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A generalized master equation description of charge transmission through a single molecule that goes
beyond a perturbative treatment of electron-vibrational coupling and accounts for nonequilibrium vibrational
distributions is presented. By utilizing a projection superoperator formalism, exact expressions for the gener-
alized master equation kernels that include intramolecular vibrational energy redistribution, excited electronic
levels, as well as their optical excitation and de-excitation are derived. This enables one to study optical current
switching in the case of weak electron-lead coupling and large reorganization energy upon charging. Addition-
ally, it is possible to quantify the influence of intramolecular vibrational energy redistribution and excited state
de-excitation on the current switching.
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I. INTRODUCTION

A frequent motif in molecular electronic devices is that of
a single molecule attached to two nanoelectrodes.1 Often, the
molecule-lead coupling energy is smaller than the energy of
molecular vibrational excitation and nuclear rearrangement
�NR� upon charging or discharging of the molecule. This
necessitates the inclusion of the coupling of transmitted elec-
trons to intramolecular vibrations when computing, for ex-
ample, IV characteristics.1 A powerful concept to account for
electron-vibrational coupling is represented by Born–Op-
penheimer potential energy surfaces �PESs� which determine
the nuclear motion in the various electronic levels as well as
the NR effects upon changing the electronic state.2

While electron-vibrational coupling attracted less interest
in the early days of theoretical studies on single electron
transmission, there is a number of different approaches as
reviewed in Ref. 3. In order to underline the specific aspects
of the present treatment, we briefly comment on previous
routes tackling electron-vibrational coupling �for a more
complete list of references, see Ref. 3�. They include �i� the
nonequilibrium Green function �NGF� technique,4–7 �ii� the
use of density matrix equations8–16 or �iii� rate �master� as
well as generalized rate equations,17–27 and �iv� scattering
theory.28–31

The widely used NGF approach has the advantage that it
can be efficiently combined with electronic structure calcu-
lations �see Ref. 1�. However, electron-vibrational coupling
is usually considered as a perturbation, i.e., by computing
respective self-energies up to second order only. Thus, NR is
accounted for approximately, although, upon combining the
NGF approach with standard polaron canonical transforma-
tion, vibrational sidebands could be described as in Ref. 7.

The use of the density matrix approach traces back to the
study of charge transmission through semiconducting quan-
tum dots and is based on a diagrammatic computation of a
self-energy-type superoperator8 �see also Ref. 32�. Electron-
phonon coupling was also described in a renormalization
group approach.10,11 Other treatments use a density matrix
theory which rests on a second-order approximation of the

electron-vibrational interaction.12,14,15 While the renormal-
ization group approach has not been confronted with the re-
sults obtained by direct use of the molecular PES, any
second-order approximation is, of course, only reliable for
weak coupling situations.

There are several approaches considering populations
only, i.e., diagonal density matrix elements, which are based
on ordinary or generalized rate equations. Two routes can be
identified, the first one uses the overall electronic distribution
function, often derived systematically from the respective
rate equations �see, e.g., Refs. 17–20�. The other more so-
phisticated route rests on electron-vibrational distribution
functions also accounting for a vibrational nonequilibrium
situation.21–27 Here, rate equations governing electron-
vibrational distribution functions are frequently given with-
out detailed derivations. This has to be considered as being a
clear drawback which gives the motivation for the present
systematic derivation of such generalized rate equations and
respective rate expressions.

Our derivation features the following five key points: �i�
The charge transmission through a molecular wire attached
to nanoleads is described in a multielectron picture. The dif-
ferent molecular charging states are characterized by the
number N of excess electrons. �ii� A many-electron descrip-
tion of the electrons of the metal lead is undertaken. �iii� An
important aspect of the present description is that electron-
vibrational coupling is fully accounted for via PES. Thus,
from the very beginning, one avoids any perturbational treat-
ment of electron-vibrational coupling or, in other words, NR
upon changing the electronic state of the molecule is consid-
ered nonperturbatively. �iv� Vibrational relaxation is intro-
duced via intramolecular vibrational energy redistribution
�IVR�. �v� Finally, we incorporate excited electronic states of
the molecule. Hence, it is possible to model the effects of
optical excitation of the molecule during charge transmission
as well as electronic de-excitation via electron-hole pair gen-
eration in the leads.

