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We investigate how the antiferromagnetic Mott insulator evolves into the d-wave BCS superconductor
through hole doping. Allowing spin fluctuations in the strong-coupling approach, we find a spin-gapped
incoherent metal with preformed pairing as an intermediate phase between the antiferromagnetic Mott insulator
and d-wave superconductor. This non-Fermi-liquid metal is identified with an infrared stable fixed point in the
spin-decomposition gauge theory, analogous to the spin liquid insulator in the slave-boson gauge theory. We
consider the single particle spectrum and dynamical spin susceptibility in the anomalous metallic phase, and
discuss physical implications.
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I. INTRODUCTION

The problem of doped Mott insulators has been one of the
central interests in modern condensed matter physics. In par-
ticular, the route or mechanism from the parent Mott insulat-
ing state to the superconducting phase lies at the heart of the
research in strongly correlated electrons. Such a route de-
pends on the nature of the parent Mott insulating phase. Gen-
erally speaking, the Mott insulator can be characterized
based on its symmetry-breaking patterns.1 Usually, it exhibits
symmetry breaking associated with spin rotations or lattice
translations, thus causing possible long-range orders. How-
ever, when frustration effects are strong enough to kill such
orders, the resulting Mott insulator is symmetric, called a
spin liquid Mott insulator.2 Doping to the symmetry-broken
and symmetric Mott insulators would result in different
routes to superconductivity.

There exist analytical frameworks appropriate to each
doped Mott insulator. The doped spin liquid Mott insulator
can be described by the slave-boson representation of the t-J
model2 while the doped antiferromagnetic Mott insulator can
be captured by its slave-fermion description.3–5 One of the
translationally symmetry-broken insulators may be described
by the bond-operator formalism.6 Our main interest in this
paper is doping to the antiferromagnetic Mott insulator, and
seeing the emergence of superconductivity from the doped
antiferromagnetic Mott insulator. In this respect it seems
natural to adopt the slave-fermion representation. Unfortu-
nately, it is believed that the slave-fermion framework does
not give rise to the superconductivity naturally. In the next
section we review the slave-fermion representation of the t-J
model, comparing with the slave-boson approach and discuss
the reason why it is not easy to obtain superconductivity in
the slave-fermion description. In this study we employ the
CP1 spin-decomposition approach7 which allows supercon-
ductivity. The CP1 representation follows the same philoso-
phy as the slave-fermion description in the physical point of
view.

We have two symmetry-breaking phases at both sides of
doping, that is, antiferromagnetic Mott insulator at half fill-
ing and d-wave superconductor at large doping. The antifer-
romagnetic Mott insulator is described by the O�3� nonlinear

� model, an effective field theory of the antiferromagnetic
Heisenberg model for spin dynamics. Here charge dynamics
is almost frozen, thus safely ignored in the low-energy limit.7

On the other hand, the superconducting phase follows the
BCS-type approach with d-wave pairing. We show that the
CP1 decomposition approach recovers such known theoreti-
cal limits naturally.

The main object of this paper is to find the route connect-
ing these well-known symmetry-breaking phases. When
holes are doped into the antiferromagnetic Mott insulator,
charge fluctuations would be gapless. Then, metallic physics
may arise in the absence of disorder, if superconductivity is
not taken into account. Actually, numerical simulations based
on the t-J model have shown metallic properties.8 An inter-
esting question is whether such an intermediate metallic
phase will survive or not when superconductivity is allowed.
The metallic phase may be unstable to disappear. Then, there
will be a coexisting phase of antiferromagnetism and super-
conductivity or the first order transition between them. How-
ever, in this paper we show that the metallic state exists
indeed as an intermediate phase between the symmetry-
breaking phases. This kind of metallic phase has been re-
cently argued to appear in the slave-fermion framework.5 In
the CP1 framework we find that the metallic phase turns into
a d-wave superconducting state as holes are doped further.
We discuss the nature of this metallic phase and find that
such a phase is identified with a non-Fermi-liquid metal.

Starting from the BCS-HF �Hartree–Fock� model �Eq.
�6��, we derive an effective theory: the CP1 representation of
the O�3� nonlinear � model for spin dynamics and the
BCS-HF theory for charge dynamics, coupled via U�1� spin-
gauge fluctuations �Eq. �14��. Here CP1 spin-gauge fluctua-
tions play the role of pairing fluctuations in the pairing term
of the fermion sector. As a result, we find a spin-gapped
incoherent metal with preformed pairing excitations as an
intermediate phase between the antiferromagnetic Mott insu-
lator and d-wave superconductor. In the last section we argue
that the spin-gapped incoherent metal with preformed pairing
is analogous to the spin-gapped “superconducting” state in
one dimension.3 The present study not only generalizes the
one dimensional work of Shankar3 into two dimensions, but
also extends the previous studies4 into an incoherent regime
where spin-boson excitations are gapped.
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II. REVIEW OF THE SLAVE-FERMION APPROACH

To clarify the connection between the present approach
and slave-fermion description, it is necessary to review the
slave-fermion representation of the t-J model. In addition, to
understand the reason why superconductivity does not arise
naturally in the slave-fermion approach, we compare the
slave-fermion representation of the t-J model with the slave-
boson framework. Consider the t-J Hamiltonian

H = − t �
�ij��

�ci�
† cj� + H.c.� + J�

�ij�
�S� i · S� j −

1

4
ninj	 , �1�

with the constraint ��ci�
† ci��1. This inequality constraint is

not easy to handle. In order to treat such a constraint a slave-
particle decomposition approach can be introduced, since it
turns the inequality constraint into an equality one. Depend-
ing on the statistics of charge and spin degrees of freedom,
one can decompose the electron operator according to the
following ways:

ci� = bi
†f i�, bi

†bi + �
�

f i�
† f i� = 1,

ci� = �i
†bi�, �i

†�i + �
�

bi�
† bi� = 1. �2�

Here the first line shows the slave-boson representation with
the bosonic charge and fermionic spin, and the second line
the slave-fermion one with the fermionic charge and bosonic
spin.

In each representation the Heisenberg term can be ex-
pressed as

J�
�ij�

�S� i · S� j −
1

4
ninj	 = −

J

2�
�ij�

�̂ij
† �̂ij ,

slave boson: �̂ij = �
���

����f i�f j��,

slave fermion: �̂ij = �
���

����bi�bj��, �3�

for the pairing channel. Inserting each decomposition repre-
sentation into the t-J model with Eq. �3�, and performing the
Hubbard–Stratonovich transformation for the exchange hop-
ping and Heisenberg pairing channels, one can find each ef-
fective Lagrangian

LSB = �
i

bi
†��bi − t�

�ij�
�bi

†	ij
b bj + H.c.� + �

i�

f i�
† ��� − 
�f i�

− t �
�ij��

�f i�
† 	ij

f f j� + H.c.� − �
�ij����

��ij
† ����f i�f j�� + H.c.�

+ i�
i

�i�bi
†bi + �

�

f i�
† f i� − 1	 + t�

i

�	ij
b 	ij

f + H.c.�

+
1

2J
�
�ij�


�ij
2,

LSF = �
i

�i
†���i + t�

�ij�
��i

†	ij
�� j + H.c.� + �

i�

bi�
† ��� − 
�bi�

− t �
�ij��

�bi�
† 	ij

b bj� + H.c.� − �
�ij����

��ij
† ����bi�bj�� + H.c.�

+ i�
i

�i��i
†�i + �

�

bi�
† bi� − 1	 + t�

i

�	ij
�	ij

b + H.c.�

+
1

2J
�
�ij�


�ij
2 �4�

in the slave-boson and slave-fermion representations, respec-
tively. Here, 	ij

b,f ,� is the effective hopping parameter and �ij
is the pairing order parameter, both of which will be deter-
mined self-consistently. �i is a Lagrange multiplier field to
impose single occupancy constraint associated with each de-
composition.

