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We investigate the physics of coherent polaritons in a double-well configuration under a resonant pumping.
For a continuous-wave pump, bistability and self-pulsing regimes are identified as a function of the pump
energy and intensity. The response to an additional probe pulse is characterized in the different cases and
related to the Bogoliubov modes around the stationary state. Under a pulsed pump, a crossover from
Josephson-like oscillations to self-trapping is predicted for increasing pump intensity. The accurateness of the
effective two-mode model is assessed by comparing its predictions to a full solution of the nonequilibrium
Gross–Pitaevskii equation.
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I. INTRODUCTION

Semiconductor microcavities in the strong coupling re-
gime are particularly well suited to study the physics of di-
lute Bose gases in a solid state context.1–4 The elementary
excitations of the system consist of polaritons, i.e., a super-
position of a cavity photon and an exciton, which at low
excitation levels satisfy Bose statistics. Their photonic com-
ponent guarantees that a large degree of spatial coherence is
maintained in spite of disorder effects, while the excitonic
one provides strong mutual interactions. Differently from
most other examples of Bose gases such as liquid 4He and
ultracold atoms, a polariton gas is an intrinsically nonequi-
librium system, whose properties can dramatically differ
from the corresponding ones of systems at thermodynamical
equilibrium.5–8

Recent advances in the semiconductor fabrication tech-
nology have made it now possible to design polariton traps
with a high flexibility in the shape and the depth of the
trapping potential.9–15 From this perspective, double-well po-
tentials show a particular interest as they provide a way of
investigating the well-known Josephson effect16–18 in com-
pletely new nonequilibrium regimes. Some preliminary work
for the case of nonresonantly pumped polariton condensates
has recently appeared in Ref. 8, while many authors have
considered similar effects in a variety of different optical
systems.19–21

In the present paper, we will concentrate on the case of
resonantly and coherently pumped double-well polariton
traps obtained by lateral patterning of a planar microcavity,
as experimentally done in �Refs. 12 and 13�: such a configu-
ration allows not only for selective addressing and diagnos-
tics of the two spatial modes but also for a relatively easy
time resolution of the Josephson dynamics on a picosecond
scale. The mean-field calculations of the present paper will
be a crucial preliminary step in view of truly quantum
effects22 that are expected to take place in such miniaturized
systems whenever the Josephson charging energy for a single
polariton becomes comparable to both the linewidths and the
hopping energy. This regime is expected to be entered in the
next generation of samples.

In Sec. II, we introduce the effective two-mode model and
we write the motion equations describing the time dynamics
of the polariton field amplitudes in each of the two wells.
The phase diagram and the different instability regimes are
analyzed in Sec. III for the case of a continuous-wave pump-
ing. The result of a numerical integration of the dynamical
equations of the two-mode model is presented in Sec. IV for
the case of a quasi-continuous-wave pump and in Sec. V for
the case of a pulsed pump: optical bistability and self-pulsing
phenomena take place in the former case, and Josephson
oscillations and self-trapping in the latter one. In Sec. VI, the
predictions of the two-mode model are compared to full nu-
merical simulations of the generalized Gross–Pitaevskii
equation. The observability of all the predicted features is
verified using realistic parameters for coupled polariton
boxes. Conclusions are finally drawn in Sec. VII.

II. TWO-MODE MODEL

A widespread description of the Josephson dynamics in a
two-well system is based on an effective two-mode model.17

In addition to the linear coupling J and the repulsive cubic
nonlinearity g�0, a coherent pumping F1,2�t� and loss rates
�1,2 are to be included in order to describe the driven-
dissipative nature of the present system. The equations of
motion for the mode amplitudes �1,2�t� then read22

i��̇1 = ���1 − i
�1

2
��1 + g��1�2�1 − J�2 + F1�t� , �1�

i��̇2 = ���2 − i
�2

2
��2 + g��2�2�2 − J�1 + F2�t� . �2�

In the absence of nonlinearity g=0 and pumping F1,2=0, the
eigenvalues of the linear equations are

E+,− =
1

2
���1 − i�1 + ��2 − i�2�

�
1

2
�����1 − �2� − i��1 − �2��2 + 4J2. �3�

The linear coupling J splits the unperturbed levels ��1,2 into

PHYSICAL REVIEW B 77, 125324 �2008�

1098-0121/2008/77�12�/125324�11� ©2008 The American Physical Society125324-1

http://dx.doi.org/10.1103/PhysRevB.77.125324


a pair of mixed eigenmodes with energies E+,−. For zero
detuning, �1=�2, and equal loss rates, �1=�2, the energy
splitting is E−−E+=2J, and the two corresponding eigen-
modes are a symmetric mode �+=�s= ��1+�2� /�2 and an
antisymmetric mode �−=�a= ��1−�2� /�2.

Under a symmetric pump, F1�t�=F2�t�, only the symmet-
ric mode �+ is excited, while under an antisymmetric pump,
F1�t�=−F2�t�, only the antisymmetric mode �− is excited.
Under a pump acting only on one unperturbed mode that is
F1�t�=F�t�, F2=0, both the eigenmodes are excited. In what
follows, we will concentrate our attention on this last case.

