisy environ-
ments which are typical of solid-state systems, and are re-
sponsible for unwanted rapid decoherence. For an electron
spin localized in a gate-engineered GaAs quantum dot
�QD�,4 for instance, the relevant coherence time is extremely
short: At typical operating temperatures, �T�100 mK� and
subtesla magnetic fields, the electron spin free induction de-
cay �FID� time T

2
*�10 ns, as measured in recent ensemble

experiments.5–7 While relaxation and dephasing processes in-
duced by coupling to acoustic phonons are the main factors
in limiting the coherence time in both charge-based8,9 and
exciton-based10 qubits in QDs, the contribution of direct
spin-phonon interactions11 to electron spin decoherence is
negligible below 1 K, whereas indirect contributions medi-
ated by the spin-orbit coupling are strongly suppressed due
to tight lateral electron confinement.12 This leaves the hyper-
fine coupling to the surrounding bath of Ga and As nuclear
spins as the dominant decoherence source in experimentally
relevant spin-based QD devices.13,14 Although efforts for
achieving faster gating times may contribute to alleviate the
problem, it remains both highly desirable and presently more
practical to extend the coherence time of the central system
�the electron spin� in the presence of the spin bath.

Several proposals have been recently put forward to meet
this challenge. A first strategy is to manipulate the spin bath.
Polarizing the nuclear spins, for instance, may significantly

increase the coherence time,15,16 provided that nuclear spin
polarization �99% may be achieved. This, however, remains
well beyond the current experimental capabilities. Another
suggestive possibility, based on narrowing the distribution of
nuclear spin states,17–19 has been predicted to enhance elec-
tron coherence by up to a factor of hundred, upon repeatedly
measuring and pumping the electron into an auxiliary excited
trion state—which also appears very challenging at present.

As an alternative approach, direct manipulation of the
central spin by means of electron spin resonance �ESR�20 and
dynamical decoupling �DD�21–24 techniques appears ideally
suited to suppressing hyperfine-induced decoherence, in
view of the long correlation time which distinguish the
nuclear spin reservoir, and which causes memory effects to
result in strongly non-Markovian bath dynamics.16,17,25–27 A
single-pulse Hahn-echo protocol has been implemented re-
cently in a double-QD device,5 increasing the coherence time
by 2 orders of magnitude. Significant potential of more
elaborated pulse sequences, such as the so-called multipulse
Carr–Purcell–Meiboom–Gill protocol �CPMG�28 and concat-
enated DD �CDD�,29–33 has been established theoretically for
a single QD subjected to a strong external bias field, whereby
the electron effectively undergoes a purely dephasing pro-
cess. The DD problem for the more complex situation of a
zero or low bias fields, where pure dephasing and relaxation
compete, has been recently examined in Refs. 34 and 35.
Having established the existence of highly effective DD
schemes for electron spin storage, the purpose of this work is
twofold: First, to gain a deeper understanding of the factors
influencing DD performance and the range of applicability of
conclusions based on analytical average Hamiltonian theory
�AHT� approaches; and, second, to assess the influence of
various factors which may cause the system and/or control
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Hamiltonians to differ from the idealized starting point cho-
sen for analysis.

Aside from its prospective practical significance, develop-
ing and benchmarking strategies for decoherence suppres-
sion in various spin nanosystems are interesting from the
broader perspective of quantum control theory. In particular,
standard theoretical tools usually employed for the analysis
of DD performance, such as AHT and the Magnus expansion
�ME�, have very restrictive formal requirements of applica-
bility �very fast control time scales, bounded environments,
etc.�, which may be hard to meet in realistic systems. Thus,
in-depth studies of physically motivated examples are essen-
tial to understand how to go beyond the formal error bounds
sufficient for convergence, and to identify more realistic nec-
essary criteria for DD efficiency. In this sense, a QD system,
described by the central spin model �a central spin-1 /2 inter-
acting with a bath of N external spins13,36� provides a natural
testbed for detailed DD analysis, and paves the way to un-
derstanding more complex many-spin central systems.

In this work, we present a quantitative investigation of
DD as a strategy for robust long-time electron spin storage in
a QD. The content of this paper is organized as follows. In
Sec. II, we lay out the relevant control setting, by describing
the underlying QD model as well as the deterministic and
randomized DD protocols under consideration. Among peri-
odic schemes, special emphasis is devoted to the concat-
enated protocol �PCDD2�, which was identified as the best
performer for this system in Ref. 34. Exact AHT results are
obtained up to second-order corrections in the cycle time,
which allow additional physical insight on the underlying
averaging and on DD-induced bath renormalization to be
gained. Details on the methodologies followed to assess the
quality of DD and to effect exact numerical simulations of
the central spin coupled to up to N=25 bath spins are also
included in Sec. II.

In Sec. III, numerical results on best- and worst-case per-
formances of DD protocols for short evolution times are pre-
sented and compared with analytical predictions from AHT
and/or ME under convergence conditions—in particular,
�c��1, where �c and � are the upper cutoff frequency of the
total system-plus-bath spectrum, and the time interval be-
tween �nearly instantaneous� consecutive control operations,
respectively. Evolution times as long as �1000T

2
* for �

�T
2
* are able to be investigated numerically, other decoher-

ence mechanisms becoming relevant for yet longer times. In
the best-case scenario, where decoherence of a known initial
state may be frozen under appropriate cyclic DD protocols,34

the dependence of the attainable asymptotic coherence value
on � is elucidated in the small � region. Section IV is devoted
to further investigating the effect of experimentally relevant
system features and/or nonidealities, such as the presence of
residual dipolar couplings between the nuclear spins, the in-
fluence of an applied bias magnetic field, and the role of
initial bath polarization. In Sec. V, the effect of systematic
control imperfections such as finite width of pulses and ro-
tation angle errors is quantitatively assessed. We present con-
clusions in Sec. VI.

II. SYSTEM AND CONTROL ASSUMPTIONS

In this section, we describe the model spin Hamiltonian
for a typical semiconductor QD, and typical picture of the

decoherence dynamics of an electron spin in a QD. We
present the DD methods used to suppress the electron spin
decoherence and the metrics for DD performance, followed
by numerical methods we employed.

A. Quantum dot model Hamiltonian

The decoherence dynamics of an electron spin S localized
in a QD and coupled to a mesoscopic bath consisting of N
nuclear spins Ik, k=1, . . .N, may be accurately described by
the effective spin Hamiltonian26,27,34,35,37,38

H = HS + HB + HSB, �1�

where, in units �=1,

HS = �0Sz, �2�

HB = �
k=1

N

�
��k=1

N

�k��Ik · I� − 3Ik
zI�

z� , �3�

HSB = �
k=1

N

AkS · Ik. �4�

Here, the Hamiltonian HS describes the electron spin, �0

=g
e
*	BB0 being the Zeeman splitting in an external magnetic

field B0, g
e
* is the effective Landé factor of the electron spin,

and 	B is Bohr’s magneton. The Hamiltonian HB is the bath
Hamiltonian, describing dipolar interactions with strength
�k� between nuclear spins k and �. For our analysis, a
nearest-neighbor approximation to HB is adequate, with �k�

taken as random numbers uniformly distributed between
�−�0 ,�0�, so that the parameter �0 upper-bounds the strength
of intrabath couplings. The relevant system-bath coupling
Hamiltonian HSB accounts for the Fermi contact hyper-
fine interaction, and the coupling parameter Ak

= �8
 /3�g
e
*	Bgn	nu2�xk� being determined by the electron

density u2�xk� at the kth nuclear spin site xk and by the Landé
factor of the nuclei gn. Other small contributions to the total
QD Hamiltonian, such as the Zeeman splitting of the nuclear
spins and anisotropic electron-nuclear couplings, may be ne-
glected for the current purposes27,38 �see, however, Ref. 39
for recent developments on controllability in the presence of
anisotropic hyperfine couplings�. Note that no contribution to
spin decay is expected from the spin-orbit mechanism12 in
the limit of zero B0 field which is of primary interest here.

