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The quantum spin Hall �QSH� effect is the property of a new state of matter which preserves time reversal,
has an energy gap in the bulk, but has topologically robust gapless states at the edge. Recently, the QSH state
has been theoretically predicted and experimentally observed in HgTe quantum wells �B. A. Bernevig et al.,
Science 34, 1757 �2006�; M. Konig et al., ibid. 318, 766 �2007��. In this work, we start from realistic
tight-binding models and demonstrate the existence of the helical edge states in HgTe quantum wells and
calculate their physical properties. We also show that three-dimensional HgTe is a topological insulator under
uniaxial strain and show that the surface states are described by single-component massless relativistic Dirac
fermions in 2+1 dimensions. Experimental predictions are made based on the quantitative results obtained
from realistic calculations.
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I. INTRODUCTION

Conventional insulators have a gap for all charge excita-
tions and their physical properties are not sensitive to
changes in the boundary conditions. Recently, a new class of
quantum spin Hall �QSH� in two dimensions, or topological
in three dimensions, insulators has been proposed theoreti-
cally and observed experimentally.1–6 The QSH insulators
are invariant under time reversal, have a charge excitation
gap in the bulk, but have topologically protected gapless
edge states that lie in the bulk insulating gap.3,7,8 This type of
insulator is typically realized in spin-orbit coupled systems,
and the corresponding edge states have a distinct helical
property: states with opposite spins counterpropagate at the
sample edge. The helical edge states are responsible for the
intrinsic spin Hall effect in the insulating state.9–12 The edge
states come in Kramers doublets, and time-reversal symme-
try �TRS� ensures the crossing of their energy levels at spe-
cial points in the Brillouin zone �BZ�. Because of this level
crossing, the spectrum of a QSH insulator cannot be adia-
batically deformed into that of a topologically trivial insula-
tor without helical edge states; therefore, in this precise
sense, the QSH insulators represent a topologically distinct
new state of matter. In three dimensions, the class of strong
topological insulators has a similar distinction5,13 and is the
natural generalization of the QSH insulator.

The study of the QSH effect in quasi-two-dimensional
�2D� HgTe /CdTe quantum wells carried out in Ref. 1 is
based on a simplified model obtained by the k ·P perturba-
tion theory and the envelope function approximation. The
conclusion of a topological quantum phase transition is
reached based on a Dirac-type subband level crossing at the
� point. However, as is shown in the present work, such a
level crossing is not generic and is avoided in the real system
due to the bulk inversion asymmetry �BIA� of the zinc-
blende lattice. Consequently, a more realistic study is neces-
sary to obtain a better understanding of the QSH phase and
the topological phase transition. In this paper, we study the

subband structure and edge state properties of HgTe /CdTe
quantum wells using a realistic tight-binding �TB� model.
The level crossing avoided at the � point is recovered at
several finite wave vectors. In other words, the phase transi-
tion between two different insulating regions remains robust
despite inversion symmetry breaking. Furthermore, the topo-
logical nature of the QSH regime is demonstrated explicitly
by studying the properties of the helical edge states in an
open boundary system. We also apply the same realistic TB
calculations to uniaxial strained three-dimensional �3D�
HgTe and obtain the topologically nontrivial surface states.
Thus, strained, bulk HgTe is demonstrated to be a strong
topological insulator, which is consistent with theoretical
analysis based on the Z2 topological invariants.13

II. TIGHT-BINDING MODEL AND GREEN’S
FUNCTION METHOD

The CdTe and HgTe materials have the same zinc-blende
lattice structure and are well described by the same type of
tight-binding Hamiltonian, albeit with different parameters.
This Hamiltonian includes two s-type orbitals and three
p-type orbitals on each atom and reads
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are the creation operators for

electrons on the anion and cation sites, respectively, i
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= �s ,s* , px , py , pz� is the orbital index, and � is the spin index.
Ei,a, Ei,b, and Vi,j are the tight-binding parameters defined by
Slater and Koster.14 Spin-orbit coupling is contained in the
last two terms and is represented by two coupling constants
�a and �b. The tight-binding parameters are taken from Ref.
15 where they were determined by fitting to a first-principles
calculation.