This simple linear analysis is made richer by the presence
of nonlinear terms. Actually, a cubic nonlinearity has two
main and strictly related effects: it introduces intensity-
dependent shifts of the effective energy levels and can be
responsible for dynamical instabilities. Because of the non-
linearity, the effective eigenmodes of the system are no
longer the symmetric and the antisymmetric ones. Therefore,
to refer to the actual eigenmodes of the system, we prefer to
adopt the notation “�” and “�” modes.

A. Stationary state

In the whole paper, we shall restrict our attention to the
case of a pump acting on a single mode, i.e., Fj�t�=	 j1F�t�:
this scheme is, in fact, the most interesting for applications
and is amenable to an almost fully analytical treatment.

We start by considering the steady state of the system
under a continuous monochromatic pump, F1�t�=e−i�tFs,
where the amplitudes of the two modes oscillate at the pump
frequency

� j�t� = e−i�t� j
s. �4�

Substituting this ansatz into Eqs. �1� and �2�, the following
stationarity equations are immediately obtained:

��� j − �� − i
� j

2
�� j

s + gnj� j
s − J�3−j

s + 	 j1Fs = 0, �5�

where nj 	�� j
s�2 defines the stationary intensity in the two

modes. From Eq. �5�, it is straightforward to show that the

mode amplitude �1
s and the pump amplitude Fs are uniquely

determined for each given pair of values of the pump energy
�� and of the stationary amplitude �2

s in the nonpumped
mode 2. By rearranging Eq. �5�, one then obtains the final
equations

�1
s = J−1
���2 − �� − i

�2

2
��2

s + gn2�2
s� , �6�

Fs = − ���1 − �� − i
�1

2
��1

s − gn1�1
s + J�2

s , �7�

from which the Fs��� ,n2� and �1
s��� ,n2� diagrams in the

frequency-intensity ��� ,n2� plane shown in Sec. III will be
obtained.

B. Stability of the stationary solution

The stability of the stationary solutions found in the pre-
vious section can be assessed by evaluating the spectrum of
small fluctuations around the stationary solution,

� j�t� = e−i�t�� j
s + 	� j�t�� . �8�

By linearizing the motion equation �Eqs. �1� and �2�� around
the stationary solution, one obtains the following linear equa-
tions:

d	� j

dt
= ��� j − �� − i

� j

2
�	� j + 2g�� j

s�2	� j

+ g�� j
s�2	�

j
* − J	�3−j . �9�

Substituting in Eq. �9� the time evolution

	� j�t� = e−iEt/�Uj + eiE*t/�V
j
*, �10�

expressed in terms of the excitation energies E and of the
fluctuation amplitudes Uj and Vj, the problem reduces to the
secular equation

M · 	
 = E	
 , �11�

where we have introduced the vector 	
= �U1V1U2V2�T and
the matrix M has the Bogoliubov form

M =�
��̃1 − i

�1

2
+ 2gn1 g�1

s 2 − J 0

− g��1
s*�2 − ��̃1 − i

�1

2
− 2gn1 0 J

− J 0 ��̃2 − i
�2

2
+ 2gn2 g�2

s 2

0 J − g��2
s*�2 − ��̃2 − i

�2

2
− 2gn2


 , �12�
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in terms of the frequencies �̃ j =� j −�.
The resulting spectrum consists of four eigenvalues E�,

�=1, . . . ,4, corresponding to the normal modes 	
�. As
shown by Eq. �10�, if the imaginary parts of all the four
energies are negative Im�E���0, the fluctuation is damped
and the stationary solution is stable. On the other hand, if the
imaginary part of at least one eigenvalue is non-negative
Im�E��
0, the solution is unstable.

In this latter case, two situations are possible: if Re�E��
=0, the solution is one mode �saddle node� unstable �1M�,
while if Re�E���0, the solution is parametrically unstable
�P�. These two situations will be discussed in detail in what
follows.

III. CONTINUOUS EXCITATION: PHASE DIAGRAM AND
FLUCTUATION SPECTRUM

Under continuous monochromatic pumping, a contour
plot of the pump amplitude Fs as a function of the pump
energy �� and of the intensity n2 in the nonpumped mode is
readily obtained from Eqs. �6� and �7�. An example of such
plot is shown in Fig. 1 for the symmetric �1=�2 case.

The phase diagram is determined from the stability of the
stationary state �Eq. �5��. The black thick lines mark the con-
tours between the regions of stability and the regions of in-
stability, as obtained by solving the linearized problem �Eq.
�12��. Here, regions of one-mode instability or parametric
instability are indicated by, respectively, 1M and P following
the definitions introduced in Sec. II B.

For very small pump amplitudes, two resonances are
clearly visible in Fig. 1. As explained in Sec. II, they corre-
spond to the �� eigenmodes of the linearly coupled system

and lie at exactly ��= �J. The linewidth has been taken
smaller than the linear coupling � /2�J, so the correspond-
ing lines are well distinct.