Our interest lies in the region where antiferromagnetic
correlations are enhanced, captured by spin-singlet pairing
fluctuations ��ij�0�. When charge fluctuations are frozen at
half filling, the slave-boson approach gives rise to a spin
liquid Mott insulating phase, which is a starting point in the
slave-boson context. As holes are doped into the spin liquid
phase, bosonic charge degrees of freedom becomes con-
densed to form electronic Cooper pairs, resulting in super-
conductivity. In this scenario the finite-temperature
pseudogap physics is governed by the spin liquid physics for
spin fluctuations. On the other hand, the slave-fermion ap-
proach will give rise to an antiferromagnetic long-range or-
der at half filling via condensation of bosonic spin degrees of
freedom, where fermionic charge fluctuations are gapped to
be frozen. As holes are doped into the antiferromagnetic
Mott insulator, bosonic spin fluctuations can be gapped and
fermionic charge excitations will become gapless to show a
metallic phase.3,5,9 Such a spin-gapped metallic state is ex-
pected to govern the pseudogap physics in the slave-fermion
context.5 As will be discussed later, the mathematical struc-
tures of both theories are nearly identical. The spin liquid
Mott insulating phase can be identified with an infrared
stable fixed point of the effective fermion-gauge Lagrangian
with damped gauge fluctuations, where fermions carry spin
degrees of freedom. On the other hand, the spin-gapped me-
tallic phase would be characterized by the same fixed point
of nearly the same Lagrangian, but fermions carry charge
degrees of freedom here. Since we are focusing on doping
the antiferromagnetic Mott insulator, the slave-fermion
scheme is more appropriate.

However, there is one serious difficulty in the slave-
fermion approach. It is not easy to obtain superconductivity
in the slave-fermion context. In the slave-boson representa-
tion condensation of bosonic charge fluctuations causes su-
perconductivity in the presence of spin-singlet pairing exci-
tations, while fermionic charge degrees of freedom cannot be
condensed in the slave-fermion representation. One possible
way is to introduce pairing fluctuations of fermionic charge
degrees of freedom. Unfortunately, such pairing interactions
between fermionic charge degrees of freedom do not arise in
the naive mean-field approximation. The Heisenberg term
can be written in terms of only bosonic spin degrees of free-

KI-SEOK KIM AND MUN DAE KIM PHYSICAL REVIEW B 77, 125103 �2008�

125103-2



dom, if the slave-fermion constraint is used appropriately.
One can show that such pairing interactions can arise from
gauge fluctuations, originating from the slave-fermion de-
composition. This is certainly possible, but beyond the mean-
field approximation. Our objective is to construct an effec-
tive self-consistent mean-field theory in the slave-fermion
scheme. In addition, we are to examine the fate of such an
anomalous metallic phase when superconducting instability
is allowed. In this paper we show that the spin-gapped metal
appears as an intermediate phase between the antiferromag-
netic Mott insulator and d-wave superconductor.

III. FORMULATION

A. Model Hamiltonian

In the previous section we have discussed that the slave-
fermion approach allows an anomalous spin-gapped metal
via doping to the antiferromagnetic Mott insulator, and such
a phase is analogous to the spin liquid state in the slave-
boson context. In addition, we argued that it is nontrivial to
find superconductivity in the saddle-point analysis of the
slave-fermion framework due to the statistics of charge de-
grees of freedom and the absence of their pairing interactions
in the mean-field level. In this respect it is necessary to find
another representation, keeping the slave-fermion scheme.
We consider the t-J-U model Hamiltonian10

H = − t �
�ij��

�ci�
† cj� + H.c.�

− J�
�ij�

�
�
��

���
ci�
† cj


† �����ci�cj�� + U�
i

ni↑ni↓, �5�

where the Heisenberg term is expressed as a pairing channel.
One may argue that interaction terms in this model Hamil-

tonian are redundant since the J term can be generated from
the t-U terms via virtual hopping processes. Although this
statement is basically correct, actually the mean-field analy-
sis can hardly capture the effects of exchange interactions if
one starts from the Hubbard model. One can understand such
a model as follows.10 Starting from the t-U model and inte-
grating out high energy degrees of freedom, one would find
the exchange interaction term in the intermediate step of the
renormalization group analysis. If the on-site repulsion is not
infinitely large, one can keep such an interaction in the inter-
mediate level. Actually, the t-J-U model connects the two
limiting cases smoothly. In large-U limit this model is re-
duced to the t-J model while it recovers the t-U model in
small-J limit. Remember that the slave-fermion approach in
the large-U limit is not appropriate for describing supercon-
ductivity.

Performing the Hubbard–Stratonovich transformation for
the pairing channel, we obtain the BCS-Hubbard Hamil-
tonian as an appropriate model for the doped antiferromag-
netic Mott insulator10,11

H = − t �
�ij��

�ci�
† cj� + H.c.� − �

�ij�
��ij�ci↑

† cj↓
† − ci↓

† cj↑
† � + H.c.�

+
1

J
�
�ij�


�ij
2 + U�
i

ni↑ni↓, �6�

where the competing nature arising from the density-phase

uncertainty is introduced; the J term causes local pairing
��ij� of electrons while the Hubbard-U term suppresses local
charge fluctuations, thus breaking phase coherence of elec-
tron pairs.

Decomposing the Hubbard-U term into the charge and
spin channels,12 we obtain the BCS-HF Lagrangian via the
Hubbard–Stratonovich transformation

Z =� Dci�D�iDmiD�� iD�ije
−�0


d�L,

L = �
i�

ci�
† ��� − 
�ci� − t �

�ij��
�ci�

† cj� + H.c.�

+ �
i
� 1

U
�i

2 − i�i�
�

ci�
† ci�	

+ �
i

 1

U
mi

2 − mi�
���

ci�
† ��� i · ������ci���

− �
�ij�

��ij�ci↑
† cj↓

† − ci↓
† cj↑

† � + H.c.� +
1

J
�
�ij�


�ij
2, �7�

where �i and mi are local charge and spin potentials, respec-
tively.

The saddle-point analysis of Eq. �7� reveals its phase dia-
gram �Fig. 1� with a coexisting phase of antiferromagnetism
and d-wave superconductivity �AF+dSC�, a d-wave super-
conducting �dSC� state, an itinerant antiferromagnetic phase
�AF+FL�, and a Fermi-liquid �FL� state in the plane of
�� ,U /D� with hole concentration � and half bandwidth D. In
this treatment d-wave superconductivity competes with anti-
ferromagnetism. In addition, effects of Hubbard-U interac-
tions can be incorporated only via the antiferromagnetic or-
der parameter. This means that the pairing order parameter
does not depend on the Hubbard-U when the antiferromag-
netic order parameter vanishes. Considering the fact that the
superconducting order parameter vanishes at the point where
four phases meet each other, it would also disappear below
this point owing to the independence of the pairing order for
U, and this separates the superconducting phase from the

dSC

AF+FL

FL

AF+dSC

AF

� =0 ∆=0∆=0

� =0

∆=0
� =0

FIG. 1. �Color online� BCS-HF phase diagram with J /D=0.1.
Separation between the dSC and FL via the straight line is an arti-
fact of the BCS-HF analysis. See the text.
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Fermi-liquid state via the straight line which is just a mean-
field artifact. This argument seems to be inconsistent with the
BCS model analysis. When the antiferromagnetic order dis-
appears, the effects of local interactions are not incorporated
in this mean-field treatment. Then, the effective Hamiltonian
below the red-dotted and red-dashed lines corresponds to the
BCS model, which may exhibit superconductivity for all fill-
ings. Actually, however, the pairing interaction strength will
decrease effectively as hole concentration increases. The
pairing order parameter with m=0 is shown in a renormal-
ized mean-field theoretical framework.13