To obtain the boundary �edge or surface� states for
quasi-2D HgTe /CdTe quantum well structures and for the
bulk 3D materials, we apply the Green’s function method16,17

based on the TB model described above. For the quantum
well system, we consider a symmetric HgTe /CdTe hetero-
structure with a fixed Nc=8 layers of CdTe surrounding a
variable Nh layers of HgTe on each side. In order to calculate
the boundary states, we choose open boundary conditions
along the x direction, periodic boundary conditions along the
y direction, and open boundary conditions along the z direc-
tion which is the growth direction of the quantum well. For
the bulk materials, surface states can be calculated for a
semi-infinite system with open boundary conditions on one
direction, such as �001�, and periodic boundary conditions on
the other two directions. The inverse Green’s functions of
both the quantum well and bulk materials can be written in a
block tridiagonal form as

G−1�z� = z − H =�
z − H0 C 0 0

C† z − H0 C 0

0 C† z − H0 C

0 0 C†
¯

� ,

where the diagonal block H0 describes the Hamiltonian
within the same “principal layer,”16 that is, the layer whose
plane is perpendicular to the x axis �the x direction has open
boundary conditions� for the quantum well case or that with
plane layers perpendicular to the direction with open bound-
ary conditions for the bulk case. The off-diagonal block C
describes the coupling between two nearest-neighbor princi-
pal layers. To study the boundary states, we only need gij, the
Green’s function on the boundary, where i , j are the indices
of the local basis on the boundary. This function is contained
in the first diagonal block of the matrix G�z�= �z−H�−1 and
can be expressed in a recursive way as gij

�N�= �z−H0

−Cg�N−1�C†�ij
−1 with gij

�N� denoting the boundary Green’s func-
tion for a system with N principal layers. The above recur-
sive equations can be closed by the initial condition gij

�1�

= �z−H0�−1, and we obtain gij
�N� iteratively. Any physical

observables projected onto the boundary are easily expressed
using these Green’s functions as − 1

� �d��ijIm gij
�N���

+ i0+�Oji=− 1
� �d��o���, where �o��� is a type density of

states and i , j run over all the local basis states on the bound-
ary. For example, Oc=�i	i
�i	 and Os=�ijLij

z +Sij
z generate the

density of states for charge and spin on the boundary respec-
tively. Notice here that we generalize the definition of “spin”
to include all the local angular momenta with real spin and
angular momentum of the local basis. This method is easily
generalized to study the interface states between two semi-
infinite crystals, e.g., HgTe and CdTe, which is essential in
the present work, as will be explained below.

III. HgTe ÕCdTe QUANTUM WELL

As is well known for HgTe quantum wells, the confine-
ment effect along the z direction opens a small gap around
the Fermi level which makes the quantum well an insulator.
By the analysis in Ref. 1 based on the k ·P approximation, a
quantum phase transition from a topologically trivial phase
to a nontrivial phase �QSH phase� occurs for HgTe /CdTe
quantum wells at some critical thickness of the HgTe layer,
which is signaled by a level crossing between the E1 and
HH1 subbands. We study this transition using the more real-
istic full TB Hamiltonian given above. First, we choose pe-
riodic boundary conditions in x and y to obtain the 2D sub-
band spectrum for different thicknesses Nh of HgTe layers. In
Fig. 1�b�, we plot the subband spectrum at the � point as a
function of HgTe “halflayers.” Whereas Ref. 1 predicts that
the subbands will cross, we find an anticrossing at the �
point at a critical layer thickness dc=9a. This difference be-
tween the work of Ref. 1 and these TB results can be ex-
plained by the presence of BIA in the zinc-blende lattice
which is ignored in the previous paper. From the k ·P per-
spective, an additional term H�=Ckkz�Jz , �Jx

2−Jy
2� is allowed

in the bulk Hamiltonian once the point-group symmetry is
reduced by BIA to D2D,18 with Jx ,Jy ,Jz the spin-3 /2 matri-
ces. Despite being a kz-dependent term in the bulk system, in
the quantum well, H� generates a constant term with finite
matrix elements connecting the 	E1	 
 subbands with the
	HH1
 
 subbands near the � point, which can be derived
following the effective 2D k ·P approach of Refs. 1 and 19.
This term qualitatively affects the physics in exactly the
manner predicted by the TB model.