For increasing values of the pump amplitude, the reso-
nances of the system are modified by the nonlinearity �see
the scheme in Fig. 2�. At moderate pump amplitudes for
which gn1,2�J ,�, the main effect of the nonlinearity is a
blueshift of the two resonances. On the other hand, several
different instability mechanisms can take place at larger
pump amplitudes depending on the pump energy ��.

A. Optical limiter

For ���−J, the pump energy lies below the two energy
levels: this configuration, often called optical limiter in the
literature,23 is stable for all pump intensities. As shown in the
sketch in Fig. 2�a�, the effective energy levels are, in fact,
pushed even further off resonance from the pump by the
nonlinear blueshifts.

B. Optical bistability

For a pump energy just above the lower energy+mode
�i.e., ���−J�, the nonlinear shift is able to push the effec-
tive energy level into resonance with the pump �see Fig.
2�b�� and give rise to a single-mode �1M�, saddle-node24

instability. Analogous behavior takes place for pump ener-
gies just above the higher energy mode �i.e., for ���J�.

The occurrence of regions of one-mode instability for en-
ergies higher than a mode resonance is a well studied subject
in the general literature on instabilities.25 Concerning nonlin-
ear optical systems, it has been extensively studied both in
the simplest case of single cavities,23 as well as in more
complex cases of coupled optical cavities19,20 and optical
parametric oscillators.26–28

As a general feature,25 one-mode instabilities of this kind
often give rise to bistable behaviors, i.e., the coexistence of
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FIG. 1. �Color online� Energy-intensity ���−n2� diagram. The
color scale corresponds to increasing values of �Fs� in logarithmic
scale and the thin isolines are geometrically spaced contour lines.
The thick line separates the stability �S� regions from instability
ones: depending on their character, these are marked by either 1M
�one-mode instability� or P �parametric instability�. The dash-dot
line separates a one-mode instability region from a parametric in-
stability one. The dots on the vertical ��=0.45 meV thin line cor-
respond to the pump parameters used later on in Figs. 7 and 8. The
system parameters are inspired from the symmetric double-box po-
lariton traps discussed in Sec. VI, namely, J=0.5 meV, �1=�2=�
=0.2 meV, g=1.1�10−3 meV, and �1=�2.
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FIG. 2. �Color online� Scheme of the effective energy levels E�

of a two-mode model under a continuous-wave pump. The vertical
dashed arrows indicate the nonlinear blueshift. The horizontal solid
arrows indicates the pump energy �� in the different regimes dis-
cussed in the text: �a� optical limiter, �b� one-mode instability, �c�
parametric instability, and �d� high-energy pumping.
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several stable solutions for the same values of the pump en-
ergy and amplitude. An example of this behavior is shown in
Fig. 3, where the dependence of the intensities n1,2 on the
pump amplitude is plotted for a pump energy just above the
lower resonance.

An hysteresis cycle is apparent: as the pump amplitude F
increases from zero, the system moves along the lower
branch of stable solutions until its end point is reached. Only
at this point the system jumps on the upper branch. If the
pump amplitude is then decreased, the system keeps moving
along the upper branch of stable solution until its end point is
reached, where it jumps back to the lower branch.

C. Parametric instability

For a pump energy between the two resonances, a para-
metric instability appears. When the pump energy equals the
average of the effective energies �E++E−� /2, the parametric
process23 sketched in Fig. 2�c� where the pump field creates
a signal+and an idler, fields becomes resonant. This happens
within the window � j ����J+gn2, where the stationary
solutions are stable for small pump amplitudes but become
parametrically unstable as soon as the parametric gain is able
to overcome the losses gn2�� j. Note that the effect of n1
can be neglected here, as in the considered energy window
one has n1�n2 �see Fig. 5�. In the dynamical system lan-
guage, such an instability is called a Hopf bifurcation.24

The strong amplification of fluctuations around the sta-
tionary solution eventually results in a self-pulsing dynam-
ics, where the system keeps on oscillating for indefinite
times. From a different point of view, these oscillations can
be seen as the result of the interference between three fields
at different frequencies, i.e., the pump, signal, and idler fields
of the parametric oscillator.3,23 This behavior will be dis-
cussed in better detail in the next section.

D. High-energy region

For pump energy exceeding the energy of both reso-
nances, several instability regions are expected to appear as a

consequence of the complex interplay of single-mode 1M
and parametric P instabilities. Both effective energy levels
eventually cross the pump energy, as well as the parametric
resonance �Fig. 2�d��. The diagram in Fig. 1 is therefore
much richer in this window: for a given pump energy �� and
increasing values of n2, three regions of one-mode instability
and three regions of parametric instability can be identified,
as well as a thin stability region in between the first 1M and
P regions.