To our knowledge, a generalized master equation ap-
proach that combines excited electronic states with vibra-
tional nonequilibrium states of the neutral and charged mol-
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ecules including possible excitation and de-excitation of the
molecule has not be considered so far. It enables us to sug-
gest optical current switching in the case of weak electron-
lead coupling and large reorganization energy upon charging.
Furthermore, it becomes possible to quantify the influence of
IVR and excited state de-excitation on the current switching.
Both issues will be investigated in an accompanying numeri-
cal study.33

Underlying the present approach is a formulation in terms
of molecular adiabatic electronic states, �Na, which describe
the presence of N�=. . . ,−1 ,0 ,1 , . . . � excess electrons and
which refer to the ground state, a=g, or some excited state,
a=e, both referring to the actual charging state. These states
are understood to account for the applied voltage V in the
stationary current regime and polarization effects of the
leads, i.e., we assume that a self-consistent determination of
the molecular states has been carried out. In principle, the
charged molecular states would require a correct classifica-
tion with respect to their spin states. This problem, however,
is of less importance for the present general study.

In the following, the emphasis lies on the incorporation of
particular molecular vibrations which couple strongly to the
charge transmission process �so-called reaction coordinates�.
Electronic states and reaction coordinates form the active
electron-vibrational degrees of freedom. They will be de-
scribed by vibrational wave functions �Na� referring to the
particular electronic state, �Na, and being characterized by
vibrational quantum numbers �. The resulting electron-
vibrational states, �Na�=�Na��Na, form the basis for all con-
siderations hereafter. In particular, the generalized rate equa-
tions will be formulated for the respective state populations
PNa��t�. The approach is based on a projection operator
method used already in Ref. 35 and later in Refs. 18 and 36.
Moreover, we will also demonstrate how to obtain a current
formula within this framework.

The projection operator formalism for the derivation of
the generalized rate equation for the populations PNa��t�
yields formally exact expressions in terms of integral kernels
of the form

KMa�→Nb��t, t̄� = tr���Nb����Nb��M�t, t̄�ŴMa�
�eq� � . �1�

They describe the transfer from the initial state �Ma� of the
molecule �at time t̄� into the final state �Nb� �at time t�. The
initial state is characterized by the equilibrium statistical op-

erator ŴMa�
�eq� referring to the equilibrium state of the electrons

in the leads as well as to the vibrational equilibrium of all
inactive coordinates in the initial state formed by the active
degrees of freedom. The transfer to the final state is caused
by the transfer superoperator M�t , t̄�. It covers all orders
with respect to the relevant interactions �molecule-lead cou-
pling, IVR, time-dependent external fields�. If M is consid-
ered in second order with respect to the various couplings,
standard second-order rate expressions can be obtained
straightforwardly.

Although the following formulation is general in prin-
ciple, and thus also illustrates how to go beyond a low order
description, concrete expression will be given for the case of
a second-order approximation. Section II introduces the

model Hamiltonian. Then, Sec. III briefly demonstrates the
construction of a generalized master equation and the deri-
vation of a current formula. Second-order rates for all types
of couplings are derived in Sec. IV. The paper concludes
with some final remarks in Sec. V.

II. MODEL

The Hamiltonian to be introduced in the following sub-
sections reads as

H = Hmol + Hlead + Hmol-lead. �2�

Here, Hmol represents the single molecule attached to the two
nanoelectrodes. Furthermore, there is a coupling part to the
leads, denoted by Hmol-lead, and the metal leads are described
by Hlead. Again, we stress that the model is based on the
introduction of electronic states of the molecule and the
leads, which have been self-consistently determined in the
presence of an applied voltage �see, for example, Ref. 1�.

A. Molecular Hamiltonian

The molecular Hamiltonian Hmol is expressed in terms of
the adiabatic electronic states �Na, where N= . . . ,−1 ,0 ,
1 , . . . counts the number of excess electrons �or holes� and a
is the specific label for the actual electronic level �recall that
we do not touch here the issue of molecular spin states�. To
each electronic state �Na belongs a PES UNa�R� which de-
pends on the set R of all nuclear coordinates of the molecule.
Together with the respective kinetic energy operator Tnuc,
they define the vibrational Hamiltonians

HNa�R� = Tnuc + UNa�R� � ��Na + HNa�R� . �3�

Here, ��Na are the relaxed electronic energies corresponding
to the minima of the PES plus the vibrational zero-point
energy, that is, the spectrum of the HNa counts from zero
energy. Notice that nonadiabatic couplings among different
electronic states will not be considered here.