In this paper our interest lies in the small doping region
where antiferromagnetic correlations would play an impor-
tant role as discussed in the slave-fermion context. We would
like to emphasize that our objective is to show the possible
existence of an intermediate paramagnetic metal with spin-
gapped excitations between the collinear antiferromagnetic
and d-wave superconducting phases. The BCS-HF analysis
does not take into account charge14 and spin fluctuations as
the heart of Mott physics, particularly, in the low doping
region. As a result, the BCS-HF phase diagram does not
allow such an intermediate state between the antiferromag-
netic Mott insulator and d-wave superconductor. This is in-
consistent with the slave-fermion framework which is a
strong-coupling approach for the doped antiferromagnetic
Mott insulator.

B. CP1 representation with pairing fluctuations

Our objective is to introduce spin fluctuations in the
BCS-HF effective theory �Eq. �7��. A standard approach is to
integrate out electron degrees of freedom and obtain an ef-
fective action for such spin fluctuations.15 In this context one
can evaluate the self-energy of electrons interacting with spin
fluctuations. Although this Landau–Ginzburg–Wilson-type
approach is not self-consistent, one can improve this meth-
odology to be self-consistent performing the Eliashberg-type

analysis.16 Actually, this spin-fluctuation theoretical frame-
work has been applied to quantum phase transitions of inter-
acting itinerant electrons.17

However, such a spin-fluctuation theoretical framework is
a Fermi-liquid based weak-coupling approach, thus the re-
sulting normal state away from an antiferromagnetic phase is
a Fermi-liquid state. This is in contrast with the slave-
fermion framework of the t-J model, allowing an anomalous
metallic state far from the Fermi-liquid phase. One optimist
may argue that the spin-fluctuation approach can allow such
a non-Fermi-liquid phase without symmetry breaking if in-
teractions are taken into account more heavily. Unfortu-
nately, this kind of theoretical frameworks have shown only
symmetry-breaking phases or the Fermi-liquid state if
symmetric.18 In particular, the Fermi-liquid state was shown
to be too stable, even up to two-loop calculations in the
renormalization group analysis,18 to evolve other symmetric
metallic phases. In this framework such an anomalous me-
tallic physics can appear only near its quantum critical point.
We do not claim that the spin-fluctuation approach is not
appropriate for studying the doped Mott insulator. We would
like to find the connection with the slave-fermion frame-
work, incorporating spin fluctuations into the BCS-HF effec-
tive theory. Since our physical motivation lies in finding the
anomalous metallic state, claimed to arise in the slave-
fermion framework,3,5,9 we develop a strong-coupling ap-
proach to allow spin fluctuations in the BCS-HF theory.

To incorporate spin fluctuations into the BCS-HF theory
�Eq. �7�� in the context of the strong-coupling approach, we

resort to the CP1 spin-decomposition �� i ·�� =Ui�3Ui
†, where

Ui=� zi↑ −zi↓
†

zi↓ zi↑
† � is the SU�2� matrix field with the bosonic spinon

zi�.19,20 Introducing the composite field

�i� = Ui���
† ci�� �8�

in the strong-coupling approach,19,20 Eq. �7� can be ex-
pressed as

Z =� D�i�Dzi�D�iDmiD�ij��
zi�
2 − 1�exp
− �
0




d�� 1

U
�

i

�i
2 +

1

U
�

i

mi
2 +

1

J
�
�ij�


�ij
2 + �
i���

�i�
† ���� − 
 − i�i�����

+ �Ui
†��Ui���� − mi����

3 ��i�� − t�
�ij�

�
����

��i�
† Ui��

† Uj���� j�� + H.c.� − �
�ij�

�ij��zi↑
† zj↓

† − zi↓
† zj↑

† ��i↑
† � j↑

†

− �zi↓zj↑ − zi↑zj↓��i↓
† � j↓

† + �zi↑
† zj↑ + zi↓

† zj↓��i↑
† � j↓

† − �zi↓zj↓
† + zi↑zj↑

† ��i↓
† � j↑

† � − H.c.�� . �9�

In this strong-coupling representation an antiferromagnetic

spin fluctuation �� i carrying spin quantum number 1 fraction-
alizes into bosonic spinons zi� with spin 1 /2, which seems to
occur through the screening of mobile electrons in the anti-
ferromagnetically correlated spin background. The compo-

nents of �i� field are given by �i�= � �i↑
�i↓

�= � zi↑
† ci↑+zi↓

† ci↓
−zi↓ci↑+zi↑ci↓

�, which
means that mobile electrons in the antiferromagnetically cor-
related spin background fractionalize into bosonic spinons
Ui��� and fermionic chargons �i�, i.e., ci�=Ui����i�� in the
strong-coupling context.21 An important observation in this
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representation is that fermion pairing excitations couple to
bosonic spin fluctuations, implying that superconductivity is
strongly correlated with antiferromagnetism. As discussed in
the previous section, it is difficult for the slave-fermion ap-
proach to describe such pairing interactions between charge
degrees of freedom.

To make the present decomposition scheme natural, it is
necessary to understand the present methodology more
deeply by comparing this with other well studied ones. A
good example is the quantum disordered d-wave supercon-
ductivity for high Tc cuprates,22 where the coupling term of

� 
ei�c↑c↓ between Cooper pairs and electrons plays the

same role as the exchange coupling term of �� ·c�
†�����c��

between spin fluctuations and electrons. Here, 
�
 and � are
the amplitude and phase of Cooper pair fields. To solve this
coupling term, several kinds of gauge transformations are

introduced. In these decoupling schemes strong phase fluc-
tuations of Cooper pairs, arising from the phase-density un-
certainty, screen out charge degrees of freedom of electrons,
causing electrically neutral but spinful electrons called
“spinons.” As a result, the phase factor disappears in the
coupling term when it is rewritten in terms of spinons. In-
stead, this coupling effect appears as current-current interac-
tions of neutral spinons and phase fields of Cooper pairs in
the kinetic term of electrons. Depending on the gauge trans-
formations, either Z2 or U�1� gauge fields are obtained. In
this respect the present gauge transformation naturally ex-
tends the methodology of charge U�1� symmetry in the con-
text of superconductivity to that of spin SU�2� symmetry in
the context of antiferromagnetism.

The “correlated” hopping term can be decomposed in the
following way:

exp
− �
0




d���
i���

�i�
† ������� + �Ui

†��Ui������i�� − t�
�ij�

�
����

��i�
† Ui��

† Uj���� j�� + H.c.���
� exp
− �− �

i���
�

����

�i�
†�Ui�

†��Ui��
����i��

�� + �
�

�
i�

�i�
†��i�

� −
t

J�
�
�ij��

�
����

��i�
†�Ui�

†��Uj�
���� j�

�� + H.c.���
=� DF
�

���DE
�
��� exp
− �

i���

�Ei���
†���Fi���

��� + H.c. − Ui�
†��Ui��

���Fi���
��� − Ei���

†����i��
���i�

†� − H.c.�

− �
�

�
i�

�i�
†��i�

� −
t

J�
�
�ij��

�Eij�
†���Fij�

��� + H.c. − Ui�
†��Uj�

���Fij�
��� − Eij�

†���� j�
���i�

�† − H.c.�� , �10�

where the time part in the effective hopping term is evaluated
in the discrete-time approximation with J�, an energy scale
for discrete time. This kind of approximation has been well
adopted in the Monte Carlo simulation, known as the
Suzuki–Trotter decomposition.23 Its detailed derivation can
be found in Ref. 20.