To understand the origin of the different regimes, the in-
tensities n1,2 are plotted in Fig. 4 as a function of n2 for
��=1.5 meV. The behavior is quite complex, yet can be
analytically interpreted from Eq. �6�, which indeed gives

n1 = J−2
�gn2 − ���2 +
�2

2

4
�n2. �13�

For a pump energy lying between the two blueshifted reso-
nances, i.e., −J+gn2����J+gn2, the intensity n2 of the
nonpumped mode is larger than the intensity n1 of the
pumped one, i.e., n2�n1. Conversely, for either lower ���
�−J+gn2� or larger ����J+gn2� pump energies, the
pumped mode has a larger intensity. This trend is illustrated
in the n1 /n2 plot shown in Fig. 5.

First, we investigate the region around the stability tongue
extending at ���1.5 meV for relatively small values of F.
While the energy of the pumped 1 mode is significantly blue-
shifted by the nonlinear term, the nonpumped 2 mode re-
mains almost empty �see Fig. 4�. Modes 1 and 2 are then far
in energy, so the effect of the linear coupling is strongly
suppressed. The nearby 1M instability region then corre-
sponds to the bistability loop for a pump close to resonance
with the higher energy mode, which in this region basically
coincides with the blueshifted 1 mode. The physics is analo-
gous for the second 1M instability region located just above.

The third 1M instability at much larger pump amplitudes
corresponds to the opposite situation where mode 2 has been
shifted above �� and consequently n2�n1 according to Eq.
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FIG. 3. �Color online� Intensities �a� n1 and �b� n2 as a function
of the pump amplitude. Pump energy ��=0.45 meV. The arrows
highlight the hysteresis cycle due to optical bistability. Same system
parameters as in Fig. 1.

FIG. 4. �Color online� Intensity n1 as a function of n2 for a high
pump energy ��=1.5 meV �dashed line�. The solid line corre-
sponds to n2 and is a guide for the eyes in order to identify the
regions where n1�n2, n1�n2, or n2�n1. The light and dark shaded
regions indicate one-mode and parametric instabilities, respectively.
Same system parameters as in Fig. 1.
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�13�. The bistability loop then involves the lower resonance,
which in this regime basically corresponds to the unper-
turbed 1 mode.

We finally consider the intervals of parametric instability.
The first and the third intervals correspond to resonant scat-
tering processes taking place in a regime where the modes
are effectively decoupled as n1�n2 or n2�n1, respectively.
In these regimes, the two � eigenmodes essentially coincide
with modes 1 and 2. The second interval corresponds instead
to an intermediate regime where n1�n2, and the two �
eigenmodes are a superposition of both modes 1 and 2.

E. Spectrum of fluctuations around the stationary
solution

The stability properties of the stationary solution dis-
cussed in the previous section are further illustrated by look-
ing at the eigenvalues of the Bogoliubov linearized theory
�Eq. �12�� of small fluctuations around the stationary state.3,5

These are plotted in Fig. 6 as a function of the intensity n2 of
the nonpumped mode for the case of a pump energy ��
chosen between the � eigenmodes of the unloaded system.

In the linear n1,2→0 regime, the frequencies and damping
rates tend to the ones Re�E3,1�=−Re�E2,4�= �J−��,
−Im�E1,2,3,4�=� /2 of the unloaded system. As usual,16

modes 1 and 3 have a positive weight 	
i
†�	
i in the

Bogoliubov metric �=diag�1,1 ,−1 ,−1�, while modes 2 and
4 have a negative weight. As a consequence of repulsive
interactions, the frequency Re�E1,3� of the positive-weighted
Bogoliubov modes are blueshifted for growing intensities,
while the ones E2,4 of the negative-weighted ones are red-
shifted: this makes them to pairwise intersect at some value
of the intensity. Here, each pair collapses onto values
Re�E2�4��=Re�E1�3�� opposite in sign. Correspondingly, the
damping rate increases −Im�E1�=−Im�E4��� /2 for two of
them, while it decreases −Im�E2�=−Im�E3��� /2 for the
two others, possibly giving rise to a dynamical instability, as
in the case displayed in the figure. The fact that frequencies
of the modes involved in the instability are nonzero is a
signature of the parametric nature of the instability.

For larger intensities, the frequencies split again within a
narrow intensity interval where the damping rate goes back

to � /2, but another instability region occurs at even higher
intensities as a consequence of the intersection Re�E1�
=Re�E4�: while the imaginary parts of the 2,3 modes stay
unchanged, the ones of the 1,4 modes are split and dynami-
cal instability is signaled by one of them becoming positive.
Since the unstable mode has zero frequency, the instability
has the one-mode character typical of optical bistability
loops.

For even larger intensities, the stationary state becomes
stable again: because of the large blue shift �red shift� of the
positive-negative �negative-weighted� Bogoliubov modes, no
further intersections of the mode frequencies can, in fact,
occur.

IV. CONTINUOUS PUMP: BISTABILITY, SELF-PULSING,
AND RESPONSE TO A PROBE

The stationary states and the stability regions identified in
the previous section are a good starting point for the dynami-
cal study of the system that we carry out in the present sec-
tion by numerically solving Eqs. �1� and �2�. We first inves-
tigate the onset of the steady state when the pump intensity is
slowly increased in time to its asymptotic value. Then, we
characterize the response of the system in its steady state to
an additional probe: this provides a simple and effective way
of measuring the frequencies and damping rates of the Bo-
goliubov modes in the different regimes.