However, in many applications, it is impossible to account
for the complete set of nuclear coordinates, and the whole set
of coordinates does not contribute to the electronic transi-
tions in the same manner. There are reaction coordinates
which strongly couple to the electronic transitions �giving
rise to a pronounced shift of the respective equilibrium con-
figurations�. The remaining set of coordinates, being inactive
with respect to the electronic transitions, however, can
couple to the reaction coordinates, and hence cause IVR. To
model IVR, we separate the whole set R of nuclear coordi-
nates into reaction coordinates Q and thermal bath �reser-
voir� coordinates Z and write the Hamiltonian 	Eq. �3�
 as

HNa = HNa
�vib� + HNa

�int� + HNa
�R�, �4�

with the reaction coordinate Hamiltonian HNa
�vib�, the system-

reservoir coupling HNa
�int�, and the reservoir Hamiltonian HNa

�R�.
With �Na� being the vibrational eigenstates of the reaction

coordinates at energy ��Na�, the state vector of the active
electron-vibrational system is written as
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��Na�� � ���� = ��Na����Na� , �5�

where the index � comprises electronic and vibrational quan-
tum numbers. Related energies are denoted as �see Fig. 1�

��� � ��Na� = ��Na + �	Na�. �6�

For further use, we introduce the projection operator


̂� = �������� , �7�

and point out that when carrying out a summation with re-
spect to �, it should include a summation with respect to N,
too.

An expansion of HNa with respect to the states �Na� yields

HNa = �
�,�

���,�	�	Na� + HNa
�R�
 + �ĥ�Na,��;Z����Na����Na�� ,

�8�

with the matrix elements

�ĥ�Na,��;Z� = ��Na��HNa
�int���Na�� . �9�

Besides the static electric field strength related to the applied
voltage, time-dependent external fields may trigger vibra-
tional or electronic molecular transitions. In most applica-
tions, the following dipole coupling is sufficient to treat the
optical and infrared regime:

Hfield�t� = − E�t��̂ . �10�

Here, E�t� is the electric field strength and �̂ the molecular
dipole operator. When considering electronic transitions, i.e.,

optical excitations, we have to deal with electronic off-
diagonal matrix elements in the expansion

�̂ = �
N,a,b

dNa,Nb��Na���Nb� . �11�

Of course, states with a different number of excess electrons
are not connected by optical transitions. It becomes possible
only if charge transfer states between the lead and the excited
molecule are formed �see, e.g., Ref. 34�. This effect will be
neglected as well as the possibility of direct excitation of the
leads and infrared excitations of vibrational states.

According to the separations given above, the molecular
Hamiltonian Hmol can be written as �see Fig. 1�

Hmol�t� = Hel+vib + HR + Hint + Hfield�t� . �12�

The active system comprising the electronic states together
with the reaction coordinate are included in

Hel+vib = �
�

����������� . �13�

The reservoir coordinates are contained in

HR = �
�

HNa
�R��������� , �14�

and their coupling to the active vibrational coordinates is
given by

Hint = �
�,�

�Ma,Nb�ĥ�Ma,��;Z��������� . �15�

B. Description of the leads and molecule-lead coupling

The lead Hamiltonian is written in the standard second-
quantized form as

Hlead = �
X

HX
�lead� � �

X
�
k,s

��XksaXks
+ aXks, �16�

where X counts the different leads the molecule has been
attached to. Moreover, we have the respective electron wave
vector k of the Bloch state and the electron spin s for the
conduction band denoted as ��Xks. Since the leads are con-
sidered as macroscopic systems, they have to be character-
ized by a grand-canonical equilibrium statistical operator:

Ŵlead = �
X

ŴX = �
X

1

ZX
exp�	HX

�lead� − �XN̂X
/kBT� . �17�

Here, ZX is the partition function referring to lead X and, �X
denotes the chemical potential of the electrons. The associ-
ated number operator reads

N̂X = �
k,s

aXks
+ aXks. �18�

Equation �17� indicates that the electrons of each lead are in
a separate equilibrium state characterized by a particular
chemical potential.