The effective hopping parameters can be represented as
their amplitudes and phases

Ei���
†��� � E�e

−ici����3���, Fi���
��� � F�e

ici����3���,

Eij�
†��� � Ere

−icij��3���, Fij�
��� � Fre

icij��3���, �11�

where the unknown amplitudes are determined self-
consistently in the saddle-point analysis as E�

= 
�Ui�
†��Ui��

����
, F�= 
��i��
���i�

†��
, Er= 
�Ui�
†��Uj�

����
, and Fr

= 
�� j�
���i�

�†�
. Do not confuse the phase field cij of the hopping
parameter with the electron operator ci�, where the former is
defined on a link ij and the latter on a site i with spin �.

The correlated pairing term can be expressed as

− �
�ij�

�ij��zi↑
† zj↓

† − zi↓
† zj↑

† ��i↑
† � j↑

† − �zi↓zj↑ − zi↑zj↓��i↓
† � j↓

†

+ �zi↑
† zj↑ + zi↓

† zj↓��i↑
† � j↓

† − �zi↓zj↓
† + zi↑zj↑

† ��i↓
† � j↑

† � − H.c.

� − �
�ij�

�ij
Er�e−icij�i↑
† � j↓

† − eicij�i↓
† � j↑

† �

− Er�ij
� cos��ij

� − cij� +
�ij

�

2 �
�

�zi�
† ei�ij

�
zj� + H.c.�� − H.c.

�12�

in the “saddle-point” approximation, where the mean-field

ansatz of ��i↑
† � j↓

† �=
�ij

�

2 ei�ij
�
, ��i↓

† � j↑
† �=−

�ij
�

2 e−i�ij
�
, ��i↑

† � j↑
† �=0,

and ��i↓
† � j↓

† �=0 is utilized. The different signs of the phase
factor originate from the U�1� gauge symmetry associated
with the CP1 representation24 while that of the pairing am-
plitude recovers singlet pairing. It is important to notice that
the mean-field ansatz for the pairing sector is consistent with
that for the hopping sector.

Performing the continuum approximation for the time
part,20 we obtain the following expression for the effective
Lagrangian:
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Lef f =
1

U
�

i

��i
2 + mi

2� +
1

J
�
�ij�


�ij
2 + 
�
i

�1 − �� + �
�ij�

Er�ij�ij
� cos��ij

� − cij� + J��
i

�E� − 1�F�

+ t�
�ij�

ErFr + �
i�

�i�
† �E���� − i�ci�� − i�i − �mi��i� − �
 + J��E� − 1���

i�

�i�
† �i� − tEr �

�ij��
��i�

† e−i�cij� j� + H.c.�

− �
�ij�

Er�ij�e−icij�i↑
† � j↓

† − eicij�i↓
† � j↑

† � − H.c. +
F�

J�
�
i�


��� − ici��zi�
2 − tFr �
�ij��

�zi�
† eicijzj� + H.c.�

− �
�ij��

�ij�ij
�zi�

† ei�ij
�
zj� − H.c. + i�

i

�i��
�


zi�
2 − 1	 , �13�

where �i is a Lagrange multiplier field imposing the unimodular constraint. It is important to observe the new energy scale
J� /F� in the boson sector for spin dynamics. It is well known that the energy scale for spin dynamics is different from the
Hubbard-U. In this paper we simply assume F� /J�=1 /g for spin dynamics and E�=1 for charge dynamics, where g is an
effective coupling constant for spin fluctuations, although the full analysis with F� and E� is possible. This simplification would
not alter the phase structure of the present effective theory. It is expected that the Er�ij�ij

� cos��ij
� −cij� term in the pairing

sector �Eq. �12�� is relevant at low energies, allowing us to set �ij
� =cij +�. Replacing tFr−�ij�ij

� with tFr, the pseudofermion
pairing order parameter �ij

� disappears in the effective Lagrangian, and only the electron pairing order parameter �ij appears,
consistent with our expectation.

We find the effective Lagrangian for the doped antiferromagnetic Mott insulator

Lef f = L0 + LBCS-HF + LNL�M ,

L0 =
1

U
�

i

��i
2 + mi

2� +
1

J
�
�ij�


�ij
2 + t�
�ij�

ErFr + 
�
i

�1 − �� ,

LBCS-HF = �
i�

�i�
† ��� − i�ci� − 
 − i�i − �mi��i� − tEr �

�ij��
��i�

† e−i�cij� j� + H.c.� − �
�ij�

Er�ij�e−icij�i↑
† � j↓

† − eicij�i↓
† � j↑

† � − H.c.,

LNL�M =
1

g
�
i�


��� − ici��zi�
2 − tFr �
�ij��

�zi�
† eicijzj� + H.c.� + i�

i

�i��
�


zi�
2 − 1	 . �14�

Spin dynamics of the doped antiferromagnetic Mott insulator
is governed by the CP1 gauge theory of the nonlinear �
model with the renormalized spinon-bandwidth DFr. On the
other hand, the fermion sector describing charge dynamics
coincides with the BCS-HF theory �Eq. �7�� except the renor-
malized pairing order parameter Er�ij with the renormalized
bandwidth DEr, ignoring spin-gauge fluctuations cij in the
saddle-point approximation. As a result, we can describe the
spin and charge dynamics of the doped antiferromagnetic
Mott insulator with three order parameters given by �zi��, mi,
and �ij.

Since fermion excitations are gapped at half filling, spin
fluctuations are only relevant degrees of freedom at low en-
ergies, and their dynamics is governed by the O�3� nonlinear
� model. Thus, one theoretical limit of the half-filled case is
recovered correctly. Away from half filling, charge fluctua-
tions can be gapless to show metallic properties because the
chemical potential shifts from the middle of the BCS-HF gap
to the lower band exhibiting finite density of states. In addi-
tion, one can find that spin-boson excitations are condensed
at moderate values of U. These condensed spinons are con-
fined with fermions to form coherent electron excitations,
consistent with the conventional BCS-HF theory. Recall that

spin-gauge fluctuations are gapped due to the Anderson–
Higgs mechanism. Further hole doping would lead the anti-
ferromagnetic order to vanish while the pairing order sur-
vives. The resulting superconducting phase is described by
the BCS theory, consistent with the other theoretical limit
away from half filling.

An interesting question is whether spinon excitations can
be gapped to cause spin-gauge fluctuations gapless in the
intermediate doping region between the antiferromagnetic
Mott insulator and d-wave superconductor. Since spin-gauge
fluctuations play the role of phase fluctuations of renormal-
ized Cooper pairs �Er�ij�, this intermediate phase would be a
spin-gapped metal with preformed pairing. Such an anoma-
lous metal is the primary discovery of the present paper.

