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We theoretically calculate the phonon scattering limited electron mobility in extrinsic �i.e., gated or doped
with a tunable and finite carrier density� two-dimensional graphene layers as a function of temperature �T� and
carrier density �n�. We find a temperature-dependent phonon-limited resistivity �ph�T� to be linear in tempera-
ture for T�50 K with the room-temperature intrinsic mobility reaching the values of above 105 cm2 /V s. We
comment on the low-temperature Bloch–Grüneisen behavior where �ph�T��T4 for unscreened electron-
phonon coupling.
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I. INTRODUCTION

Low-temperature carrier transport properties of two-
dimensional �2D� graphene layers have been of great current
interest to both experimentalists1–5 and theorists6–10 alike
ever since the possibility of fabricating stable gated 2D
graphene monolayers on SiO2 substrates and measuring the
density-dependent conductivity of the 2D chiral graphene
carriers were demonstrated.1 Much of the early interest fo-
cused understandably on the important issues of the scatter-
ing mechanisms limiting the low-temperature conductivity
and the associated graphene “minimal conductivity” at the
charge neutral �“Dirac”� point. One of the dominant low-
temperature scattering mechanisms3,4,9,10 in graphene is that
due to screened Coulomb scattering by unintended charged
impurities invariably present in the �mostly SiO2� substrate
�and the substrate-graphene interface� although short-range
scattering by neutral defects also contributes, particularly at
high carrier densities in high-mobility samples. It has there-
fore been argued9,10 that gated graphene layers are similar to
2D electron systems in confined semiconductor structures
�e.g., Si inversion layers, GaAs heterostructures, and quan-
tum wells�, where also long-range charged impurity scatter-
ing dominates low-temperature Ohmic transport with short-
range �e.g., interface roughness� scattering playing a role at
high carrier densities.11,12

Given the exciting technological context of graphene as a
prospective electronic transistor material for future applica-
tions, the question therefore naturally arises about the limit-
ing value of the intrinsic room-temperature graphene mobil-
ity if all extrinsic scattering mechanisms, e.g., charged
impurities, neutral defects, interface roughness, graphene
ripples, etc., can be eliminated from the system. This ques-
tion is more than of academic interest since serious experi-
mental efforts are underway13 to eliminate charged impuri-
ties from graphene by using different substrates or by
working with freestanding graphene layers without any sub-
strates. It is also noteworthy that the systematic elimination
of charged impurity scattering through modulation doping
and material improvement in the molecular beam epitaxy
growth technique has led to an astonishing 3000-fold en-
hancement in the low-temperature 2D GaAs electron mobil-
ity from 104 cm2 /V s in 1978 to 30�106 cm2 /V s in 2000;
future enhancement to 100�106 cm2 /V s mobility is
anticipated14 in the next few years.

One great advantage of graphene over high-mobility 2D
GaAs systems is that the lack of strong long-range polar
optical phonon scattering, which completely dominates15 the
room-temperature GaAs mobility ��2000 cm2 /V s�, in
graphene should lead to very high intrinsic room-temperature
graphene mobility, limited only by the weak deformation-
potential scattering from the thermal lattice acoustic
phonons. In this work, we calculate the temperature-
dependent 2D graphene mobility limited only by the back-
ground lattice acoustic phonon scattering. We find that room-
temperature intrinsic �i.e., just phonon-limited� graphene
mobility surpassing 105 cm2 /V s is feasible using the gener-
ally accepted values in the literature for the graphene sound
velocity and deformation coupling. There is some uncer-
tainty in the precise value of the electron-phonon
deformation-potential coupling constant, leading to a con-
comitant uncertainty in the intrinsic graphene mobility. This
situation is similar16 to the 2D GaAs system where, in fact,
precise measurement of the phonon-limited 2D mobility led
to the correct deformation-potential coupling for transport
studies, and this could be the case for graphene also where a
quantitative comparison between our theoretical results pre-
sented in this work with the measured temperature-
dependent graphene mobility, very recently becoming
available,17,18 could lead to an accurate determination of the
graphene electron-phonon deformation-potential coupling
constant.