Upon tracing over the nuclear spin reservoir, the electron
spin described by Eq. �1� undergoes fast decoherence with a
characteristic FID time of

T2
* �

1

A
� 8

N

3

4I�I + 1�
, A =��kAk

2

N
,

where A	10−4 	eV for typical GaAs QDs with N=106 Ik
= I=3 /2 nuclear spins.27,40 This results in a T

2
* value of about

10 ns,5–7,38 which is too short for QIP applications. In simu-
lations, we shall neglect the I dependence of the FID time
and simply set the nuclear spin value to Ik=1 /2 for all k. The
FID time also turns out to depend very weakly on the applied
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bias field B0 as long as B0 is smaller than or comparable to
the Overhauser field of the unpolarized nuclear spins.27 A
similar conclusion holds for a weakly polarized nuclear spin
bath, with polarization p�1. Throughout this paper, energies
shall be expressed in units of A, and time shall be expressed
in units of 1 /A. Since �0�Ak for typical GaAs QDs,38 we
shall take �0=0 �hence HB=0� unless explicitly stated �see,
in particular, Sec. IV B�.

B. Quantum dot decoupling protocols

Compared to other decoherence control strategies, DD has
many attractive features: It is a purely open-loop control
method which, as such, avoids the need of measurements
and/or feedback; it does not rely on a particular initial state
which might be hard to prepare; its design and implementa-
tion may substantially benefit from the extensive expertise
available from both the nuclear magnetic resonance �NMR�
and ESR communities.

We shall first assume to have access to ideal control re-
sources, and defer the discussion of control limitations to
Sec. V. In this idealized setting, DD of the electron spin is
implemented by subjecting it to a sequence of bang-bang 
n̂
pulses,23 each instantaneously rotating the spin S along a
given control axis n̂ by an angle 
. Consecutive pulses are
separated by a time interval �, resulting in a total time-
dependent Hamiltonian of the form

Htot�t� = Hc�t� + H ,

Hc�t� = �
�


�S · n̂����t − ��� , �5�

where ��·� is the delta function, �=1,2 , . . . labels the applied
pulses, and H is given by Eq. �1�. The evolution of the
coupled electron-nuclear system in the physical frame is then
described by the unitary propagator

U�t� = T exp
− i�
0

t

Htot�s�ds� , �6�

where T denotes as usual temporal ordering.

1. Deterministic single-axis dynamical decoupling

DD protocols involving control rotations of the central
spin about a fixed axis achieve selective averaging of spin
components perpendicular to the rotation axis. Such se-
quences are effective when a preferred direction is present
either in the underlying physical Hamiltonian or in the initial
quantum state to preserve. For instance, in the presence of a
strong static bias field, B0�1 T, electron spin flips are ener-
getically suppressed, and pure dephasing in the transverse
direction is the dominant decoherence source.28,30,41,42 In
such a situation, the interaction Hamiltonian equation �4�
simplifies to

Heff = Sz�
k

Ak�Ik
z , �7�

with renormalized coupling constants A�. The z component
of the central spin remains constant, while the transverse

component s�=�Sx�2+ Sy�2 undergoes Gaussian FID with
time constant T

2
*. By applying a 
x pulse at times t=� and 2�

�the so-called Hahn echo, for brevity denoted as ��X�X��, the
electron spin is refocused completely22 at time T=2�,

U�2�� = e−i
Sxe−iHeff�e−i
Sxe−iHeff� = − 1 ,

Sx,y�2�� = U†�2��Sx,yU�2�� = Sx,y�0� . �8�

A protocol consisting of repeated spin echoes shall be re-
ferred to as CPMG henceforth. In the case of zero or small
bias field where the full Fermi contact interaction is relevant
�see Sec. IV C for more discussion on the case of a nonzero
bias field�, selective DD no longer removes the effect of the
hyperfine coupling on a generic initial electron state. Rather,
to lowest order in �, the control has the effect of symmetriz-
ing the system-bath Hamiltonian according to the direction
of the applied pulses.24,43 The presence of such a control-
induced approximate symmetrization is essential to under-
stand the possibility of decoherence freezing,34 to be further
discussed in Sec. III A as well as in the Appendix .

2. Deterministic two-axis dynamical decoupling

In the absence of a bias field �B0=0�, relaxation in the
longitudinal direction is as important as dephasing. Thus,
removing the effect of the nuclear reservoir on the electron
spin is only possible by using a control protocol which
achieves nonselective �or universal� DD. Several sequences
have been constructed for finite-dimensional systems by as-
suming control over a basic set of unitary operations forming
a discrete group G= �gj�, j=0,1 , . . . , �G �−1 �DD
group�.23,24,29 In the simplest case of cyclic DD, the control
propagator is sequentially steered through the DD group in a
predetermined order, the change from gi to gj being effected
through the application of a bang-bang pulse Pi,j =gjgi

†—for
instance, G= �I ,X� in the above-mentioned CPMG protocol, I
denoting the identity operation. Thanks to the inherent peri-
odicity of the control action, with cycle time Tc= �G ��, the
DD analysis can be naturally carried out within the AHT by
invoking the ME,20–22

U�Tc� = exp�− iH̄Tc�, H̄ = �
k=0

�

H̄�k�, �9�

where H̄ denotes the AHT. In principle, arbitrary high-order

contributions H̄�k� may be explicitly evaluated by knowing
the applied control sequence.44 A DD scheme for an open-
system Hamiltonian of the form �1� is said to be of order m

if H̄�0�=HB and the first nonzero contribution to H̄ arises

from H̄�m�, thereby being of order O�Tc
m� in the expansion

parameter Tc. Estimates of the convergence radius for the
ME depend sensitively on how the strength of H is quanti-
fied, which may be especially delicate for mesoscopic- and
infinite-dimensional environments.30,45,46 A conservative
convergence bound arises by assuming that a finite upper
spectral cutoff may be identified, �H���c��, and the con-
dition �cTc�1 is obeyed.30,46–48 A more precise character-
ization of sufficient convergence conditions for the ME has
been recently established in Ref. 49.
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Periodic DD �PDD� is the simplest nonselective cyclic
protocol, which ensures that the unwanted evolution is re-
moved to first order in the ME at every Tn=nTc, n�N, for
sufficiently short Tc. For a single central spin, PDD is based
on the irreducible Pauli group GP= �I ,X ,Y ,Z�, where X, Y,
and Z are Pauli matrices, up to irrelevant phase factors.23,24 A
possible implementation, corresponding to the group path
�I ,X ,Z ,Y�, involves two-axis control sequences of the form

C1 = PDD

= e−i
SzC0e−i
SxC0e−i
SzC0e−i
SxC0

= C0XC0ZC0XC0Z , �10�

with C0=exp�−iH�� representing the operator of free evolu-
tion between pulses. Note that in the second line of Eq. �10�,
the time convention used for pulse sequence descriptions is
followed, that is, time evolves from left to right. For such a
sequence, the lowest-order ME reads

C1 = exp�− iTc�H̄�0� + H̄�1� + ¯ �� , �11�

with

H̄�0� =
1

Tc
�H4 + H3 + H2 + H1�� = HB, �12�

H̄�1� = −
i

2Tc
�
j=1

4

�
i=1

j

�Hj,Hi��2 = − Sy
�

4�
k

�
�

AkA��Ik
zI�

x + Ik
xI�

z� ,

�13�

where H1=H, H2=XHX, H3=YHY, and H4=ZHZ, respec-
tively. Thus, PDD achieves first-order DD, with the un-
wanted hyperfine coupling vanishing in the limit �→0, and

H̄�0�=0 for a nondynamical bath. Note that the decoupling
happens after completion of each cycle, so everywhere in the
subsequent analysis of cyclic DD, we shall assume that the
evolution is sampled stroboscopically at instants tj = jTc ,
j=1,2 , . . ..