C. Connection with the slave-fermion approach

It is valuable to find the connection between the slave-
fermion approach and present theoretical framework. Al-
though its precise connection is not easy to construct, one
can understand the relationship qualitatively. It was shown
that the slave-fermion Lagrangian at half filling, more pre-
cisely the Schwinger-boson theory, can recover the CP1 La-
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grangian of the nonlinear � model in the long wavelength
and low-energy limits,25 where the hopping parameter 	ij

b

vanishes and the fermion dynamics disappears in the slave-
fermion Lagrangian of Eq. �4�, that is, Lef f =�i�bi�

† ���

+ i�i�bi�−��ij������ij
† ����bi�bj��+H.c.� without constant

terms. Diagonalizing the effective Hamiltonian, one finds the
dispersion relation of boson excitations. Considering such
boson excitations around the energy minima and phase fluc-
tuations of singlet-pairing excitations, one can find the CP1

gauge theory from the above Schwinger-boson Lagrangian in
the low-energy limit. Here, the zi� field consists of particle-
hole linear combination of the Schwinger-boson field, and
the CP1 gauge field arises from the phase field of the singlet-
pairing order parameter.25

Hole doping will give rise to a nonzero hopping param-
eter 	ij

b . One can solve such an effective Hamiltonian in the
same strategy as the Schwinger-boson case. Actually, one of
the present authors is preforming the self-consistent analysis
in the presence of fermion excitations.9,26 One clear point is
that the boson dynamics is relativistic, thus the Klein–
Gordon-type Lagrangian will be obtained for low-energy dy-
namics of such boson excitations, corresponding to the CP1

gauge Lagrangian if irrelevant terms are abandoned appro-
priately.

For fermion dynamics, it is more difficult to find its con-
nection since there are no particle-particle and particle-hole
pairing fluctuations in the slave-fermion representation of the
t-J model. Even if pairing excitations are neglected in Eq.
�14�, it is difficult to make the “spin-dependent” chemical
potential, �m, of Eq. �14� in the slave-fermion Lagrangian of
Eq. �4�. In addition, there is no spin index in LSF of Eq. �4�.
One possible way to overcome this inconsistency is to take
the low-energy limit of Eq. �14�. If the long wavelength and
low-energy limits are considered in Eq. �14�, only one flavor
of fermions will appear. Then, the resulting low-energy
fermion-gauge Lagrangian with a Fermi surface is expected
to be basically the same as that of the slave-fermion repre-
sentation. In Sec. V we discuss possible low-energy effective
Lagrangians in both cases, and argue that the spin-gapped
metallic phase where boson excitations are gapped is identi-
fied with the same fixed point of the same effective fermion-
gauge Lagrangian.

The above discussion tells us that the CP1 decomposition
approach of the HF effective model without pairing fluctua-
tions will share the similar physics with the slave-fermion
framework of the t-J model, in particular, when bosonic spin
fluctuations are gapped. However, there is one difficulty in
the present approach. The present decomposition scheme
does not have any small parameters, in contrast with the
slave-fermion framework where the spin index can be ex-
tended as �=1, . . . ,N, thus allowing the 1 /N expansion.
Since the CP1 decomposition can be allowed only in the case
of N=2, it is not easy to justify its saddle-point analysis
against gauge fluctuations. This is the reason why we com-
pare the present framework with the slave-fermion approach,
where the mean-field analysis can be justified in the 1 /N
expansion. There is one more possibility to make the present
saddle-point analysis stable against gauge fluctuations. Since
gauge fluctuations are dissipative due to the presence of the

Fermi surface, strong damping in gauge fluctuations may
give rise to the stability of the mean-field analysis.27 Actu-
ally, one of the present authors has discussed that average
gauge fluctuations are proportional to 1 /� f, implying that
such fluctuations will be suppressed in the infinite limit of
the fermion conductivity � f and allowing the mean-field
analysis stable against gauge fluctuations.27 This important
issue is intensively discussed in Sec. V.

IV. MEAN-FIELD ANALYSIS AND PHASE DIAGRAM

A. Phase diagram

Taking the mean-field ansatz of antiferromagnetism �mi

= �−1�im� and d-wave pairing ��ij =� with j= i� x̂ and �ij

=−� with j= i� ŷ� with i�i=� and i�i=�, we obtain the free
energy functional from Eq. �14� as follows:

FMF = �
k
�− �2 + m2

U
+

�2

2J
+ DErFr − 
� − � − �	

−
1



�
�n

�
k

� �
s,s�=�

ln�i�n − Ekss��

+
1



�
�n

�
k�

ln�1

g
�n

2 + Fr�k + �	 . �15�

Here the renormalized fermion spectrum is given by Ek��

= �����Er�k�2+m2� 

+�
�2+ �Er�k�2 with �k=��cos kx

−cos ky� and �k=−2t�cos kx+cos ky�. �n ��n� is the Mat-
zubara frequency for fermions �bosons� with temperature
T�1 /
.

Minimizing the free energy �Eq. �15�� with respect to m,
�, Er, Fr, �, �, and 
, we obtain the self-consistent mean-
field equations. Performing the Matzubara frequency sum-
mations and momentum integrals with �k=�−D

D d�D��� and
D���=1 / �2D� for the boson sector, we find

DFr = �
k

�� ���Er�k�2 + m2 + 
r�
Er�k

2

��Er�k�2 + m2
+ Er�k

2

����Er�k�2 + m2 + 
r�2 + �Er�k�2

+

���Er�k�2 + m2 − 
r�
Er�k

2

��Er�k�2 + m2
+ Er�k

2

����Er�k�2 + m2 − 
r�2 + �Er�k�2 � ,

2m

U
= �

k
�

m
��Er�k�2 + m2� ���Er�k�2 + m2 + 
r�

����Er�k�2 + m2 + 
r�2 + �Er�k�2

+
���Er�k�2 + m2 − 
r�

����Er�k�2 + m2 − 
r�2 + �Er�k�2� ,

�

J
= �

k
��� Er

2�cos kx − cos ky�2

����Er�k�2 + m2 + 
r�2 + �Er�k�2

+
Er

2�cos kx − cos ky�2

����Er�k�2 + m2 − 
r�2 + �Er�k�2� ,
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� = �
k

�� ���Er�k�2 + m2 + 
r�
����Er�k�2 + m2 + 
r�2 + �Er�k�2

−
���Er�k�2 + m2 − 
r�

����Er�k�2 + m2 − 
r�2 + �Er�k�2� �16�

for the fermion part with �=− U
2 �1−�� and 
r=
+�, and

1 =
�� + DFr − �� − DFr

�1/g�DFr�
,

Er =
�2� − DFr��� + DFr − �2� + DFr��� − DFr

3�1/g�DFr�2
, �17�

for the spinon sector.
The resulting phase diagram is shown in Fig. 2. The HF

phase boundary characterized by m=0 is qualitatively similar
with that of Eq. �7� �Fig. 1� although the region of m�0 in
Fig. 2 is larger than that in the BCS-HF phase diagram, aris-
ing from band renormalization ErD to increase the fermion
density of states. On the contrary to the BCS-HF phase dia-
gram, we find the region where d-wave pairing order does
not exist for large U /D and low �. Such a region is not
shown in order to clarify the difference between Figs. 2 and
1, that is, the emergence of a spin-gapped incoherent metal
with preformed pairing excitations denoted by NFL� will be
discussed below in more detail. The absence of d-wave pair-
ing in large interaction and small doping originates from the
band �ErD� and pairing �Er�� renormalization due to spin
fluctuations. Actually, the spin-gapped anomalous metal
without pairing fluctuations can be found from the HF La-
grangian without the pairing term, using the same strong-
coupling approach as the CP1 decomposition.