The quasicontinuous pump is assumed to have a smooth
temporal profile of the form

F�t� = Fmax�1 −
2

1 + e�t/��2� . �14�

For a very long switch-on time, the system evolves in a
quasistatic way through a sequence of stable stationary
states.

FIG. 5. Logarithmic gray-scale plot of the ratio n2 /n1 as a func-
tion of the pump energy and of the value n2. Same parameters as in
Fig. 1. The thick line separates the stability regions from the one-
mode instability and the parametric instability ones as in Fig. 1.
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Once the system has got to its asymptotic stationary solu-
tion, a weak and short probe pulse is applied onto mode 1. Its
temporal shape is assumed to be a Gaussian

fg�t� = fg
0e−�t − t0�2/�g

2
, �15�

its central frequency coincides with the one of the continuous
pump, and its duration �g is chosen to be short enough for the
pulse to encompass all the relevant spectral features, i.e., all
the four Bogoliubov modes shown in Fig. 6.

Numerical predictions for n1,2�t� are shown in Fig. 7 for
the different regimes. The quasi-cw pump energy �� is taken
to be between the linear resonance peaks, and increasing
values of the pump amplitude F are chosen for the different
panels �see dots in Fig. 1�. The corresponding spectra shown
in Fig. 8 are obtained by Fourier transform of �1,2�t�. In
order to eliminate complications due to the switch-on dy-
namics, we have restricted the Fourier transform to the tem-
poral window following the arrival of the probe pulse. The
central 	 peak corresponds to the pump frequency.

A. Stable regime

For small values of the asymptotic pump amplitude Fmax
�Figs. 7�a� and 7�b��, the evolution during the switch-on time

smoothly leads the system to the asymptotic stationary state.
As this solution is stable, the response to the probe pulse gets
quickly damped within a time scale of the order of 10 ps.
While for very small intensities �Fig. 7�a�� the response con-
sists of damped oscillations at a single frequency, for larger
intensities �Fig. 7�b��, relaxation is more complex and in-
volves interference of more frequencies.

This difference is apparent in the corresponding spectra
shown in Figs. 8�a� and 8�b�, which are to be compared to
the Bogoliubov modes shown in Fig. 6. Well inside the sta-
bility region, only the positive-weighted Bogoliubov modes
with a significant U component �see Eq. �10�� are, in fact,
visible. On the other hand, when the parametric instability
region is approached, the normal components U are signifi-
cant for all modes and all the four frequencies then become
visible in the spectrum �see Fig. 8�b��. As usual, the finite
linewidth of the peaks is fixed by the finite and negative
imaginary part of the Bogoliubov modes, i.e., by their damp-
ing rate. In the present case, this is the same for all
Bogoliubov modes.
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��=0.45 meV. Pump switch-on time �=100 ps. Probe amplitude
fg
0=10−2Fmax�Fmax, probe duration �g=0.3 ps��� /J, and probe

delay t0=400 ps��. Same system parameters as in Fig. 1. The
pump parameters used for panels �a�–�d� correspond to the dots in
Fig. 1.

0

0.1

0.2

|F
T

(ψ
1,

2)|
2

0

3

6

0

5

10

15

20
x 10

7

E−hω (meV)
−2 −1 0 1 2

0

0.05

0.1

0.15

0.2

(a)

(b)

(c)

|F
T

(ψ
1,

2)|
2

|F
T

(ψ
1,

2)|
2

|F
T

(ψ
1,

2)|
2

(d)
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B. Parametric instability

The physics is richer in Figs. 7�c� and 8�c�, where a larger
pump amplitude Fmax=8 meV is considered: in this case, the
asymptotic stationary state is, in fact, parametrically un-
stable. However, as the pump intensity is increased very
smoothly, the system remains very close to the stationary
state at the instantaneous value of F during the ramp. As the
positive imaginary part of the eigenvalue is much smaller
than � in the whole parametric instability domain �see Fig.
6�, the onset of the parametric instability is, in fact, quite
slow and, in the absence of a probe, the unstable behavior
would be visible only for very long times. The arrival of the
probe pulse is then crucial to speed up the onset of the in-
stability: the induced perturbation is quickly amplified until
the system gets to the self-pulsing regime, where undamped
periodic oscillations take place for indefinite time. Their fre-
quency is close to the one of the linear Bogoliubov mode
getting unstable. Correspondingly, two 	 peaks appear in the
spectrum shown in Fig. 8�c� at energies E−��
= �0.52 meV. The weaker 	 peaks at harmonic frequencies
contribute to the quite complex wave form of the self-pulsing
oscillations in time shown in Fig. 7�c�.