A simple strategy to improve over PDD averaging is
based on exploiting time symmetrization21,24—leading to so-
called symmetric DD �SDD�. Corresponding to the above-
defined PDD protocol, the SDD protocol relevant to our
problem is defined by the control cycle

SDD = C0XC0ZC0XC0C0XC0ZC0XC0. �14�

Symmetrization guarantees that the electron spin operators
are canceled in all the odd terms of the ME �k odd�, at the
expense of making Tc twice as long as in PDD. As long as

the bath is nondynamical, HB=0, this also yields H̄�1�=0. As
one may verify by direct calculation, the lowest-order term
containing the electron spin is

H̄�2� = −
�3

6Tc
�
k=1

8

�
j=1

k

�
i=1

j

��Hk,�Hj,Hi�� + ��Hk,Hj�,Hi��  Sz�
2.

�15�

A powerful method to enhance DD performance by sys-
tematically shrinking the norm of higher-order terms is to

resort to concatenated design.29 CDD relies on a temporal
recursive structure, so that at level �+1 the protocol is de-
fined recursively as C�+1=C�XC�ZC�XC�Z, C0 denoting as
before free evolution under H. Building on the results of Ref.
34, we focus in this work on a truncated version of CDD,
whereby concatenation is stopped at a certain level and the
resulting supercycle is repeated periodically afterward. Such
a protocol is referred to as PCDD�, with Tc=4�� �note that
�=1 recovers PDD�.

Specifically, a cycle of the PCDD2 protocol consists of
two identical half-cycles, and has a form

�C0XC0ZC0XC0YC0XC0ZC0XC0��repeat� , �16�

where �·� denotes each half-cycle. This protocol leads to es-
pecially remarkable DD performance and averaging structure
for the central-spin problem. First, because the protocol is
time symmetric, averaging is at least of second order, as in

SDD that is, H̄�0�=0, and H̄�1�=0. However, in contrast to

SDD, the second-order contribution H̄�2� turns out to be an
effective pure bath term which renormalizes the bath Hamil-
tonian without directly contributing to the decoherence dy-
namics. Thus, operators mixing electron and nuclear spins

can only appear at order H̄�4� and higher. The fact that a

pure-bath contribution H̄�2� is generated to second order in
the ME, and that a particularly favorable scenario is to be
expected for CDD convergence, was implied in Ref. 30. Re-
markably, two additional features emerge to second order in
the controlled dynamics.

�i� The DD-induced bath Hamiltonian has a regular cou-
pling structure,

H̄�2� = −
�2

96�
k=1

16

�
j=1

k

�
i=1

j

��Hk,�Hj,Hi�� + ��Hk,Hj�,Hi��

= �
i=1

N

�
j�i=1

N

�ij� �Ii · I j − 3Ii
xIj

x� , �17�

where

�ij� = �2AiAj�Ai + Aj�
3

. �18�

That is, to second order in �, the hyperfine interaction be-
tween the electron and the nuclei is removed, and an effec-
tive dipolar Hamiltonian with control-renormalized cou-
plings is induced on the nuclear spins—compare with the
Hamiltonian in Eq. �3�.50

�ii� To the same level of accuracy in �, it is possible to
show that a similar averaging is achieved by a half-PCDD2
protocol—that is, a protocol whose cycle consists of just the
first half in Eq. �16�. In practice, this may be useful to reduce
the number of required pulses for a given desired accuracy.

3. Randomized dynamical decoupling

Randomized design offers another approach to improve
DD performance, by both ensuring robust behavior in the
presence of intrinsically time-varying open-system Hamilto-
nians and by minimizing the impact of coherent error accu-
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mulation at long evolution times.48,51–53 Unlike deterministic
schemes, randomized DD is distinguished by the fact that the
future control path is not fully known in advance. Analysis is
most conveniently carried out in a logical frame that follows
the applied control,48 and by tracking the applied sequence to
ensure that appropriate frame compensation can be used to
infer the evolution in the physical frame. Although loss of
periodicity in the control Hamiltonian causes AHT not to be
directly applicable, contributions of different orders in � may
still be identified in the effective Hamiltonian describing a
given control sequence.

Among all randomized protocols,51–53 we consider a few
representative choices. Naive random DD �NRD� corre-
sponds to changing the control propagator according to a
path which is uniformly random with respect to the invariant
Haar measure on G. For our system, this means that a X, Y, Z
pulse, or a no-pulse is applied with equal probability at every
instant tj = j�, j=0,1 , . . .. So-called random path DD �RPD�
merges features from both pure random and cyclic design, by
involving PDD cycles where the path to traverse G is each
time chosen at random among the �G � ! possible ones. For our
system, we implement a simplified pseudo-RPD protocol by
restricting to cycles which always begin with the identity—
that is, at every instant Tn=4n�, n=1,2 , . . ., we randomly
choose a sequence from the following set of ��G �−1�! possi-
bilities:

�C0XC0ZC0XC0Z, C0ZC0XC0ZC0X,

C0XC0YC0XC0Y, C0YC0XC0YC0X,

C0YC0ZC0YC0Z, C0ZC0YC0ZC0Y� .

Unlike NRD, RPD guarantees that averaging of HSB is re-
tained to lowest order over each control cycle. By enforcing
symmetrization on the RPD protocol, symmetrized random
path DD �SRPD� is obtained, whereby every sequence from
the above set is augmented by its time-reversed counterpart.
SRPD additionally ensures that all odd terms in the effective
Hamiltonian which involve the electron spin operators disap-
pear at Tp=8p�, p=1,2 , . . ..

C. Dynamical decoupling performance metrics

In order to meaningfully compare different DD protocols
for given control resources �in particular, finite ��, an appro-
priate control metric should be identified. Different choices
may best suit different control scenarios. Quantities such as
pure-state input-output fidelity and purity, for instance, de-
pend strongly on the initial state of the central system, thus
being appropriate when preservation of a known electron ini-
tial state is the intended DD goal. Average input-output fi-
delity and gate entanglement fidelity do not rely on a particu-
lar initial state; however, they depend on the probability
distribution of the initial states and quantify typical
performance.54–56 Taking advantage of the small dimension-
ality of the central spin system, an accurate way for quanti-
fying DD performance at preserving an arbitrary electron
pure state is to evaluate both best-case and worst-case input-
output fidelities.

For a given initial state ��S�0��, recall that the input-
output fidelity is defined as

F�t� = Tr��S�t��S�0�� = �S�0���S�t���S�0�� , �19�

where �S�t� is the reduced density matrix of the central spin
S at time t, �S�t�=TrB��t�, and ��t� and TrB denoting the total
density operator at time t and the partial trace over the bath
degrees of freedom, respectively. F�t� gives a measure of
how far the central system has evolved away from its initial
state. The best-case �b� and the worst-case �w� fidelities are
then naturally defined as

Fb�t� = max��S��F�t��, Fw�t� = min��S��F�t�� .