In Fig. 3 we show doping dependence of BCS-HF order
parameters for various U /D. The magnetization amplitude
scaled by the half bandwidth decreases from its maximum
value at half filling as hole concentration increases, exhibit-
ing the second order transition. The d-wave pairing order
parameter shows an archlike shape in the parameter range of
U /D, where it vanishes at half filling due to competition with
antiferromagnetism. The black dotted line denotes the point
where the magnetization amplitude vanishes, implying that
the pairing order parameter does not depend on the Hubbard
interaction U /D from this hole concentration, as discussed in
the BCS-HF phase diagram �Fig. 1�. By the same reason as
the BCS-HF phase diagram the d-wave superconducting
phase separates from the Fermi-liquid state via the straight
line, but this is an artifact of the BCS-HF mean-field analysis
for the fermion sector. This doping region is out of interest in
the present paper, which we will not focus on.

The main point in our spin-decomposition theory is that
there is an additional transition line associated with the con-
densation of spinons. The condensation transition occurs
when the boson excitation gap closes, given by �c−DFrc
=0 in Eq. �17� where the subscript c denotes the quantum
critical point. We find the condensation-transition point
�D /g�Frc=2 with Erc=1 /3 from Eq. �17�. Below this transi-
tion line the spin-decomposition theory �Eq. �14�� is reduced
to the BCS-HF theory �Eq. �7�� owing to the spinon conden-
sation �Higgs phase�. Thus, as � increases below this line, the
phase diagram shows a coexistence region of antiferromag-
netism and d-wave superconductivity �AF+dSC: m�0, �
�0, �z���0� and d-wave superconducting state �dSC: m
=0, ��0, �z���0�, perfectly consistent with the BCS-HF
phase diagram. Here, the boundary line between AF+dSC
and dSC is obtained by extrapolation of m in the NFL�
region.28 Above the transition line, where spin fluctuations
are gapped, symmetry-breaking patterns discriminate two
non-Fermi-liquid �NFL� phases as U /D increases: NFL�
with pairing fluctuations �m�0, ��0, �z��=0� and NFL
�m�0, �=0, �z��=0�, not shown in Fig. 2.

0.00.0 0.10.1 0.20.2 0.30.3 0.40.4 0.50.5
0.00.0

0.20.2

0.40.4

0.60.6

dSC� � >=0σ

� � >=0σ

NFL∆

� =0
� =0

∆=0 ∆=0AF+dSC

FL

� =0
∆=0
λ−� � =0�

AF

FIG. 2. �Color online� Mean-field phase diagram of the spin
decomposition theory of Eq. �14� with J /D=0.7 and g=0.42 at zero
temperature. Separation between the dSC and FL via the straight
line is an artifact of the BCS-HF analysis for the fermion sector.
Introduction of spin fluctuations in the BCS-HF theory alters the
AF+dSC phase of the BCS-HF phase diagram into the spin-gapped
non-Fermi-liquid state with d-wave pairing fluctuations �NFL��
since such spin fluctuations are gapped in the strong-coupling
analysis. See the text.

FIG. 3. �Color online� �a� Magnetization amplitude and �b�
d-wave pairing gap in the NFL� phase of Fig. 2. The black dotted
line shows the pairing gap calculated with m=0 in the dSC region.
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One cautious person may ask why the AF state is limited
to appear at half filling in the case of large U /D although the
mean-field phase diagram �Fig. 2� shows such an antiferro-
magnetic state away from half filling, coexisting with d-wave
superconductivity in the case of small U /D. This should be
regarded as an artifact of the mean-field analysis in the gauge
theoretic description. We note that the antiferromagnetic
phase is characterized by not only the magnetization ampli-
tude m but also its directional fluctuation �� i. Since the mag-
netization amplitude is determined by the conventional HF
calculation, its nonzero region covers large hole concentra-
tion, consistent with the BCS-HF phase diagram �Fig. 1�.
However, nonzero m itself does not mean the presence of the
antiferromagnetic order, since directional spin fluctuations
may break the magnetic order. When interactions are weak,
such directional fluctuations become suppressed. Then, the
antiferromagnetic order appears to coexist with the supercon-
ducting order, consistent with the BCS-HF result.

As interactions increase, spin fluctuations become strong.
Such directional fluctuations are represented as fractionalized
boson excitations z� in the strong-coupling analysis �CP1 de-
composition�. Even at half filling, such boson excitations can
be gapped in the strong-coupling case. This is certainly an
artifact of the gauge theory approach, which usually occurs
in the mean-field calculation. If gauge fluctuations �instanton
effects� are taken into account appropriately, confinement
should arise at half filling.29–31 Thus, the antiferromagnetic
order will be recovered at half filling as an instanton effect
�confinement� when the interaction is large. This also hap-
pens in the pure nonlinear � model as the coupling g
increases.32,33 Such gapped boson excitations should be also
confined via gauge interactions.

On the other hand, away from half filling, there emerge
gapless fermion excitations. The presence of gapless excita-
tions can give rise to deconfinement,27,34–36 thus such a dis-

ordered phase ��z��=0→ ��� �=0� may be stabilized. How-
ever, the existence of such a deconfinement phase depends
on how many flavors of gapless matters there are.27,34–36 This
means that, if hole concentration is small, the density of
gapless fermions may not be enough to allow
deconfinement.27,36 In this case confinement can arise, and
such a paramagnetic anomalous metal �m=0 and �z��=0�
becomes unstable in the small-� and large-U regions. As a
result, the antiferromagnetic order can persist up to small but
finite hole concentration in large U. This antiferromagnetism
can be considered as the extension of the antiferromagnetic
order at half filling in large U �arising from confinement in
the gauge theory context� to a small doping region. Such a
confinement issue will be discussed more deeply in Sec. V.
The present mean-field analysis overestimates directional
spin fluctuations since gauge fluctuations are ignored. Intro-
duction of gauge fluctuations has been shown to increase
antiferromagnetic correlations.37 To determine the critical
hole concentration where the antiferromagnetic order van-
ishes is certainly beyond the scope of this paper because it is
associated with the confinement issue far beyond the mean-
field description.

It is important to understand how the superconducting
phase is characterized in the spin-decomposition theory. The

BCS superconducting order parameter is not sufficient to
confirm the existence of superconductivity. As shown in the
effective Lagrangian equation �14�, the fermion pairing term
consists of −��ij�Er�ij�e−icij�i↑

† � j↓
† −eicij�i↓

† � j↑
† �. The point is

the presence of the phase-fluctuation term e−icij arising from
spin fluctuations. Thus, for superconductivity to be truly re-
alized, not only nonzero � but also �e−icij��0 is required,
where �e−icij��0 can be achieved by boson condensation.
Notice that the latter is nothing but the Higgs mechanism
since cij in the phase factor corresponds to the CP1 gauge
field. Thus, when such boson excitations are gapped as
shown in the mean-field analysis, phase fluctuations of fer-
mion pairs are strong, and the superconducting order does
not appear. This is the reason why the non-Fermi-liquid
phase with preformed pairing fluctuations arises in the
strong-coupling analysis.

The NFL phase is basically the same as the spin-gapped
metal in the slave-fermion context, where bosonic spin de-
grees of freedom are gapped, but fermionic charge degrees of
freedom are gapless. They are interacting via gauge fluctua-
tions, thus exhibiting anomalous metallic physics. On the
other hand, the NFL� phase extends the slave-fermion
framework, incorporating pairing fluctuations into the slave-
fermion scheme. Thus, the NFL state turns into the NFL�
phase in the intermediate U /D above the transition line after
superconducting correlations are taken into account. Remem-
ber that introduction of superconducting correlations is not
trivial in the slave-fermion context since pairing interactions
between charge degrees of freedom are not allowed in the
naive mean-field scheme.