C. One-mode instability

To highlight hysteresis phenomena, we now choose an
asymptotic value of the pump amplitude above the jump-up
threshold of the bistability loop shown in Fig. 3. While the
pump amplitude ramp is adiabatic enough to safely cross the
parametric instability region, a sudden jump forcedly occurs
when the system gets to the end of the lower branch: the
switch-on process is no longer smooth and a sudden jump is
visible in panel �d� just before t=200 ps. The values for n1,2
at the jump position are immediately understood from the
bistability loops shown in Fig. 3, as well as the peculiar
nonmonotonic behavior of n1 before the jump. Among the
many complex behaviors that may take place in the presence
of hysteresis,28 the present case is, in fact, the simplest: as
soon as the end of the lower branch is reached, the system
jumps toward the higher-intensity branch of the bistable
loop.

Once the upper branch is reached, the system is again
stable and the response to the probe pulse at t=400 ps is
qualitatively similar to the case of panels �a� and �b�. The
only difference is the higher frequency of the oscillations and
the presence of three different excitation frequencies, which
contribute to the complex relaxation dynamics: one negative-
weighted Bogoliubov mode has, in fact, a significant U com-
ponent.

V. PULSED EXCITATION: JOSEPHSON OSCILLATIONS
AND SELF-TRAPPING

After having investigated the behavior of the system un-
der a continuous pump, it is now interesting to look at the
case where only a pulsed pump is applied to the system.
Specifically, we numerically solve Eqs. �1� and �2� using a
Gaussian temporal profile for the pump,

F�t� = Fmaxe
−�t − tp�2/�p

2
. �16�

The duration �p of the pump pulse is taken to be very short as
compared to all time scales of the system dynamics: the sys-
tem is then almost instantaneously excited by a sudden kick,
and then evolved and relaxed without any further pumping.
The results are summarized in Figs. 9�a�, 9�c�, 9�e�, and 9�g�
in the time domain, while the corresponding Fourier spectra
are shown in Figs. 9�b�, 9�d�, 9�f�, and 9�h�.

For low pump amplitudes in the linear regime, the inten-
sities in the two wells manifest Josephson-like oscillations
�Fig. 9�a��. The pump pulse creates, in fact, a localized ex-
citation in mode 1, which is a superposition of the symmetric
and antisymmetric eigenmodes of the system. Because of
their energy splitting, the system shows complete Josephson
oscillations with a period �� /J, which then damp out at a
rate � under the effect of losses. Correspondingly, the Fou-
rier spectrum shown in Fig. 9�b� is characterized by a pair of
resonance peaks split by 2J.

For stronger pump amplitudes, the instantaneous intensity
in the system increases and eventually results in significant
nonlinear effects. While the time evolution of the intensities
�Figs. 9�c�–9�e�� does not appear to be significantly modi-
fied, nonlinear effects are visible in the spectra of Figs.
9�d�–9�f� already at moderate intensities as a global blueshift
of the spectrum and a significant increase of the width of the
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FIG. 9. �Color online� ��a�, �c�, �e�, and �g�� Intensity dynamics
and ��b�, �d�, �f�, and �h�� corresponding Fourier spectra under a
Gaussian pulsed pump �Eq. �16�� at time tp=3 ps of duration �p

=0.2 ps. Peak pump amplitudes ��a� and �b�� Fmax=1 meV, ��c� and
�d�� 50 meV, ��e� and �f�� 75 meV, and ��g� and �h�� 100 meV. Thin
�thick� lines corresponds to the 1 �2� modes. Spectra are obtained by
Fourier transforming the signals in the whole time interval. Same
system parameters as in Fig. 1.
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peaks. In particular, in Fig. 9�f�, note how the blueshift of the
spectrum relative to the field �1 is larger than the blueshift of
the spectrum relative to �2: this is due to the fact that the
intensity n1 is at short times much larger than the intensity
n2. In the Fourier spectrum of �1, we also clearly recognize
two peaks at J= �0.5 meV corresponding to the eigenfre-
quencies of the linear dynamics that is recovered at long
times once the intensities have dropped to small values.
Similar peaks also contribute to the Fourier spectrum of �2
but are hardly visible in the figure, their weak intensity being
hidden by the tails of the main peaks.

The appearance of peaks at frequencies characteristic of
the nonlinear regime is a precursor of the self-trapping re-
gime that appears for stronger pump amplitudes: in this case,
the nonlinear effects are, in fact, dominant in determining
both the spectrum and the time evolution of the intensities
�Figs. 9�g� and 9�h��.

In the early stages of the evolution when the intensity is
the largest, nonlinear effects dramatically suppress the am-
plitude of Josephson oscillation: most of the intensity is, in
fact, self-trapped in mode 1 and the intensity of mode 2
oscillates around a much smaller value. As time goes on, the
total intensity slowly drops under the effect of losses and
eventually complete Josephson oscillations are recovered:
the transition between the self-trapping regime and
Josephson oscillations can be located in the vicinity of the
time when the total intensity equals the critical density n1
+n2=ntot

c =4J /g of equilibrium Josephson systems.17 The
presence of losses is only responsible for a small shift of the
critical point.

Consequences of this physics can also be observed in Fig.
9�h�: both spectra show, in fact, two broad peaks centered at
high energies �i.e., at E�0 and E�1.5 meV�, which repre-
sent the two resonances of the system in the self-trapping
regime, and two lower energy peaks at E= �J= �0.5 meV,
representing the frequencies of the Josephson oscillations.
These two latter peaks are asymmetric �differently from the
pure linear regime displayed in Fig. 9�b�� because the dy-
namics has been modified by the occurrence of the self-
trapping regime.