Upon further investigation, we find that the inversion
asymmetry shifts the crossing point from the � point to eight

FIG. 1. �Color online� �a� The subband splitting as a function of
layer thickness at one of the “crossing points” k= �0.017,0.008� �

a .
�b� The subband splitting as a function of layer thickness at the �
point.
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nonzero k points around it. In Fig. 1�a�, we plot the subband
spectrum at one of these crossing points k= �0.017,0.008� �

a
where a clear level crossing between E1 and HH1 is ob-
served. �Notice that away from the � point, the inversion
asymmetry removes the double degeneracy as expected.� The
other seven crossing points are determined by the point-
group star of this one. We find that even if the level crossing
at the � point is avoided, the gap-closing quantum phase
transition between two insulating regimes previously pro-
posed in the simplified model still exists.

After identifying the presence of the quantum phase tran-
sition, the next natural question is whether the topologically
nontrivial phase on the thicker side of the transition predicted
by the k ·P calculation will survive the inversion symmetry
breaking. The most convincing way to answer this question
is to calculate the edge states directly. By the recursion
method, we obtain the charge and spin densities of states
defined above. The charge density of states for a quantum
well structure with 20 and 10 half-layers are plotted in Figs.
2�a� and 2�b�, respectively. Sharp peaks appear in the gap for
the quantum well with 20 half-layers and are absent in the 10

half-layer system. As required by the time-reversal symme-
try, the energy levels at the � point must be doubly degener-
ate but can be split at finite ky. The energy level splitting near
ky =0 as a function of ky is plotted in the inset of Fig. 2�a�,
which shows a perfect linear dispersion indicating a level
crossing of the edge states at ky =0. The spin densities of
states for two ky’s with opposite signs are plotted in Fig. 2�c�.
If the chemical potential lies between the two peaks, only the
lower branch of the edge states is occupied and a spin current
will be carried by the edge states. With the recursion method,
we can also obtain the charge density of states on the internal
layers away from the edge. In the inset of Fig. 2�c�, we plot
the height of the in-gap peak for ky =0 on the different layers,
which decays rapidly as you move away from the edge and
thus demonstrates that the in-gap peak is produced by the
edge states. Finally, we plot the edge state dispersion in Fig.
2�d� with a color intensity plot generated from the density of
states. We have plotted the logarithm of the intensity so that
nonzero intensity clearly stands out. We find that the edge
states merge with the bulk states as ky moves away from the
� point. Consequently, whenever the chemical potential lies
in the bulk gap, the only low-energy states crossing the

FIG. 2. �Color online� �a� The density of states at the edge of the quantum well with layer thickness d=20�a /2�. �The inset plot shows
the linear energy splitting of the edge states in the very small region near ky =0.� �b� The density of states at the edge of the quantum well
with layer thickness d=10�a /2�. �c� The spin density of states at the edge of the quantum well with thickness d=20�a /2�. �The inset plot
shows the decay of density of states at the peak energy of the spectra with ky =0.� �d� The intensity color plot on the energy-momentum plane
for the density of states at the edge of the quantum well with thickness d=20�a /2�. We have taken the logarithm of the intensity so that
nonzero intensity clearly stands out.
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Fermi level are a single Kramers pair of edge states. In other
words, the low-energy behavior of the quantum well in the
bulk insulating region is described by an odd number of pairs
of one-dimensional �1D� channels propagating on each edge.
According to Ref. 7, such a 1D liquid is a “helical liquid”
and cannot be realized in any pure 1D system that preserves
TRS. It can only exist as the edge theory of a 2D QSH
insulator. In this way, the results of our calculations provide
convincing evidence that the HgTe /CdTe quantum well is a
QSH insulator characterized by a nontrivial Z2 topological
invariant.3

IV. BULK HgTe AND HgTe ÕCdTe INTERFACE

The same recursion method can also be applied for the 2D
surface states of strained 3D HgTe, which was recently sug-
gested to be topologically nontrivial.13 However, the TB
model �Eq. �1�� applied to a semi-infinite system with a 2D
surface always generates some surface states, even for a
trivial band insulator, e.g., CdTe.17 Physically, these surface
states correspond to a dangling sp3-hybridized bond at each
surface atom and are thus strongly dependent on the details
of the surface physics, such as surface reconstruction and
disorder. On the other hand, as we will show below, the
topology of the surface states for the trivial insulator CdTe
and topological insulator HgTe are quite different, and we
can still distinguish them. Since in the present paper we are
only concerned about the topological properties, which are
insensitive to the details of surface physics, we can choose a
surface regularization that removes the trivial surface states
and leaves only the topological ones. Therefore, we have
also studied the interface between bulk HgTe and CdTe,
where the dangling bonds of HgTe are coupled to CdTe and
saturated so that the trivial surface states vanish. Since CdTe
can be adiabatically connected with vacuum by taking its
band gap to infinity, the topological properties of a
HgTe /CdTe interface are determined by HgTe and do not
depend on the choice of the surface regularization.