B. Physical implication

Both the NFL� and NFL metallic states do not allow
coherent electron excitations and spin fluctuations owing to
deconfined gapped spinon excitations. Consider the electron
Green’s function and spin susceptibility

G↑↑
el �ij,���� � g↑

z�ij,����g↑
��ij,���� + g↓

z�ji,����g↓
��ij,���� ,

	zz�ij,���� � �1 − ��2�g↑
z�ji,����g↑

z�ij,����

+ g↓
z�ji,����g↓

z�ij,����� , �18�

where each propagator is expressed as g↑�↓�
z �ij ,����

= �T��zi�↑�↓�zj��↑�↓�
† �� and g↑�↓�

� �ij ,����= �T���i�↑�↓�� j��↑�↓�
† ��, re-

spectively. It is important to understand that both response
functions consist of convolution integrals. As a result, only
“particle-hole” continuum spectrum can be observed when
spin excitations are fractionalized or deconfined.

Increasing � with a fixed U /D�0.4 near the spinon con-
densation transition in Fig. 2, we pass from the antiferromag-
netic Mott insulator to the d-wave superconductor through
the spin-gapped incoherent metal with pairing fluctuations.
Compared to the high Tc phase diagram at zero temperature,
the pseudogap phase may be identified with the NFL�, i.e.,
spin-gapped incoherent metal with preformed pair excita-
tions in the strong-coupling analysis of spin fluctuations for
the BCS-HF effective theory. The existence of this interme-
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diate non-Fermi-liquid metal can conceptually explain why
offset of superconductivity gives rise to incoherence of el-
ementary excitations.38,39 In the deconfined spin-gap phase
�NFL�� both the spin-fluctuation and electron spectra cannot
be coherent as shown in the above, and only two-particle
continuum should be observed. However, the connection be-
tween our effective theory and physics of high Tc cuprates
should not be emphasized because the spin-decomposition
approach cannot explain the presence of coherent electron-
like quasiparticle excitations near nodal points38 in the mean-
field approximation.40

In the spinon-condensed phase with fermion pairing, con-
densed spinons are confined with fermions to form electron
quasiparticles �Higgs phase�, thus showing the coherent peak
in the single particle spectrum. In the above expression,
when boson excitations become condensed, the “two-
particle” electron Green’s function is reduced to the original
one-body Green’s function, allowing the coherent peak. In
this case such coherent electron excitations also carry spin
quantum numbers. This means that the spin susceptibility is
expressed as electrons’ spin correlations in the superconduct-
ing phase. Remember that the spin susceptibility is given by
the boson-correlation function in the deconfined spin-gap
phase �NFL�� since the spin quantum number is carried by
only boson excitations. The point is that if the resonance
frequency of spin-fluctuation modes is smaller than the su-
perconducting gap �2��, such resonance modes can be pro-
tected from decaying to electron’s particle-hole fluctuations,
and sharply defined.41

The electron Green’s function in the slave-boson repre-
sentation has the similar expression with that in the spin-
decomposition approach except the difference of the quan-
tum number assignment.2 Thus, boson condensation results
in coherent electron excitations in the same way as the
above. On the other hand, the spin susceptibility is expressed
by fermions’ spin correlations in the slave-boson theory.41 It
is important to notice that such fermion fluctuations are not
affected by boson condensation severely in the mean-field
approximation. In particular, the fermion pairing gap, usually
called spin gap, exists in both boson-condensed �supercon-
ducting� and -uncondensed �pseudogap� phases. This pro-
tects the magnetic resonance modes from decaying, as dis-
cussed above, even in the spin-singlet pairing phase. This is
an important difference in the spin response between the
slave-boson- and slave-fermion-like approaches.

V. BEYOND THE MEAN-FIELD APPROXIMATION

The spin-decomposition approach has the similar spirit
with the spin-fluctuation theory16 conceptually, because spin
fluctuations are taken into account more elaborately. It is also
a gauge theory with the same mathematical structure as the
slave-boson2 and slave-fermion theories.3–5 However, the
spin-fluctuation approach is difficult to allow the incoherent
metallic phase, which corresponds to a new stable fixed point
different from the Fermi-liquid phase in the renormalization
group sense. A weak-coupling approach such as the spin-
fluctuation theory is believed to allow either Landau Fermi
liquid or conventional symmetry-breaking phases.18 On the

other hand, the effective gauge theory �Eq. �14��, obtained in
the strong-coupling approach, exhibits an infrared stable
fixed point in the presence of gauge interactions �at least
without pairing fluctuations�,42 identified as the spin-gapped
incoherent metallic phase in the presence of hole doping.

It is necessary to discuss the existence of such a fixed
point in more detail, comparing with the slave-boson and
slave-fermion contexts. In the slave-boson context the spin
liquid insulating phase at half filling where bosonic charge
fluctuations are gapped is identified with such a fixed point.
Integrating out gapped boson �charge� excitations, one will
obtain an effective fermion-gauge action. When the uniform
“internal” gauge flux is considered without pairing excita-
tions at half filling, dissipative gauge fluctuations arise to
mediate interactions between fermion excitations, thus a
“nonrelativistic” gauge theory is obtained.43 If the staggered
flux ansatz to allow pairing fluctuations is taken into account
at half filling in the SU�2� formulation context,2 the “relativ-
istic” QED3 will be obtained, and no damping effects appear
in gauge fluctuations. Generically, the nonrelativistic
fermion-gauge theory can be obtained away from half filling,
since hole doping shifts the chemical potential, making a
Fermi surface.43 On the other hand, the spin-gapped metal
where bosonic spin excitations are gapped corresponds to
this fixed point in the slave-fermion framework. Integrating
out gapped boson �spin� excitations, one would always ob-
tain the nonrelativistic fermion-gauge action with damped
gauge fluctuations away from half filling, since there are no
fermion excitations at half filling in the slave-fermion ap-
proach of the t-J model. In this respect the effective fermion-
gauge theory is generically nonrelativistic with dissipative
gauge fluctuations for both the slave-boson and slave-
fermion frameworks. However, there exists an important dif-
ference in the physical point of view; the fermion excitations
carry charge quantum numbers in the slave-fermion ap-
proach while those do spin quantum numbers in the slave-
boson description.

The present gauge theoretic description has exactly the
same structure as the slave-particle theoretical framework if
d-wave pairing excitations are not taken into account. For the
time being, we consider the spin-gapped incoherent metal
without pairing fluctuations. Integrating out gapped bosonic
spin fluctuations in Eq. �14� without the pairing term, we
also find the nonrelativistic fermion-gauge action, basically
the same as the effective gauge theory of the slave-fermion
description in both the physical and mathematical points of
view.

The nonrelativistic fermion-gauge theory has been argued
to have an infrared stable fixed point,42 where the fixed point
value of the internal gauge coupling constant is proportional
to 1 /�� with the fermion conductivity ��.27,36 This is quite
reasonable since the fixed point can arise from screening of
the internal gauge charge via fermion excitations, and the
screening is associated with the fermion conductivity. In the
relativistic gauge theory the fixed point charge is propor-
tional to 1 /N, where N is the fermion flavor number partici-
pating in screening of gauge interactions.34,35 In this respect
the fermion flavor number N in the relativistic theory is
analogous to the fermion conductivity in the nonrelativistic
theory.27,36
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An important notorious question is the stability of such an
interacting fixed point against instanton excitations which
result from compactness of gauge fields.29–31 Although the
conclusion is far from consensus, it seems to be possible that
when the fermion flavor number or conductivity is large
enough to screen the internal gauge charge, instanton excita-
tions can be suppressed, and the interacting fixed point
would be stable against confinement.27,34–36 Recently, it was
argued that the scaling dimension of an instanton insertion
operator is proportional to the fermion flavor number N at
the conformal invariant fixed point of the relativistic
fermion-gauge theory. This means that instanton excitations
can be irrelevant in the large N limit, expressing the stability
of such a fixed point against confinement.35 Following the
similar strategy, one of the present authors critically reinves-
tigated the stability of the interacting fixed point in the non-
relativistic fermion-gauge theory.27 Since the fermion con-
ductivity in the nonrelativistic theory plays the similar role as
the flavor number in the relativistic one as mentioned above,
it was found that the scaling dimension of the instanton op-
erator is proportional to the fermion conductivity. This im-
plies that instanton excitations would be irrelevant at least in
the large conductivity limit corresponding to a good metal.
Although we cannot claim the appearance of deconfinement
definitely, such an anomalous spin-gapped metal may arise in
principle.