The paper is organized as follows. In Sec. II, the Boltz-
mann transport theory is presented to calculate acoustic pho-
non scattering limited 2D graphene conductivity. Section III
presents the results of the calculation. In Section IV we dis-
cuss the results compared to experimental data, and we con-
clude in Sec. V.

II. THEORY

We use the Boltzmann transport theory15,16 to calculate
acoustic phonon scattering limited 2D graphene conductivity.
We consider only the longitudinal acoustic �LA� phonons in
our theory since either the couplings to other graphene lattice
phonon modes are too weak or the energy scales of these
�optical� phonon modes are far too high for them to provide
an effective scattering channel in the temperature range
�5–500 K� of our interest.
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The conductivity of graphene is given by

� = e2D�EF�
vF

2

2
��� , �1�

where vF is the Fermi velocity, D�EF�= �gsgv /2��2�EF /vF
2 is

the density of states of graphene at the Fermi level �EF�, and
��� is the relaxation time averaged over energy, i.e.,

��� =

�d	D�	���	��−
df�	�

d	
�

�d	D�	��−
df�	�

d	
� , �2�

where f�	� is the Fermi distribution function, f�
k�
= 	1+exp
��
k−����−1, with �=1 /kBT and ��T ,n� as the fi-
nite temperature chemical potential determined self-
consistently. The energy dependent relaxation time 
��	k�� is
defined by

1

��	k�
= 

k�

�1 − cos kk��Wkk�
1 − f�	��
1 − f�	�

, �3�

where kk� is the scattering angle between k and k�,
	=�vF�k�, and Wkk� is the transition probability from the
state with momentum k to k� state. In this paper, we only
consider the relaxation time due to deformation-potential
coupled acoustic phonon mode. The deformation potential
due to quasistatic deformation of lattice is taken into ac-
count. Then, the transition probability has the form

Wkk� =
2�

�

q

�C�q��2��	,	�� , �4�

where C�q� is the matrix element for scattering by acoustic
phonon and ��	 ,	�� is given by

��	,	�� = Nq��	 − 	� + �q� + �Nq + 1���	 − 	� − �q� ,

�5�

where �q=vphq is the acoustic phonon energy with vph being
the phonon velocity and Nq is the phonon occupation num-
ber,

Nq =
1

exp���q� − 1
. �6�

The first �second� term in Eq. �5� corresponds to the absorp-
tion �emission� of an acoustic phonon of wave vector
q=k−k�. The matrix element C�q� is independent of the
phonon occupation numbers. The matrix element �C�q��2 for
the deformation potential is given by

�C�q��2 =
D2�q

2A�mvph
�1 − � q

2k
�2� , �7�

where D is the deformation-potential coupling constant, �m is
the graphene mass density, and A is the area of the sample.

The scattering of electrons by acoustic phonons may be
considered quasielastic since ��q�EF, where EF is the
Fermi energy. There are two transport regimes, which apply
to the temperature regimes T�TBG and T�TBG, depending

on whether the phonon system is degenerate 
Bloch-
Grüneisen �BG�� or nondegenerate 
equipartition �EP��. The
characteristic temperature TBG is defined as kBTBG=2kFvph,
which is given, in graphene, by TBG=2vphkF /kB�54�n K
with density measured in unit of n=1012 cm−2. First, we con-
sider ��q�kBT. In this case, we have Nq�kBT /��q and
��	 ,	��= �2kBT /��q���	−	��. Then, the relaxation time is
calculated to be

1

��	k�
=

1

�3

	k

4vF
2

D2

�mvph
2 kBT . �8�

Thus, in the nondegenerate EP regime ���q�kBT�, the scat-
tering rate 
1 /��	k�� depends linearly on the temperature.
Since at low temperatures �TBG�T�EF /kB� ������EF�, the
calculated conductivity is independent of Fermi energy or
equivalently the electron density. Therefore, the electronic
mobility in graphene is inversely proportional to the carrier
density, i.e., ��1 /n. The EP regime has recently been con-
sidered in the literature.18,19 We note that the similar linear
temperature dependence of the scattering time has been re-
ported for nanotubes20 and graphites.21