D. Numerical methodology

Analytical bounds on the expected worst-case fidelity de-
cay for various DD protocols have been obtained for suffi-
ciently short evolution times based on either AHT and/or on
additional simplifying assumptions.29,30,48,51–53 For cyclic
schemes, the relevant error bounds assume convergence of
the ME series, thus requiring, in particular, that �cTc�1,
where in our problem �c is the highest frequency of the total
�electron plus nuclei� spectrum. For a typical GaAs QD with
N�106 bath spins,

�c 	 �
k

�Ak�
4

�
NA

4
� 20 GHz.

thus, strict convergence of the ME implies extremely short
characteristic control time scales, ��10 ps. Moreover, for
ESR experiments under resonance conditions, �c�20 GHz
is about 400 times larger than currently available carrier
pulse frequency,57 and roughly 20 times larger than attain-
able exchange-gating frequency.5,58

In order to evade the strict convergence requirement and
to study DD performance in regimes of more direct experi-
mental relevance, numerical simulations are necessary. Spe-
cifically, we are interested in pulse separations of the order of
1 /�, where

� =
1

2��
k

Ak
2 =

1

2
�NA �20�

is the characteristic half-width of the coupling spectrum, as
opposed to the highest frequency �c, with � being roughly
�N�103 times smaller than �c. Thus, Tc�4���N�c

−1, with
typical interpulse delays values of the order of 10 ns, which
is not too far �within an order of magnitude� from current
experimental capabilities.57 Furthermore, in order to access
DD in the long-time limit, we consider up to thousands of
control cycles. Nuclear spin environments consisting of N
�25 spin-1 /2 are investigated �with a corresponding Hilbert
space dimension of �7�107�—giving hope that our main
conclusions may be extrapolated to real mesoscopic environ-
ments.

The initial state of the entire system is taken to be a direct
product of the electron initial spin state �S�0�
= ��S�0���S�0�� and the bath initial spin state �B�0�. In most
cases, we assume an unpolarized spin bath, described by the
thermal equilibrium density operator �B�0�=2−NI2N�2N,
where I2N�2N is the 2N-dimensional identity matrix �polarized
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initial bath states shall be considered in Sec. IV C. Such a
maximally mixed spin state reflects the fact that for typical
experimental dilution-refrigerator temperatures �T
�100 mK�, the thermal energy is much larger than the en-
ergy scale of the intrabath spin interactions. For a small num-
ber of bath spins �N�8�, we directly simulate the evolution
of the total system’s density operator, followed by a partial
trace over B. For larger N, this approach is not computation-
ally efficient, and we perform simulations by assuming that
the total system is in a pure state.27,34,35,59 In this case, �B�0�
is approximated as a uniformly random superposition of en-

vironment product states, ��B�0��=�i=1
2N

ci��i�, of all possible
tensor products of the form ���= �↑ �1 � �↓ �2 � �↓ �3 � . . .
� �↑ �N, where ci are uniformly distributed random
numbers,27,34,35,59,60 subject to �i�ci�2=1. Thanks to concen-
tration of measure on the space of random pure states, such
an approximation has an exponentially small error, of the
order of 2−N/2, with respect to using the identity state—that
is, �0.5% for N=15.

The desired best- and/or worst-case fidelity Fb/w is evalu-
ated by invoking quantum process tomography.61 Four dif-
ferent initial states of the electron are considered,

��z� = �↑� ,

��z̄� = �↓� ,

��x� = 1
�2

��↑� + �↓�� ,

��y� = 1
�2

��↑� + i�↓�� ,

and for each such state the time-dependent Schrödinger
equation of the total system subjected to DD is solved, by
employing the Chebyshev polynomial expansion method to
calculate the evolution operator.37,59 At the final evolution
time T, the four reduced density matrices �obtained upon
partial trace over B� are used to compute the superoperator
matrix �mn�T�, which describes the electron spin dynamics
according to the linear map

�̃S�T� = �
m=0

3

�
n=0

3

Km�S�0�Kn
†�mn�T� ,

where K0= I, K1=X, K2=−iY, K3=Z, and �̃S specifies evolu-
tion in the logical frame, with �̃S�0�=�S�0�. Since an arbi-
trary initial pure state of S on the Bloch sphere may be pa-
rametrized as

��S�0�� = cos��/2��↑� + sin��/2�ei��↓� ,

with �� �0,
� and �� �0,2
�, Fb/w�T� simplifies to

Fb/w�T� = max/min��,���S�0���̃S�T���S�0�� .

In practice, after determining the matrix �, we obtain Fb/w�T�
by numerical optimization, using a statistically meaningful
set of initial guesses for �� ,��.62

III. RESULTS ON DYNAMICAL DECOUPLING
PERFORMANCE

In this section, we summarize results on best- and worst-
case performances of deterministic DD protocols relevant to
the QD problem, including analytical estimates at short
times. The discussion of randomized protocols is postponed
to Sec. III B, as there is little difference between best and
worst cases.

A. Best-case performance and decoherence freezing

Investigation of best-case performance both provides an
upper bound on the attainable DD fidelity, and reveals a re-
markable phenomenon of single-qubit deterministic DD: The
optimal performance bound is reached for initial states of the
electron, which depend on the geometry of the control pro-
tocol and cause the long-time fidelity to freeze at a nonzero
value determined by the DD rate.34,35

1. Short-time behavior

In order to bridge analytical and numerical results, we
begin by considering the performance of a single DD cycle,
in the limit where the interpulse delay � is small enough to
justify the application of AHT and the ME. Clearly, perfect
�stroboscopic� preservation would be ensured for an initial

electron spin state which is an eigenstate of the full AHT, H̄.
For finite DD accuracy, the best-case scenario still corre-
sponds to initializing the electron in an eigenstate of the
lowest-order term in the ME which involves electron spin
operators, so that the fidelity decay after one cycle is deter-

mined by the next-lowest-order contribution to H̄.
Let the total cycle propagator be expanded as

U�Tc� = exp�− iTc�H̄�0� + H̄�1� + H̄�2� + ¯ �� , �21�

and consider, to begin with, the simplest �C0ZC0Z� CPMG

protocol. Then, H̄�0�=Sz � �kAkIk
z, and the next dominant

contribution arises from H̄�1�. By using Eq. �19�, and by

assuming that ��S�0�� is invariant under H̄�0� for best-case
performance, one finds

Fb�Tc�CPMG 	 1 − Tc
2 TrB��B�0���H̄�1����S�0��

2 �

	 1 − �Tc
2�2 + O�Tc

4�2� , �22�

where

��H̄�k����S�
2 = �S��H̄�k��2��S� − �S�H̄�k���S�2 �23�

denotes the partial variance of the dominant correction H̄�k�

in the initial electron state ��S�, and ��2, ��R, gives the
expectation of such variance operator over the initial bath
state. Thus, � is clearly protocol- and bath-state dependent.
By a similar calculation, the best-case fidelities for PDD and
SDD may be obtained by identifying k=2 and k=4 in Eq.