Since bulk HgTe is a semimetal, we need to apply a small
compressive strain, along, say, the �001� direction, to make it
an insulator. The tight-binding parameters for strained HgTe
are obtained by fitting the local density approximation results
from the plane wave pseudopotential method.20In the present
paper, we apply the strain along the �001� direction �z direc-
tion� and put the HgTe surface along both the �100� �x direc-
tion� and �001� directions. For both cases, we find nontrivial
surface states.

The densities of states on the surface for both strained
HgTe and CdTe are shown in Fig. 3 by the color intensity
plot, from which we can see clearly that both of them have
surface states in the gap. Again, we have plotted the loga-
rithm of the intensity so that nonzero intensity clearly stands
out. The existence of the surface state in CdTe and HgTe has
been known for a few decades,21–23 while their topological
structure has never been studied carefully. Although the sur-
face states in HgTe and CdTe look quite similar, there is an
essential topological difference between them. The surface
states for CdTe have level crossings at all the high symmetry
points: �0, 0�, �� ,��, �2� ,0�, �0,2��. In contrast, the HgTe

surface states merge into the bulk bands near the � point �as
shown in the inset of Fig. 3� but behave similar to CdTe in
the rest of the BZ. We also plot the Fermi surface of the
surface states for both HgTe and CdTe in Fig. 4. We find that
for HgTe, if the Fermi energy remains inside the bulk gap,
only one Fermi surface crossing will be detected when
sweeping from the � point to the zone boundary. On the
other hand, for CdTe, you will either find zero or an even
number of Fermi surface crossings. This even and/or odd
difference between CdTe and HgTe reflects the different Z2
classifications and can be detected directly by angle resolved
photoemission spectroscopy �ARPES�.

In Fig. 5, we plot the density of states on the HgTe /CdTe
interface in a color intensity plot where we have plotted the
logarithm of the intensity so that nonzero intensity clearly
stands out. As we discussed before, the trivial surface states
of HgTe with CdTe added to the surface are removed by
saturating the dangling bonds. The single pair of surface
states is clearly seen in the bulk insulating gap and they cross
at the � point. There are no other surface states in the entire
zone. Any pure 2D band theory that respects TRS must have
the same number of Kramer pairs on each of the time-
reversal symmetric wave vectors because all of the 2N en-
ergy bands must be paired on these wave vectors. As a result,
the 2D surface states of HgTe cannot emerge from any

FIG. 3. �Color online� Intensity color plot in the energy-
momentum plane for the density of states at the HgTe �left� and
CdTe �right� �100� surfaces. The uniaxial strain is applied along the
�001� direction for HgTe by choosing the c /a ratio to be 0.98. We
have taken the logarithm of the intensity so that nonzero intensities
clearly stand out.

FIG. 4. �Color online� The shape of the Fermi surface at the
�100� surface of CdTe �left� and HgTe �right�. The uniaxial strain is
applied along the �001� direction for HgTe by choosing the c /a
ratio to be 0.98.
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pure 2D surface effect and only as a consequence of bulk
topology.

It is useful to try to understand this result from a con-
tinuum k ·P perspective. HgTe has a nontrivial topological
structure because the band structure is only “inverted” near
the � point. The fact that an occupied band at this point has
�6 character means that the Z2 invariant picks up an extra
factor of −1 �if we ignore the small BIA� when compared to
CdTe �or vacuum�, making it nontrivial. Due to the strong
orbital mixing, the �6 character is washed out as one moves
away from the � point, and at the other special TR invariant
points, the inverted structure is absent. Therefore, we should
be able to understand the topological properties from the
band structure only near the � point. The key point is to
consider the six-band Kane model24 instead of just the re-
duced four-band Luttinger model. If we only keep the bands
in the Luttinger model, the topological structure is absent
because the inclusion of the �6 band is essential. In the pres-
ence of uniaxial compressive strain along the �001� direction,
an insulating gap opens between the heavy-hole �HH� and
light-hole �LH� bands by pushing the HH band downward in