To calculate the relaxation times in the BG regime where
��q�kBT, we have to keep the full form as in Eq. �5�. Since
the acoustic phonon energy is comparable to kBT, the tem-
perature dependence of the relaxation time via the statistical
occupation factors in Eq. �5� becomes more complicated. In
BG regime, the scattering rate is strongly reduced by the
occupation factors because for phonon absorption, the pho-
non population decreases exponentially and also phonon
emission is prohibited by a sharp Fermi distribution. To cal-
culate the low-temperature behavior of the resistivity, we can
rewrite the averaged inverse scattering time over energy as

1

���
=

1

2��

2EF

��vF�2 � dq�1 − cos ��C�q��2G��q� , �9�

where q=2kF sin� /2� and G��� is given by22

G��� =
1

kBT
� d	f�	�	Nq
1 − f�	 + ��� + �Nq + 1�
1 − f�	

− ���� =
2�

kBT
Nq�Nq + 1� . �10�

Then, we have in low-temperature limits T�TBG,

1

���
�

1

�

1

EF

1

kF

D2

2�mvph

4!��4�
��vph�4 �kBT�4. �11�

Thus, we find that the temperature-dependent resistivity in
BG regime becomes ��T4 without screening effects. If we
include screening effects by the carriers themselves,23 the
low-temperature resistivity goes as ��T6. The screening ef-
fects on the bare scattering rates can be introduced by divid-
ing the matrix elements C�q� by the dielectric function of
graphene. However, the matrix elements in graphene arise
from the change in the overlap between orbitals placed on
different atoms and not from a Coulomb potential. Thus, we
neglect screening effects in the calculation and only consider
unscreened deformation-potential coupling. Even though the
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resistivity in EP regime is density independent, Eq. �11� in-
dicates that the calculated resistivity in BG regime is in-
versely proportional to the density, i.e., �BG�1 /n, or equiva-
lently the mobility in BG regime is density independent.

III. RESULTS

In this calculation, we use the following parameters:
graphene mass density �m=7.6�10−8 g /cm2, acoustic pho-
non velocity vph=2�106 cm /s, and deformation potential
D=19 eV. Even though the phonon velocity vph is well de-
fined experimentally, the value of the deformation-potential
coupling constant is not established.21,24 In general, the con-
stant D could be obtained on the basis of the fact that the
shift of energy dispersion from its equilibrium state reaches
the order of the atomic energy, i.e., D�e2 /a, with a being
the lattice constant, which is of the order of 10 eV in
graphene. We note that we have used Ref. 24 for obtaining
the phonon parameters, but different values of D, differing
by a factor of 3 �i.e., D�10–30 eV�, are quoted19,21,24 in the
literature. Since �−1�D2, the resulting graphene resistivity
could differ by an order of magnitude depending on the pre-
cise value of D.

In Fig. 1, we show the calculated inverse relaxation times
for deformation-potential scattering by acoustic phonon as a
function of energy for different temperatures T /TBG=0.2,
0.5, 1.0, and 1.5 for an electron density n=1012 cm−2 with
TBG=54 K. The inverse relaxation time in BG regime
�T�TBG� shows a characteristic dip �suppression of scatter-
ing rate� in a narrow region around Fermi energy EF due to
the statistical occupation factors. Above Bloch–Grüneisen
temperature �T�TBG�, the dip structure disappears and the
scattering rate becomes close to the scattering rate of equi-
partition regime.