�23�, and by recalling that H̄�1�Sy�, and H̄�2�Sz�
2,

respectively—leading to
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Fb�Tc�PDD 	 1 − Tc
2 TrB��B�0���H̄�2����S�0��

2 �

	 1 − �Tc
2�4 + O�Tc

4�6� , �24�

Fb�Tc�SDD 	 1 − Tc
2 TrB��B�0���H̄�4����S�0��

2 �

	 1 − �Tc
2�8 + O�Tc

4�12� , �25�

for suitable real parameters � and �.
Beside the above analytical determination, the relevant

fidelity decay terms may also be obtained symbolically—by
Taylor-expanding the exact evolution operator U�Tc�
=� je

−iHj� for the appropriate transformed Hamiltonians Hj,
and collecting coefficients of order �n, so that the lowest two

contributions to H̄ may be isolated. This approach is re-
quired, in particular, to extract the best-case leading decoher-
ence order for PCDD2, which we could not calculate
analytically.63 The single-cycle results are presented in Table
I; an excellent agreement is seen between analytical and
symbolic results, as reported in the second and third rows,
respectively �see also the Appendix for yet another analytical
derivation of the coefficient � and the leading decoherence
order n for CPMG, which agrees well with the results given
by the other methods�.

An alternative way for determining Fb�Tc� is provided
by direct numerical simulation of the total evolution, fol-
lowed by the process tomography procedure described in
Sec. II D. By restricting the simulations to short �, and fitting
1−Fb�Tc� to a power-law function of �, it is then possible to
independently determine the leading decoherence orders in
the ME series. Figure 1, for instance, shows the dependence
upon � of Fb�Tc� for N=5. The initial region in Figure 1,
where 1−Fb�Tc� has a power-law dependence on �, indicates
the region of validity for AHT and/or ME, the slope of the
curve determining the order of the best-case decoherence
term. The first line of Table I shows the leading ME order,
n�Fit�, obtained in this way, which is in excellent agreement
with the available analytical estimates obtained from AHT

and/or ME. In particular, these simulations confirm that H̄�6�

is the leading decoherence term for PCDD2 in the best-case
scenario.

Table I and Fig. 1 clearly demonstrate how DD perfor-
mance improves as we go from PDD to SDD and to PCDD2.
Even though, as already remarked, the CPMG protocol

�C0ZC0Z� does not achieve maximal DD for zero bias field,
the existence of an approximate integral of motion, Sz, still
makes it possible to decouple with high fidelity provided that
the initial electron spin state is a Sz eigenstate. For two-axis
cyclic DD, a preferred direction for initialization may still be
identified. The PDD protocol �C0XC0ZC0XC0Z�, for in-
stance, conserves Sy in the limit �→0 �because ZX�Y,
which coincides with the half-cycle direction�; this estab-
lishes a Sy eigenstate as the best-case state for PDD. When
several DD cycles are implemented, the existence of ap-
proximate control-induced symmetries is responsible for the
decoherence freezing phenomenon which we address next.

2. Long-time behavior

At long times, none of the above-mentioned analytical or
symbolic methods is applicable; thus, numerical simulation
is required.

Figure 2 shows the long-time best-case performance for

TABLE I. Fitting parameters of the best-case cycle performance
Fb�Tc�=1−���c��nTc

2, ��R, for a single DD cycle under CPMG,
PDD, SDD, and PCDD2 in the small � region where �cTc�1. Bath
size N=5. Also presented are ME predictions by analytical method,
n�ME�, and symbolic Taylor expansion, n�Sym�. The same agree-
ment holds for N=3 and N=7.

CPMG PDD SDD PCDD2

n�Fit� 2.00 4.02 7.93 11.80

n�ME� 2 4 8

n�Sym� 2 4 8 12 −8 −6 −4 −2 0
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FIG. 1. �Color online� Best-case performance for single-cycle
DD under the CPMG �plus signs�, PDD �circles�, SDD �upward
pointing triangles�, and PCDD2 �downward pointing triangles� pro-
tocol in the small � region. Bath size N=5. Solid lines are linear fits,
with fitting parameters given in Table I.
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FIG. 2. Best-case performance of �a� CPMG, �b� PDD, �c� SDD,
and �d� PCDD2 starting from an initial state along the half-cycle
direction �z for �a� and �c�; y for �b� and �d�, respectively�. Bath
size: N=15. �=0.1,0.2,0.3,0.4,0.5, from top to bottom in all pan-
els �in �d�, the curves for �=0.1 and 0.2 are indistinguishable�.
Decoherence freezes at sufficiently long time.
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the deterministic control protocols discussed so far. Decoher-
ence freezing is clearly seen as a plateau of Fb at sufficiently
long evolution times,34,64 the corresponding saturation value
increasing as the pulse delay � decreases. From a control
standpoint, decoherence freezing may be thought of as sig-
naling the dynamical generation of a stable one-dimensional
decoherence free subspace via DD.65,66 In NMR language,
the resulting saturation is reminiscent of the “pedestals” seen
in the long-time magnetization signal under pulsed spin-
locking conditions.21,67,68 Physically, one may think that an
effective magnetic field is created by the DD pulses, and that
proper alignment of the initial spin prevents the electron
from precessing around this direction—thereby, experiencing
fully frozen nuclear spin fluctuations. �See also Ref. 69 for a
recent demonstration of a similar-in-spirit stabilization effect
at zero applied field, leading to a long-lived nuclear spin
polaron state via optical pumping with polarized light.� In
practice, decoherence freezing may be exploited to optimally
preserve a known initial electron spin state, through appro-
priate design of a DD protocol with the desired quasi-integral
of motion. While a similar effect could be achieved by ap-
plying a strong static bias field, one advantage of DD stabi-
lization is that better storage may be ensured by simply re-
arranging the pulse sequence, so that it implements a higher-
level protocol �from PDD to PCDD2, for example�.

While asymptotic saturation behavior has been reported
for purely dephasing spin-boson models with arbitrary initial
spin states,23,24,64,70,71 saturation effects for a spin bath have
only received attention very recently.32,34,35 Thanks to its in-
herent simplicity, the CPMG protocol makes it possible to
gain analytical insight under the assumption that a simplified
coupling Hamiltonian is appropriate,

HSB
QSA = AS · �

k=1

N

Ik. �26�

This corresponds to assuming a uniform electron density in
the QD, allowing one to regard the total nuclear spin as a
constant. For our purposes, because of the large number of
spins in the bath, this is also equivalent to describing the
nuclear spin reservoir under the so-called Quasistatic ap-
proximation �QSA�, which treats the Overhauser nuclear
field as a classical random static field.38 While, in principle,
the QSA is valid for short evolution times,27,38 it is important
to realize that the domain of validity of the QSA is extended
in the presence of DD pulses, similarly to what happens for
an external bias field,38 and consistent with the fact that the
nuclear field becomes progressively more static relative to
the electron dynamics as the electron-nuclear coupling is
suppressed.

By following the steps illustrated in the Appendix, the
freezing value reported in Ref. 34 is obtained,

Ff
CPMG 	 1 −

�2

2T2
*2 ,

for sufficiently small �. Interestingly, the leading power of �,
n=2, does not explicitly depend on the number N of bath
spins. For other protocols in the same range of �, numerical

results �see Fig. 3� suggest a similar dependence of the
asymptotic coherence value,

Ff 	 1 − a����n, a � R ,

with the relevant values of n being given in Table II. Note
that the characteristic values of � considered here are of or-
der of 1 /�, that is, �c��1 in the simulations, thereby well
beyond the convergence region of AHT/ME.