VI. MICROCAVITY POLARITON BOXES

In this last section, we show how the parameters of the
two-mode model can be evaluated from the microscopic
structure of a specific physical system. On one hand, we
demonstrate that all the physics discussed in the previous
sections can actually be observed in realistic systems; on the
other hand, we confirm the quantitative validity of the pre-
dictions of the two-mode model by comparing them to a full
numerical integration of the generalized Gross–Pitaevskii
equation for polaritons.3,5

Although many other configurations based on, e.g.,
coupled distributed Bragg reflector cavities are available to
study Josephson-like effects in an optical context,19,20,29,30

our attention will be concentrated on the specific case of
double-well polariton traps. Such a system was recently
realized12,13 and combines the strong nonlinearity due to the
excitonic component of the polariton to the possibility of a

micron-scale spatial confinement by laterally patterning the
thickness of the cavity layer. From the point of view of Jo-
sephson physics, this geometry is very attractive, as it allows
independent collection of light emitted from the two boxes
and preserves the signal from being covered by the incident
laser field.

A. From the nonequilibrium Gross–Pitaevskii equation to the
two-mode model

The dynamics of the macroscopic polariton field 
�r , t� is
described at the mean-field level by a nonequilibrium gener-
alization of the Gross–Pitaevskii equation �GPE� of the
form3,5

i�
d

dt

�r,t� = 
−

�2�2

2mp
+ Uext�r� − i

�

2
�
�r,t�

+ v�
�r,t��2
�r,t� + f�r,t� , �17�

where mp is the effective mass of the lower polariton, � is the
decay rate, Uext is the trapping potential, v is the effective
polariton mutual interaction,31–33 and f�r , t� is the amplitude
of the coherent pump field.

In this paper, we consider the case of a trapping potential
Uext�r� formed by two adjacent wells, as displayed in Fig.
10�a�,

Uext = − U0��Ly/2 − �y�����Lx + 	/2 − x���x − 	/2�

+ ��Lx + 	/2 + x���− x − 	/2�� . �18�

For this potential, the fundamental mode of energy Egs is
described by an eigenfunction �gs�r�, which is symmetric in
the two wells �see Fig. 10�b��, while the first excited mode of
energy Eexc corresponds to an antisymmetric eigenfunction
�exc�r� �see Fig. 10�c��. Without loss of generality, both these
functions can be taken real.
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FIG. 10. �a� Trapping potential Uext �Eq. �18�� due to two adja-
cent rectangular wells and �b� the fundamental �gs�r� and �c� first
excited �exc�r� modes of the corresponding equilibrium GPE �Eq.
�31��. The spatial profiles are displayed in gray tones.
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The pump field is considered to be monochromatic, with a
Gaussian spatial profile,

f�r,t� = 2��2f0e−�r − r1�2/�2
e−i�t, �19�

centered on the first well at r1= ��Lx+	� /2,0�t. Provided that
pump energy is close to Egs and Eexc and all other excited
modes of the trapping potential are at much higher energies,
the coherent field 
�r , t� can be safely written in the two-
mode limit17 as a time-dependent superposition of the two
lower energy modes �gs�r� and �exc�r� only.

For the present case, it is useful to write the superposition
in the form


�r,t� = �1�t��1�r� + �2�t��2�r� , �20�

where the Wannier-like functions,

�1,2�r� =
1
�2

��gs�r� � �exc�r�� , �21�

are mostly localized in each well and orthogonal to each
other.

By substituting Eq. �20� into Eq. �17� and then projecting
onto the lowest states, two coupled dynamical equations for
the amplitudes �1,2�t� are obtained of the form

i��̇ j = ��� j − i�/2�� j + g�� j�2� j − J�3−j

+ b��2�� j�2 + ��3−j�2��3−j + �3−j
* � j

2�

+ c�2��3−j�2� j + �
j
*�3−j

2 � + Fj�t� . �22�

Linear dynamics is summarized by the diagonal term

�� j =
1

2
�Egs + Eexc� , �23�

and the linear hopping coefficient

J =
1

2
�Eexc − Egs� . �24�

Pumping is described by

Fj�t� =� dr� j�r�f�r,t� , �25�

while nonlinear effects are described by the three coupling
coefficients

g = v� dr��1,2�r��4, �26�

b = v� dr�2,1�r���1,2�r��3, �27�

c = v� dr��1�r��2��2�r��2. �28�

For typical geometries and for moderate intensities, the co-
efficients b and c are much smaller than the other quantities
and can be safely neglected. Within this approximation, Eq.

�22� reduces to the two-mode model �Eqs. �1� and �2�� used
in the previous sections.

B. Comparison with the two-mode model

In order to verify the validity of the two-mode approxi-
mation, a numerical integration of the full GPE �Eq. �17��
can be performed and then quantitatively compared to the
predictions of the two-mode model.