In Fig. 2�a�, we show our calculated graphene resistivity,
���−1, as a function of temperature on a log-log plots,
clearly demonstrating the two different regimes: BG, ��T4

behavior for T�TBG�20–100 K and the EP, ��T behavior
for T�100 K. We note that TBG ���n� depends weakly on
density, and the true BG behavior is likely to show up at
relatively low temperatures. In Fig. 2�b�, we show ��T� for
several densities on a linear plot, emphasizing the strong

linear in T dependence of the acoustic phonon-limited
graphene resistivity ranging from 100 to 500 K. This rather
large temperature range of ��T��T behavior of acoustic
phonon scattering limited resistivity is quite generic to 2D
semiconductor structures, and our finding for graphene here
is qualitatively similar to what was earlier found to be the
ease for 2D GaAs structures.15,16 The crucial difference be-
tween graphene and 2D GaAs is that in the latter system
polar optical phonon scattering becomes exponentially more
important for T�100 K and dominates at room tempera-
tures, whereas in graphene, we predict a linear 2D resistivity
up to very high temperatures ��1000 K� since the relevant
optical phonon has very high energy ��2000 K� and is sim-
ply irrelevant for carrier transport.

In Fig. 3, we show our calculated intrinsic graphene mo-
bility, ���en��−1, as functions of temperature and carrier
density. Within our model, the unscreened acoustic phonon
scattering limited graphene mobility is inversely proportional
to T and n individually for T�100 K. Assuming D=19 eV,
as used in Fig. 3, � could reach values as high as
105 cm2 /V s for lower carrier densities �n�1012 cm−2�. For
larger �smaller� values of D, � would be smaller �larger� by
a factor of D2. It may be important to emphasize here that we
know of no other system where the intrinsic room-
temperature carrier mobility could reach a value as high as
105 cm2 /V s.
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FIG. 1. �Color online� Calculated inverse relaxation times as a
function of energy for different temperatures T /TBG=0.2, 0.5, 1.0,
and 1.5 for an electron density n=1012 cm−2 with TBG=54 K. The
deformation-potential coupling constant D=19 eV and the phonon
velocity vph=2�106 cm /s are used in this calculation.
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FIG. 2. �Color online� �a� Calculated graphene resistivity as a
function of temperature for several densities n=1�1012, 3�1012,
and 5�1012 cm−2. We use the deformation potential D=19 eV.
Note that in BG regime �T�TBG�, ��T4 and in EP regime
�T�100 K�, ��T. �b� The same as �a� in linear scale. The inset
shows the resistivity in low-temperature limits �T�80 K�.
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FIG. 3. �Color online� Calculated mobility limited by the acous-
tic phonon with the deformation-potential coupling constant
D=19 eV �a� as a function of temperature for different densities
n=1�1012, 3�1012, and 5�1012 cm−2 and �b� as a function of
density for different temperatures T=77 K and T=300 K.
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IV. DISCUSSION

The three key theoretical findings on phonon-limited
graphene mobility of this work are: �1� ��T for
T�100 K, �2� ��T4 �T6� for T�50 K, for unscreened
�screened� deformation-potential coupling, and �3�
��3.7�107 /D2ñ cm2 /V s, at room temperature
�T=300 K� where D is measured in eV and ñ is carrier den-
sity n measured in units of 1012 cm−2. These theoretical pre-
dictions being rather precise, the question naturally arises
about the experimental status and the verification of our
theory. Very recently, experimental graphene transport data at
room temperature �or even above17� have started becoming
available.17,18 The only aspect of our theory that can be di-
rectly compared with the existing experiment is the ��T
behavior at high temperatures ��200 K�, and this is indeed
consistent with the recent data from two different groups.17,18

Geim and co-workers have recently concluded18 that the
room-temperature graphene intrinsic mobility could be as
high as 105 cm2 /V s, which is also consistent with our
theory. However, as emphasized by us, the actual mobility
value varies inversely as D2, and therefore a precise knowl-
edge of the deformation-potential coupling is required for an
accurate estimate of the intrinsic mobility.