B. Worst-case performance and arbitrary state preservation

As evidenced by the best-case considerations presented
above, for sufficiently small �, initial electron spin states
which are �approximate� eigenstates of the decoupled evolu-
tion are stable at long times, whereas the spin components
perpendicular to the decoherence-free axis are lost in the
long-time regime. In such a picture, the worst-case scenario
for a given cyclic protocol corresponds to initial spin states
which are perpendicular to the effective half-cycle control
axis. Clearly, worst-case performance lower-bounds the fi-
delity of storage achievable for an arbitrary �possibly un-
known� initial state, as required for an electron spin quantum
memory.

1. Short-time behavior

In order to quantitatively assess worst-case DD fidelities,
we begin, as in the previous section, by examining single-
cycle performance. Again, the order of the leading decoher-
ence term is determined using three methods: �i� exact nu-
merical simulation, �ii� analytical predictions based on AHT
�via the identification, in this case, of the lowest-order term
mixing electron and nuclear spin operators in the ME�, and

−2 −1 0 1 2

−6

−4

−2

0

ln(σ τ)

ln
(1

−
F

f)

FIG. 3. �Color online� Dependence of the coherence saturation
value on pulse delay for CPMG �plus signs�, PDD �circles�, SDD
�upward pointing triangles�, and PCDD2 �downward pointing tri-
angles�. Dashed lines are linear fittings at small �.

TABLE II. Fitting parameters of the decoherence freezing value
Ff =1−a����n for CPMG, PDD, SDD, and PCDD2 at small �,
where ���1 but �c��1.

CPMG PDD SDD PCDD2

n�Fit� 2.0 1.7 2.7 5.3
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�iii� symbolic Taylor expansion. Figure 4 shows the exact �
dependence of the worst-case fidelity for single-cycle DD.
Similar to the best case, Fw�Tc� depends on � according to a
power law, when � is sufficiently small to ensure that �cTc
�1 and that the AHT and/or ME approach is valid. Table III
�first line� gives the leading decoherence term orders ex-
tracted from Fig. 4, which are in excellent agreement with
the analytical and symbolic predictions �last two lines�. Note
that CPMG, which is not a universal decoupling sequence, is
not useful in the worst-case scenario; thus, we do not con-
sider it further.

2. Long-time behavior and randomized dynamical decoupling

For long evolution times, the worst-case performance
Fw�T� of six DD protocols �three deterministic and three ran-
domized� are summarized in Fig. 5. All schemes lead to sub-
stantial enhancement of the electron spin coherence, some of
them by more than a factor of 1000, with PCDD2 showing
the most dramatic improvement.34 According to the ME, the

leading order term for the FID signal is H̄�0�, whereas it is

H̄�1� for PDD, H̄�2� for SDD, and H̄�4� for PCDD2, as dis-
cussed in Sec. II B 2. For randomized protocols, lack of pe-
riodicity prevents the definition of a time-independent aver-
age Hamiltonian, thus AHT is not applicable. However, for a
given evolution time, an effective Hamiltonian and the cor-
responding leading orders to coherence decay may still be
defined directly in terms of the unitary logical-frame
propagator.52,53

In general, protocols with higher leading order tend to
give superior performance. However, such a conclusion does
not necessarily hold if a randomized protocol is compared to
a deterministic one. For example, RPD has a lower-order
leading term than SDD, so that SDD may outperform RPD at
short times. However, Fig. 5 shows that at long times RPD
outperforms SDD, which demonstrates the advantage of ran-
domization in suppressing coherent error accumulation. The
poor performance of NRD is expected, since the advantages
of this low-level DD scheme may emerge only when G is
large, and cyclic DD is inefficient. In a closed system,52

SRPD has been found superior to PCDD2 at long times, but
for the QD model considered here SRPD does not match
PCDD2, confirming the fact that irreducible DD groups and
slow baths are especially favorable for concatenated
control.29 However, it is worth emphasizing that increase in
the concatenation level for fixed pulse separation does not
necessarily improve the protocol performance: As shown in
Ref. 34, PCDD4 may deliver worse fidelity than PCDD2 if �
becomes sufficiently large. A likely explanation is rooted in
the DD-induced renormalization of the pure-bath terms dis-
cussed in Sec. II B 2, which for relatively large � may be-
come important enough to offset the benefits associated with
a more elaborated DD protocol.

IV. REAL-SYSTEM CONSIDERATIONS

In realistic scenarios, several factors beyond the simpli-
fied treatment considered thus far will unavoidably affect DD
performance. Among those related to the underlying QD
model Hamiltonian, the most important are the influence of
spin-bath dynamics, external bias fields, and nuclear spin
polarization. We shall address these factors one by one, by
primarily focusing on the worst-case fidelity of the PCDD2
protocol, which has emerged as the best performer for the
problem under exam.

A. Bath size

In our simulations, the number of bath spins is moderately
large, N�25; thus, it is essential to assess to what extent our
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FIG. 4. �Color online� Worst-case single-cycle performance for
PDD �circles�, SDD �upward pointing triangles�, and PCDD2

�downward pointing triangles� in the small � region. Bath size: N
=5. Solid lines are linear fittings, with fitting parameters given in
Table III.

TABLE III. Fitting parameters of worst-case single-cycle per-
formance Fw�Tc�=1−���c��nTc

2, ��R, for PDD, SDD, and
PCDD2 in the small � region where �c��1.

PDD SDD PCDD2

n�Fit� 2.00 3.99 7.94

n�ME� 2 4 8

n�Sym� 2 4 8
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FIG. 5. �Color online� Worst-case DD performance in the logi-
cal frame �Refs. 48 and 53� with �=0.1. Hamiltonian parameters are
�0=0, �0=0, and N=15. For deterministic DD, data points are
acquired at the completion of each cycle, while for NRD and FID
this is done after every �, for RPD after every 4�, and for SRPD
after every 8�. Random protocols are averaged over 100 control
realizations.
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numerical results might be applicable to real QD devices
with N�104–106. In order to verify this, PCDD2 simula-
tions have been carried out for baths with N varying from 15
to 25, their corresponding spectral width being characterized
by �=�NA /2 as in Eq. �20�. Figure 6 illustrates, for different
N, the instant of time T0.9 where Fw�T� for PCDD2 reaches a
threshold value of 0.9—as a function of the dimensionless
parameter 1 / �2���. It is seen how, by correctly rescaling �
�that is, by measuring � in units of 1 /��, the curves corre-
sponding to different bath sizes tend to fall on top of each
other, especially as N increases. This provides strong evi-
dence that our results should be applicable to realistic meso-
scopic spin environments upon appropriate parameter scal-
ing.

It is also interesting to stress that T0.9 increases extremely
rapidly as the product �� decreases and the region of very
fast DD is entered �note the logarithmic scale of the y axis in
Fig. 6�. This rapid increase has been analyzed earlier.35 We
remark here that a naive extrapolation from the ME, T0.9
1 /�4, which could be expected to hold in the limit �→0,
strongly disagrees with our data in the long-time parameter
range of Fig. 6, and that a Zeno-type analysis as invoked in
Ref. 35 appears more appropriate to explain the observed �
dependence.

B. Intrabath interaction

The effect of the internal bath Hamiltonian HB, Eq. �3�,
may become important once the electron coherence time be-
comes longer than the characteristic time scale of the corre-
sponding bath evolution. As remarked, this effect may be
enhanced in principle by the PCDD2-induced pure-bath di-
polar contribution, given in Eq. �17�. In order to assess at
which point DD performance starts to be significantly af-
fected by nuclear spin dynamics, we have performed numeri-
cal simulations by choosing �kl as uniformly random num-
bers in �−�0 ,�0�, and by manually increasing �0 up to values
comparable to 0.1Ak, to keep the simulation time reasonably
short. In this way, in view of Eq. �18�, we cause the effects of
the bare HB to be at least a factor of 3 larger than the ones

due to H̄�2� for the maximum values of �0 explored.