Precisely speaking, the interacting fixed point associated
with the spin-gapped incoherent metal �NFL� is described by
the z=3 critical field theory owing to the Landau damping
term that results from gapless fermion excitations, where z is
the dynamical critical exponent.20,27,44 The effective field
theory is well known to cause non-Fermi-liquid physics due
to scattering with massless gauge fluctuations. The imaginary
part of the fermion self-energy is given by �2/3 at the Fermi
surface, implying that its real part also has the same fre-
quency dependence via the Kramers Kronig relation, thus
giving rise to a non-Fermi-liquid behavior.44 Accordingly,
the dc conductivity is proportional to T−5/3 in three dimen-
sions and T−4/3 in two dimensions.43,45 The coefficient � of
the specific heat is proportional to −ln T in three spatial di-
mensions and T−1/3 in two dimensions.20

However, there are pairing correlations in NFL�. Such
pairing fluctuations are expected to be long-range correlated
in space but short-range correlated in time owing to the pres-
ence of the Landau damping term in gauge fluctuations. In
the presence of pairing fluctuations we do not know how
such fluctuations modify the fixed point of NFL without pair-
ing excitations. Since the pair-pair correlation function is ex-
pected to be singular,46 these pairing excitations will modify
the gauge dynamics, which may change the dynamical criti-
cal exponent. Accordingly, this will modify the transport and
thermodynamics. The role of pairing fluctuations in the NFL
physics needs further investigation.

VI. DISCUSSION AND SUMMARY

The emergence of the non-Fermi-liquid phase in the
doped antiferromagnetic Mott insulator can also be sup-
ported by its one dimensional analog. It is well known that

low-energy physics of the undoped quantum spin chain can
be described by the O�3� nonlinear � model with Berry
phase.47 Utilizing the CP1 representation, one can express the
nonlinear � model in terms of bosonic spinon excitations
interacting via compact U�1� gauge fluctuations in the pres-
ence of the Berry phase contribution. Since the Berry phase
term is ignorable in the case of integer spin, strong quantum
fluctuations originating from low dimensionality lead the in-
teger spin chain to be disordered, causing spinon excitations
gapped.47 Such fractionalized excitations are confined via
strong gauge fluctuations, resulting in spin excitons �particle-
antiparticle bound states� as elementary excitations. In the
case of half-odd integer spin the Berry phase plays a crucial
role to cause destructive interference between quantum fluc-
tuations, thus weakening spin fluctuations. Owing to the
Berry phase contribution the half-odd integer spin chain is
expected to be ordered. However, low dimensionality leads
the system to be not ordered but critical, causing the spin-
boson excitations gapless.47 These spinon excitations are de-
confined because their critical fluctuations weaken gauge in-
teractions via screening.

When holes are doped into the antiferromagnetic spin
chain, Shankar showed that doped holes can be expressed by
massless Dirac fermions and these charge fermions interact
with the spin bosons via U�1� gauge fluctuations.3 The pres-
ence of massless Dirac fermions alters the resulting phase
completely. Massless Dirac fermions are well known to
kill the Berry phase contribution in the bosonization
framework.48 Then, the spinon excitations in the doped half-
odd integer spin chain are expected to be massive like those
in the undoped integer spin chain. However, these spinons
are not confined because gauge fluctuations become massive
due to the presence of massless Dirac fermions, thus ignored
in the low-energy limit.3,48 In the bosonization framework
massless Dirac fermions exhibit superconducting correla-
tions. As a result, the doped antiferromagnetic spin chain is
identified with a spin-gapped superconducting phase. Al-
though the mechanism of deconfinement in the U�1� spin-
decomposition gauge theory is completely different from that
of the effective theory for the doped spin chain, the spin-
gapped incoherent metal with preformed pairing of the CP1

gauge theory is quite analogous to the spin-gapped supercon-
ducting state, thus regarded as the high dimensional realiza-
tion of one dimensional deconfined spin-gapped phase.

The present study is motivated by the possible existence
of an anomalous spin-gapped metal in the slave-fermion ap-
proach of the t-J model. Such a non-Fermi-liquid state was
argued to be analogous to the spin liquid Mott insulating
phase in the slave-boson approach of the t-J model. Although
the spin-gapped incoherent metal in the slave-fermion theory
is quite appealing, we discussed that it is difficult to incor-
porate superconducting correlations into the slave-fermion
framework due to the fermionic statistics of charge degrees
of freedom and the absence of pairing interactions between
charge fluctuations in the naive mean-field scheme. In this
paper we have developed how to introduce d-wave supercon-
ductivity, keeping the slave-fermion scheme.

It is also an important question of this paper how the
conventional theoretical framework such as the BCS-HF
scheme can give rise to the anomalous metallic phase of the
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slave-fermion theory. In this paper we found a possible con-
nection between the slave-fermion approach and BCS-HF
scheme �beyond�, showing how the non-Fermi-liquid metal
arises from the BCS-HF framework. The spin-fluctuation ap-
proach was the first candidate, but it was not adopted in this
paper because such a Fermi-liquid based weak-coupling ap-
proach is difficult to allow the stable non-Fermi-liquid phase
beyond quantum criticality in the view of its theoretical
structure. Instead, we applied the CP1 decomposition scheme
as the strong-coupling framework. Performing the Hubbard–
Stratonovich transformation and appropriate saddle-point ap-
proximation, we found an effective gauge theory, quite par-
allel to the slave-fermion gauge theory. The present CP1

gauge theory allows pairing fluctuations between charge de-
grees of freedom.

Performing the mean-field analysis, we found the phase
diagram of the effective gauge theoretical framework. The
effects of spin fluctuations strongly modified the BCS-HF
phase diagram �Fig. 1�, resulting in the phase diagram of Fig.
2. In particular, the spin-gapped incoherent metallic phase is
found when Hubbard-U interactions are beyond a certain
critical value. Such a non-Fermi-liquid metal is certainly ex-

pected since it corresponds to that of the slave-fermion the-
oretical framework. This non-Fermi-liquid phase is modified
due to pairing correlations of charge degrees of freedom.
Actually, we found preformed pairing excitations in the non-
Fermi-liquid metal near the d-wave superconducting phase.

We have also discussed the stability of such a mean-field
phase beyond the mean-field approximation, allowing gauge
fluctuations. We claimed that low-energy physics of the spin-
gapped incoherent metal is described by the nonrelativistic
fermion-gauge Lagrangian with damped gauge fluctuations,
and such an effective field theory gives rise to an infrared
stable fixed point. This interacting fixed point identifies the
non-Fermi-liquid metal beyond the mean-field description.
We discussed the stability of such a fixed point against in-
stanton excitations, and argued that the fixed point can be
stable against confinement when the fermion conductivity is
sufficiently large.
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