A more detailed comparison between our theory and the
experimental results on ��T� shows some qualitative differ-
ence, which are not understood at this point. For example,
the experimental crossover17,18 to the high-temperature linear
���T� behavior in the intrinsic resistivity appears to be
closer to a T2 behavior rather than the T4 BG behavior we
predict. More disturbingly, the experimental crossover from
the high-temperature linear behavior to the low-temperature
high power law behavior appears to be occurring at a much
higher temperature �100–200 K� than the theoretical predic-
tion �20–50 K�. At this stage, we have no explanation for the
lower-temperature disagreement between experiment and
theory, but below we discuss several possibilities.

The experimentally measured resistivity in the current
graphene samples is completely dominated by extrinsic scat-
tering �and not by phonon scattering� even at room tempera-
tures, since the low-temperature ��4 K� mobility is typically
5000–15 000 cm2 /V s, and the intrinsic room-temperature
phonon contribution, as obtained theoretically by us or
inferred17,18 from recent temperature-dependent experiments,
is 10–20 times larger ��100 000 cm2 /V s�. This means that
any experimental extraction of the pure phonon contribution
to graphene resistivity involves subtraction of two large re-
sistances �i.e., the measured total resistance and the extrapo-
lated T=0 extrinsic temperature-independent resistance aris-
ing from impurity and defect scattering� of the order of kilo-
ohms each to get a phonon contribution roughly of the order
of 100 �. Apart from the inherent danger of large unknown
errors involved in the subtraction of two large numbers to
obtain a much smaller number associated with phonon scat-
tering contribution to graphene mobility, there is the addi-
tional assumption of the Matthiessen rule, i.e., �tot=�ph+�i,
where �tot is the total resistivity contributed by impurities
and defects ��i� and phonons ��ph�, which is simply not valid.
In particular, the impurity contribution to resistivity also has
a temperature dependence arising from Fermi statistics and

screening which, although weak, cannot be neglected in ex-
tracting the phonon contribution �particularly since the total
phonon contribution itself is much smaller than the total ex-
trinsic contribution�. In particular, the temperature-dependent
part of the charged impurity scattering contribution to
graphene resistivity could be positive or negative25 depend-
ing on whether screening or degeneracy effects dominate,
and therefore the phonon contribution, as determined by a
simple subtraction, could have large errors, particularly in
the low �T�1000 K� temperature regime. Indeed, a recent
measurement26 of ��T� in the 0–100 K regime finds small
temperature-dependent contributions to graphene resistivity
which could be either positive or negative depending on the
sample mobility and which, in all likelihood, arises from
extrinsic impurity scattering.

In Fig. 4, we show the failure of the Matthiessen rule in
graphene �particularly at higher and/or lower temperatures
and/or densities� by calculating the total graphene resistivity
arising from screened charged impurity scattering ��i� and
phonon scattering ��ph�—it is clear that �tot��ph+�i for
lower and/or higher densities and/or temperatures.

If the experimentally extracted17,18 phonon contribution to
the graphene resistivity turns out to be accurate in spite of
the rather questionable subtraction procedure discussed
above, then the disagreement between our intermediate tem-
perature �50–100 K� theoretical results and the experimental
data would indicate the presence of some additional phonon
modes which must be participating in the scattering process.
We can, in fact, get reasonable agreement between our
theory and the experimental data by arbitrarily shifting the
BG temperature TBG to a higher temperature around 200 K.
This shift could indicate a typical phonon scale which causes
additional scattering other than the LA phonons coupled to
the carriers through the deformation-potential coupling con-
sidered in our work. At this stage, we cannot speculate on
what these additional modes could be. One possibility is that
these are the zone-edge out of plane acoustic �ZA� phonon
modes with vibrations transverse to the graphene plane.17 �In
Appendix, we provide the calculated carrier resistivity in the
presence of an additional phonon mode with a soft gap.�
Another possibility considered in Ref. 18 is that these are the
thermal fluctuations �“ripplons”� of the mechanical ripples
invariably present in graphene samples.10 Of course such ad-
ditional “phonon” scattering channels will lead to additional
unknown coupling parameters making the resultant theory
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FIG. 4. �Color online� The deviations from Mattiessen’s rule for
two different densities, �a� n=1012 cm−2 and �b� n=7�1011 cm−2.
Here, �i ��ph� represents the resistivity due to impurity �phonon�
scattering.
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essentially a data fitting procedure. The advantage of our
minimal theory is that it involves only two phonon param-
eters: D and vph associated with the 2D graphene LA
phonons. More data in higher-mobility samples will be
needed to settle this question since the subtraction problem
inherent in the current technique for extracting the phonon
contribution would make analyzing this issue a difficult task.