The results are summarized in Fig. 7, where a two-
dimensional 4�5 QD with nearest-neighbor-intrabath cou-
pling is considered. On one hand, the performance of PCDD2
is affected only slightly for sufficiently small � and �0, as
expected. Note that for a standard GaAs QD, the character-
istic time scale for the nuclear spin dynamics is �100 	s,
implying that �0�0.01 in our model. Thus, results obtained
for �0=0 are applicable to typical GaAs QDs. On the other
hand, as it is also clear from Fig. 7, the long-time PCDD2
fidelity deteriorates significantly in the presence of a suffi-
ciently fast bath, especially for larger pulse delay, ��0.1. In
such a parameter regime, similar to the spin-chain results of
Ref. 52, randomized protocols such as SRPD are capable to
be, on average, less sensitive to the effects of the underlying
fast bath evolution.

C. Magnetic bias field and initial bath polarization

In practice, a nonzero Zeeman splitting in Eq. �2� might
either be desirable in order to impose a controllable quanti-
zation axis on the electron spin and/or in any case result from
residual magnetic fields in the device. As numerical results
show �see Fig. 8�a��, the dependence of the PCDD2 worst-
case performance is nonmonotonic with B0, by decreasing
with small magnetic fields and improving for large magnetic
fields—this effect being more prominent for long evolution
times. While this behavior is qualitatively consistent with the
emergence of a predominantly pure-dephasing process in the
presence of a strong bias field, the latter also leads, in gen-
eral, to temporal modulation of the fidelity, similar to the
effect of electron spin echo envelope modulation.72

Interestingly, a nonzero initial polarization of the bath
spins acts in a similar manner, see Fig. 8�b�. In these simu-
lations, we assumed that the initial state of the bath is de-
scribed by a density matrix of the form

�B�0� =
1

Z�
e−��k=1

N Ik
z
, Z� = �2 cosh��/2��N,

where � denotes as usual the inverse temperature. Accord-
ingly, the bath polarization is defined as the ratio
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FIG. 6. �Color online� Bath size effect. T0.9 vs 1 / �2��� for
PCDD2 with different bath sizes N=15 �black squares�, 17 �blue
circles�, 20 �green upward pointing triangles�, and 25 �red down-
ward pointing triangles�.
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FIG. 7. �Color online� Bath dynamics effect for PCDD2 with
�0=0 �black dashed lines�, 0.01 �red solid lines�, and 0.1 �blue
crosses�. The parameters are N=20 and �=0.2, 0.25, 0.3, and 0.4
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p =
1

�N/2��k=1

N

Ik
z� = − tanh��/2� ,

with ·� denoting the expectation over the above bath spin
state. It has been shown earlier27 that for the free decoher-
ence dynamics of an electron spin in a QD, a nonzero Over-
hauser field produced by a small nuclear spin polarization is
essentially equivalent to an external bias field. Here, a simi-
lar equivalence emerges for the worst-case performance of
PCDD2: The degradation trend of the PCDD2 fidelity for
small polarizations seen in Fig. 8�b� resembles that occurring
for small bias magnetic fields, �0�4. This indicates that the
effect of the Overhauser field of a weakly polarized bath is
also equivalent to that of an external bias field in the pres-
ence of DD pulses. We are unable to further explore this
equivalence for larger values of the initial polarization, due
to the fact that exact simulations with a highly polarized spin
bath require numerical techniques which are beyond our cur-
rent capabilities.59 On physical grounds, we expect that the
degradation trend should stop, and improved performance
should emerge as p approaches 1, since the fidelity should
achieve 100% for a fully polarized initial bath state �even in
the absence of control pulses, for appropriate electron spin
alignment�.

V. CONTROL RESOURCES

We conclude our analysis by addressing the main simpli-
fying assumptions and requirements implicit in the control
capabilities invoked so far, with respect to relevant practical
constraints.

A. Effect of pulse imperfections

In all simulations presented thus far, control pulses have
been assumed to exactly achieve a rotation angle of �=
 in
no time—corresponding to zero width and infinite strength.
In reality, pulses are clearly finite in both strength and width,
and the implemented rotation angle typically deviates from
the intended value due to both systematic control faults and
stochastic parameter fluctuations. While a fully accurate er-
ror modeling is necessarily dependent upon the details of the
physical implementation, our aim in what follows is to gain a
sense on how stable PCDD2 performance is in the presence
of different representative control errors.

The effect of a systematic error in the rotation angle may
be modeled by assuming that �=
�1−��, while keeping the
pulse instantaneous, and letting �� �0,1� represent the rela-
tive flip-angle error. Figure 9 summarizes numerical results
for various error strengths. The protocol performance is not
very sensitive to this type of error, especially for small � �as
expected�. In fact, the electron coherence time is still 2 or-
ders of magnitude longer than T

2
* even for �=0.03, which

corresponds to �5.4°. With phase compensation
techniques,21,22 DD performance might be further improved.

The effect of finite pulse durations may be accounted for
by assuming that each pulse is rectangular, with the width w
and the corresponding strength 
 /w adjusted to represent an
ideal 
 pulse for an isolated spin. That is, the relevant con-
trol Hamiltonian becomes

Hc��t� = �
�




w
�S · n̂�t���h��� − t� − h��� − t − w�� ,

where h�·� is the Heaviside step function. In simulations, we
have considered the width of the pulse to be up to one-third
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of the pulse delay, w�� /3. Figure 10 summarizes results on
the worst-case PCDD2 performance for different values of w:
Clearly, DD performance depends quite sensitively on the
pulse width. For a typical QD with decoherence time T

2
*

�10 ns, this means that pulse delays ��4 ns and pulse
widths no longer than w=0.024 �about 0.3 ns� are required in
order to extend T

2
* by a factor of �100 under PCDD2.

Improved control design is needed to relax such stringent
limitations, in particular, to ensure that high-fidelity DD may
be achieved with finite bandwidth. While further analysis
along these lines is beyond our current scopes, preliminary
results indicate how an approach based on Eulerian
control73,74 may allow pulse widths as long as � to be
employed.75 A yet more sophisticated approach is to resort to
numerical pulse shape optimization, for instance, based on
the recently proposed open-system gradient ascent pulse en-
gineering algorithm.76,77

B. Feasibility considerations

From a practical standpoint, the main requirements for
DD implementations are the ability to effect sufficiently fast
single-spin rotations—along two orthogonal axes in an ap-
propriate frame if storage of arbitrary electron spin states is
sought. While this is a highly nontrivial task, single-spin ro-
tations have by now been experimentally realized in both
gate-defined radio-frequency-controlled GaAs double QDs78

and self-assembled singly-charged �In,Ga�As /GaAs
QDs79–81—proposals for further improving rotation speed
and gating time being actively investigated in parallel.58,82

Likewise, multipulse CPMG protocols have been success-
fully implemented on single impurity centers in a solid-state
matrix.83–85 In typical ESR settings, for instance, magnetic
pulses as narrow as 20 ns and gating times of the order of
100 ns are currently attainable for typical GaAs QDs at di-
lution refrigerator temperatures.57