For this comparison, realistic parameters for typical polar-
iton boxes in GaAs based microcavities12,13 are used, that is,
a trapping potential depth U0=5 meV, lateral box sizes Lx
=1 �m and Ly =2 �m, a polariton mass mp=7�10−5m0 �m0
being the electron mass�, and a nonlinear coupling constant
v=2�10−3 meV �m2. We assume the separation 	
=0.5 �m between the two wells. The corresponding poten-
tial Uext and the functions relative to the first two GP modes
are displayed in Fig. 10. A spatial width �=0.5 �m is taken
for the pump spot.

The time evolution of the polariton occupation n1,2�t�
= ��1,2�t��2 in the two wells is plotted in Fig. 11. In the
present GPE framework, the occupations n1,2 of each of the
two wells are defined by the spatial integrals

n1�t� = �
0

+�

dx� dy�
�r,t��2, �29�

n2�t� = �
−�

0

dx� dy�
�r,t��2. �30�

Two different parameter choices are made in the two panels
of Fig. 11. In �a�, the system tends to a stable stationary state,
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FIG. 11. �Color online� Dynamical evolution of n1 and n2

�n2�n1�, as obtained from the full numerical calculation of GPE
�thin lines� and from the two-mode model �thick lines�. �a� GPE
simulations with pump energy ��=−2.8 meV and pump amplitude
f0=5 meV. Parameters of the corresponding effective two-mode
model: ��1,2=−3.15 meV, J=0.45 meV, g=10−3 meV, and F1

=5.8 meV. �b� GPE simulations with pump energy ��=−2.8 meV
and pump amplitude f0=7.5 meV. Parameters of the corresponding
effective two-mode model: �� j =−3.1 meV, J=0.5 meV, g
=10−3 meV, and F1=8.5 meV.
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while self-pulsing oscillations are visible in �b�. The qualita-
tive agreement with, respectively, panels �a� and �b� and �c�
of Fig. 7 is apparent. A single significant difference exists in
the case of self-pulsing oscillations shown in �b�: as the
switch-on time of the pump is not long enough to guarantee
a quasistatic evolution of the system across the unstable re-
gion, the self-pulsing oscillations quickly appear in a spon-
taneous way without the need of a perturbation seed to speed
up the instability.

As the linear coupling J is very sensitive to the shape of
the wave functions in the barrier, interactions may affect it
quite significantly, spoiling the quantitative agreement with
the two-mode model. In order to get a good quantitative
agreement in all regimes, a better approximation can be
adopted for the localized wave functions using for �gs�r� and
�exc�r� the two lowest-energy solutions of the time-
independent equilibrium Gross–Pitaevskii equation,


−
�2�2

2mp
+ Uext�r� + vN���r��2���r� = E�N���r� . �31�

The total polariton number N=n1+n2 has to be obtained
from the long-time limit t→� of the full GP equation once
the solution has come to their asymptotic steady state or by
averaging over the period of the self-pulsing oscillations.
Correspondingly, Eqs. �23� and �24� have to be substituted
by the N-dependent equations

�� j =
1

2
�Egs

�N� + Eexc
�N�� −

vN

2
� dr���gs�r��4 + ��exc�r��4�

�32�

and

J =
1

2
�Eexc

�N� − Egs
�N�� , �33�

respectively. As expected, the main effect of interactions is to
slightly lift the bottom of the two wells, so to effectively
reduce the barrier height and enhance tunneling.

The result of such a procedure is also shown in Fig. 11:
the overall qualitative agreement is good. From a quantita-
tive point of view, the agreement is always excellent in the

stable regime of panel �a�, while some discrepancies are vis-
ible in panel �b�, in particular, at short times before the self-
pulsing sets in. This can be expected, as the parameters of
the two-mode model extracted from the late time dynamics
slightly differ from what one would get from the early
stages. Furthermore, the spatial profile of the wave function
has a significant variation in time during the self-pulsing
dynamics.

VII. CONCLUSIONS

In this paper, we have studied the two-mode dynamics of
spatially coupled polariton boxes under a coherent external
pumping and we have shown that this provides an interesting
nonequilibrium optical generalization of the well-known
Josephson effect of weakly coupled superfluids and super-
conductors.

For a continuous-wave pumping, a phase diagram has
been obtained, which summarizes the steady state of the sys-
tem as a function of pump intensity and frequency. Stable
and unstable regions have been identified; one-mode and
parametric instabilities have been shown to be intrinsically
related to, respectively, optical bistability and self-pulsing
effects. The response of the system to an additional probe
provides unambiguous information on the Bogoliubov
modes around the stationary state.

For a short pump pulse, the crossover from a Josephson
oscillation regime to a self-trapping one has been character-
ized as a function of the pump intensity. Peculiar features
due to the nonequilibrium nature of the system have been
pointed out.

The validity of the two-mode model and the actual ob-
servability of the predicted effects has been verified on the
basis of the nonequilibrium Gross–Pitaevskii equation for
polaritons in a double-well trap potential using parameters
inspired by recent experiments.
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