V. CONCLUSION

We have calculated the intrinsic temperature-dependent
2D graphene transport behavior up to 500 K by considering
temperature and density-dependent scattering of carriers by
acoustic phonons. We have provided a critical discussion of
our results in light of the recent experiments.17,18 The lack of
precise quantitative knowledge about graphene deformation-
potential coupling makes a quantitative comparison with the
experimental data problematic.
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APPENDIX

In this Appendix, we calculate the phonon scattering lim-
ited carrier mobility including effects of two phonon
branches: the regular LA phonon �as considered in the main
part of this paper� and an additional “intervalley” phonon
branch with a soft gap ��70 meV� representing the interval-
ley phonon, the ZA phonon mode at the K point. The theo-
retical motivation is to demonstrate that the combination of
the LA phonon and an optical phonon �i.e., the intervalley
ZA mode� with a softy gap could indeed lead to qualitative
�or even quantitative, if the phonon parameters have appro-
priate values� agreement between theory and experiment.

In this context, we consider the long wavelength phonon
scattering. As temperature increases, phonons of large wave
vectors are involved in the scattering in multivalley struc-
tures. Thus, the intervalley phonon scattering becomes sig-
nificant at high temperatures.17 In graphene, there are two
minima of the conduction band at K and K� points in the
Brillouin zone. The scattering between K and K� points re-
quires the participation of intervalley phonons, whose wave
vectors are close to qij =kK−kK� and the frequencies of these
phonons are close to �ij =��qij�. The relaxation time for in-
tervalley phonon scattering may be considered by assuming

constant intervalley phonon energies ��ij. Then, the matrix
element for the intervalley phonon scattering becomes
�C�q��2=�Dij

2 /2A�m�ij, where Dij is the deformation-
potential coupling constant for intervalley phonons in unit of
eV/Å. Since �ij �EF in graphene, the scattering of electrons
from intervalley phonons is considered quasielastically.

In Fig. 5, we show the calculated resistivity with both the
acoustic phonon scattering and the intervalley phonon scat-
tering as a function of temperature for two different densi-
ties. The following parameters are used in this calculation:
deformation-potential coupling constant D=10 eV, acoustic
phonon velocity vph=2�106 cm /s, Dij =7 eV /Å, and inter-
valley phonon energy ��ij =70 meV which corresponds to
the lowest phonon energy �ZA� at the K point. The calculated
resistivities have very weak density dependence, which
comes from the energy averaging. Below 200 K, the acoustic
phonon scattering dominates �linear in temperature�, but
above 200 K, both phonon scatterings contribute in the trans-
port. Note that the temperature dependence of the resistivity
is linear in both regimes, but has different slopes. The high
power law behavior ���T4� only applies at very low tem-
peratures �T�50 K�. Basically, there is a sharp turn on in
phonon scattering in the 150–250 K range as the intervalley
ZA phonon scattering becomes effective.

Whether the results shown in Fig. 5 including the effects
of intervalley phonon scattering are physically meaningful or
not will depend on the direct observation of these ZA phonon
modes via Raman scattering experiments. At this stage, all
we have established is that inclusion of this additional soft-
gap phonon mode gives impressive agreement between
theory and experiment.17,18 More work is needed to validate
the model of combined LA and ZA phonon scattering con-
tributing to the temperature-dependent graphene resistivity.
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