While the above-mentioned accomplishments and figures
give hope that full-fledged DD experiments in QDs should
become accessible in the near future, some additional re-

marks may be useful in connection with the prospective rel-
evance of our results to different control implementations.
Since, as remarked, our main focus has been on the zero-field
limit ��0=0�, standard ESR techniques are not directly vi-
able to effect the intended rotations. Rather, the control we
are envisioning is based on direct magnetic switching, which
may be accomplished in principle by having access to two
independent inductances oriented along perpendicular axes.
In order for the required control to be achievable via ESR or
coherent Raman spectroscopy in the presence of a permanent
static field, pulse widths and separations in the �sub�ns range
would imply a resonance frequency �0�1 GHz. In these
conditions, as mentioned, the hyperfine decoherence process
would be largely dephasing dominated, and application of
two-axis DD sequences such as PCDD2 would result in even
better performance than at zero field—similar to the conclu-
sion reached in Sec. IV C. As also noticed in Ref. 31, a
potential advantage of control techniques not relying on the
presence of an external field, however, is applicability over a
wider range of parameters, along with the possibility to
avoiding perturbations on the spin dynamics in between con-
trol operations. From this perspective, a more careful feasi-
bility study of direct switching schemes in QD devices ap-
pears well-worth pursuing.

VI. CONCLUSION

We have provided an in-depth quantitative analysis of the
dynamical decoupling problem for a central spin system in
the zero-field limit. While our main intended application has
been long-time preservation of electron spin coherence in a
quantum dot by suppression of hyperfine-induced coupling,
we expect our main methods and conclusions to be relevant
for control of nanospin systems described by a similar model
Hamiltonian. Our main conclusions may be summarized as
follows.

For short evolution times and interpulse delays � which
obey the condition �c��1, �c being the spectral cutoff fre-
quency of the total system, analytical results based on aver-
age Hamiltonian theory and the Magnus expansion are in
excellent agreement with the results of exact numerical
simulations. For longer evolution times and pulse separa-
tions, which are beyond the domain of applicability of ana-
lytical approaches, DD can still ensure high-fidelity preser-
vation of arbitrary electron spin states, as long as typical
control time scales are short with respect to the spectral
width of the total system.

If knowledge of the initial electron state is available, cy-
clic DD protocols capable to completely freeze electron de-
coherence in the long-time limit may be designed—the at-
tainable coherence value depending on both the protocol and
the pulse delay.

By studying the effect of important experimental factors
and control nonidealities—including the effect of intrabath
interactions, external magnetic fields, and typical systematic
pulse errors—we conclude that even imperfectly imple-
mented decoupling protocols may still be able to signifi-
cantly prolong the electron coherence time.
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APPENDIX: ANALYTICAL STUDY OF DECOHERENCE
FREEZING UNDER CARR–PURCELL–MEIBOOM–GILL

DECOUPLING

The simplicity of the CPMG ��Z�Z� protocol allows for
an analytical study of the saturation effect discussed in Sec.
III A. This will be done below via the QSA,27,38 as well as
based on a semiclassical random field model.

1. Quasistatic approximation

Within the QSA,27,38 the Hamiltonian equation �1� re-
duces to HA equation �26�. Let I=�kIk, and M = Iz. Due to the
symmetry of HA and the CPMG protocol, I2 and M +Sz are
constants of motion. Let ���0��= �↑ � � �I ,M� denote the joint
initial state, where the first ket vector corresponds to the state
of the electron spin and the second ket vector denotes the
state of the bath. Then the evolution of the controlled system
only couples the pairs of levels �↑ � � �I ,M� and �↓ � � �I ,M
+1�. �Similar considerations apply to the case where the
electron spin is down, initially�.

After n CPMG cycles, the evolution operator is

U�2n�� = �d1 d2
*

d2 − d1
*�2n

,

where we have defined

d1 = cos 
�

2
− i

B

 
sin 

�

2
,

d2 = − i
C

 
sin 

�

2
,

with C=A��I−M��I+M +1�, B=A�M +1 /2�, and  2=B2

+C2. In the best-case scenario, the overall system is initial-
ized in the state

���0��b = �↑� � �I,M� ,

whose survival probability is given by

���0����2n����2 = 1 −
C2

B2 tan2 � cos2 2n� ,

where tan �=d /�1−d2 with d=Im�d1�.

The initial bath state is a completely mixed state and can
be rewritten in the basis of �I ,M� as

�B�0� = �
I,M

P�I,M��I,M�I,M� ,

with P�I ,M���I /D�2
D�e−I2/2D for large N and D=N /4.86

Averaging over the nuclear spin states, we obtain the survival
probability, the input-output fidelity, at time T=2n�,

F�2n�� = 1 −� dIdMP�I,M�
C2

B2 tan2 � cos2 2n�

= 1 −
1

2
� dIdMP�I,M�

C2

B2 tan2 ��1 + cos 4n�� .

For n large enough so that 4n��1, we may safely neglect
the contribution from rapidly oscillating part cos 4n�. In
these conditions, F�2n�� becomes time independent and de-
coherence is frozen,

F�2n�� → Ff = 1 −
1

2
� dIdMP�I,M�

C2

B2 tan2 � .

In the limit of small �, this yields

Ff = 1 −
1

16
�2A2N = 1 −

�2

2T2
*2 .

For randomly distributed Ak, A2N��kAk
2.

For a single control cycle �n=1� as considered in Sec.
III A 1, and sufficiently small � so that ��1, it is straight-
forward to find that

F�Tc� =
4

5
−

1

15
��1 − 4D�2�e−2D�2

− 4�1 − D�2�e−D�2/2�

	 1 −
D2

2
�4 + O��6� = 1 − ��2Tc

2 + O��4Tc
2� ,

consistent with the result reported in the main text.

2. Classical random field model

Yet another simple way to describe the saturation associ-
ated with the CPMG protocol at long times is as follows. In
situations where the backaction effects from the system into
the bath may be neglected, a plausible approximation is to
treat the environment as a classical random field. This trans-
lates into rewriting the coupling Hamiltonian as

H = B� · �� ,

where the effects of the randomly fluctuating field B� ,

Bx = B cos � sin � ,

By = B sin � sin � ,

Bz = B cos � ,

are taken into account by averaging over the entire Bloch
sphere of the system spin, 0���
 and 0���2
.
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Under CPMG, the unitary evolution after the completion
of n cycles may be written as

U�2n�� = �e−i�−BxX−ByY+BzZ��e−i�BxX+ByY+BzZ���n

= V�e−i!n 0

0 ei!n �V−1,

where V is the matrix of eigenvectors of U�Tc� and
exp�"i!�, !�R denote the corresponding eigenvalues. For a
particular initial state aligned with the dominant term of the
AHT, that is, H̄�0�=BzZ, the fidelity after n cycles becomes

Fb�2n�� =
cos�B��2 + sin�B��2 sin���2�1 − sin�n!�2�

cos�B��2 + sin�B��2 sin���2 .

In the long-time limit, n= t / �2��→�, and upon averaging
over � and �, we finally obtain

Fb → Ff = 1 −
B2�2

3
,

in agreement with the expression quoted in the main text.
Notice that the same result may also be obtained by re-

stricting the analysis to the two dominant terms in the AHT

�that is, H̄�0� and H̄�1�� and by writing the propagator after n
cycles as

U�t = 2n�� = e−i�BzZt+Bz�BxY−ByX�t��.

While in principle no a priori reason exists to expect such
AHT-based description to yield the correct answer, a similar
treatment successfully describes long-time magnetization
pedestals in NMR decoupling.21
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