energy. For a moment, we will ignore the HH band and focus
only on the LH and �6 �E� band. From the form of the Kane
model, the coupling of the LH and E bands near the � point
is exactly a 3D anisotropic massive Dirac Hamiltonian �if we
ignore BIA and keep the leading order in k�. The Dirac
Hamiltonian preserves parity symmetry and we can label the
bands by parity eigenvalues. Since the coupling is linear,
there must be one even �doubly degenerate� and one odd
�doubly degenerate� band. We expect that when the odd par-
ity band lies below the even band, then there will be a non-
trivial Z2 invariant which indicates an odd number of pairs of
surface states that cross at TR invariant points.13 The pres-
ence of the HH band will change the features of the spectrum
but it does not change the presence of the surface states, or
their protected crossing, as long as the strain gap is open.
The system will remain a 3D topological insulator when the
HH band is coupled and when BIA terms are added, as long
as the bulk gap does not close. To show evidence of our
statements, we solve the six-band Kane model on a cylinder.
First, we solve the model with the HH band completely de-
coupled from the LH and E bands �Fig. 6�a��. Here, the HH
band remains flat and is split from the LH band by the strain
gap. In the gap, there are clear, linearly dispersing surface
states which traverse the gap between the LH and E bands.
Nothing occurs at the other special points in the BZ so this is
a strong topological insulator. Turning on the coupling to the
HH band changes features of the band structure but does not
change the topology of the state since the gap between the
LH and HH bands never closes. It is clear from Fig. 6�b� that
even when the HH band is fully coupled, the system is still a
strong topological insulator with surface states crossing at �.

More rigorously, the nontrivial bulk topology leading to
the surface states is characterized by four Z2 invariants.5,6,13

According to Ref. 13, the Z2 invariants can be understood in
terms of “time-reversal polarization,” �a= 	1, which is de-
fined for the four TR symmetric momenta �a, a=1,2 ,3 ,4, in
a certain 2D projection of the BZ. Along a path from �a to
�b, the surface state Kramer pairs will switch partners if and
only if �a�b=−1, as shown in Figs. 7�a� and 7�b�. From the
surface state dispersion of HgTe shown in Fig. 3, one can see
that a pair of surface states at the � point splits and merges
separately into bulk bands at finite momentum, which means
that they become Kramers partners of other states at the other

FIG. 5. �Color online� Intensity color plot in the energy-
momentum plane for the density of states at the HgTe /CdTe inter-
face. The uniaxial strain is applied along the �001� direction by
choosing the c /a ratio to be 0.98, and the HgTe /CdTe interface is
chosen along the �100� direction. We have taken the logarithm of
the intensity so that nonzero intensity clearly stands out.
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FIG. 6. �Color online� Band structure near the � point for �a� decoupled HH band and �b� full HH band coupling. Surface sates are
located in the bulk gap in both subfigures and are shown in red. Gap due to strain is artificially large so that surface states are clearly visible.
However, the states will exist for any finite compressive strain.
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three TR invariant momenta �� ,0�, �0,��, �� ,��. In other
words, the “partner switch” happens between �0, 0� and all
the other three TR symmetric points, which means −��0,0�
=���,��=���,−��=��2�,0�, as shown in Fig. 7�c�. Conse-
quently, our calculation shows that the uniaxial strained bulk
HgTe is a strong topological insulator under the definition of
Refs. 5 and 13. This is in agreement with the statement of
Ref. 13 based on an adiabatic continuity argument between
strained HgTe and �-Sn.

In conclusion, this work has supplied numerous realistic
numerical results that support the earlier work done on topo-
logical insulators with simplified models. We showed that for
the 2D QSH effect, the BIA terms are not strong enough to
destroy the QSH phase �by closing the bulk gap� and the
quantum phase transition still occurs as a function of quan-
tum well thickness. Using realistic tight-binding models and
first-principles calculations, we have clearly shown that
CdTe is a trivial topological insulator and compressively
strained HgTe is a nontrivial topological insulator. We

showed this by calculating the band structure of each mate-
rial with unsaturated surface bonds which shows both trivial
and nontrivial surface states. Additionally, we showed that
for strained HgTe with its dangling surface bonds saturated
by CdTe that the topologically protected surface states exist
only around the � point, just as our analytic arguments pre-
dict. Finally, we gave examples of Fermi surface cuts that
would be measurable by ARPES experiments and gave argu-
ments about the Z2 index in these materials.
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