Concerning the Coulomb coupling between the leads and
the molecule, we will consider two types, i.e., a direct charge

E(1g μ)E( gL k, ν)

L M R

E(1eμ)

E( gR q, κ)

E( eL k, ν)

E( eR q, κ)

FIG. 1. Electron-vibrational energy level scheme for electron
exchange between a left electrode �L, chemical potential in the
presence of an applied voltage: �L, Fermi sea of electrons drawn in
gray�, a right electrode �R, chemical potential: �R��L�, and a mol-
ecule �M�. Its energy levels E�1a��=��1a� belonging to the singly
charged state are shown in the center and include the electronic
ground state �a=g� as well as the excited electronic state �a=e�
together with vibrational levels �labeled by ��. To draw the energy
levels of the neutral molecule in the same scheme, they are com-
bined with a possible electron energy of the left electrode to arrive
at E�Lk ,a��=��Lk+��0a� and of the right electrode to arrive at
E�Rq ,a�=��Rq+��0a. Optical excitation of the molecule is indi-
cated by the black vertical arrows. The single gray arrow indicates
IVR. Sequential charging and discharge of the molecule can be
visualized in the scheme by horizontal transitions.
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transfer coupling and a case without charge transfer. The first
one takes the following form:

Hmol-lead
�1� = �

N,a,b
�

X,k,s
VX�N + 1a,Nb,ks�aXks��N+1a���Nb�

+ �
N,a,b

�
X,k,s

VX�N − 1a,Nb,ks�aXks
+ ��N−1a���Nb� ,

�19�

where the first term describes the transition of a single elec-
tron from lead X into the molecule, changing the state of the
latter from �Nb to �N+1a. In contrast, the second term corre-
sponds to charge injection from the molecule to the lead with
changing the molecular state from �Nb to �N−1a. Long-range
Coulomb interactions causing lead polarization upon charg-
ing of the molecule are not connected to charge transmission
processes. In part, they have been already accounted for in
the definition of the electronic states of the molecule. We
additionally include Coulombic coupling which may trans-
form molecular excitation into an electron-hole pair excita-
tion of the leads.34 It is written as

Hmol-lead
�2� = �

N,a,b
�

X,k,q,s
VX�Na,Nb,kqs�aXks

+ aXqs��Na���Nb� .

�20�

In Eqs. �19� and �20�, the coupling matrix elements VX ac-
count for the concrete molecular transitions.

C. Current

To characterize the charge transmission process in terms
of IV characteristics, we will use the following expression
specifying the �nonstationary� current through lead X as

IX�t� = − �e�
�

�t
tr�Ŵ�t�N̂X� . �21�

The nonequilibrium statistical operator of the whole system

is denoted by Ŵ�t� and the operator N̂X of the electron num-
ber in lead X has been introduced in Eq. �18�. The trace
includes the trace with respect to the lead electron states
�lead�, the active electron-vibrational states of the molecule
�el+vib� in the neutral, as well as the various charged states,
and the trace with respect to the thermal reservoir of bath
vibrational coordinates �R�:

tr�¯� = trlead+el+vib+R�¯� . �22�

Often, Eq. �21� is rewritten by carrying out the time deriva-

tive of Ŵ�t�, finally resulting in a commutator of N̂X with the
system Hamiltonian. This strategy is not followed here and
the current will be calculated directly using the projection
operator formalisms which leads to generalized rate equa-
tions for the molecular electron-vibrational states. This ap-
proach is explained in the next section.

III. GENERALIZED RATE EQUATIONS

The technique used in the following to derive generalized
rate equations is well established.2,35 Recently, it has been

applied to compute IV characteristics of a molecule in the
framework of a single electron approach.18 Here, we utilize
the respective projection superoperator methodology for a
more general model �for a preliminary account, see also Ref.
25�. Therefore, in order to compute the current, it is of ad-
vantage to use a description based on the populations
PNa��t�� P��t� of the molecular electron-vibrational states
	Eq. �5�
:

P��t� = ����trlead+R�Ŵ�t������ � tr�Ŵ�t�
̂�� . �23�

The expression includes the total nonequilibrium statistical

operator Ŵ�t� of the electron-vibrational system under con-
sideration, already introduced in Eq. �21�. Using the projec-
tor 	Eq. �7�
, the more compact form of P��t� on the right-
hand side can be defined where the trace covers all states of
the molecule-lead system 	cf. Eq. �22�
.

As already indicated, we will choose a description where
we assume individual equilibrium of the electrons within
each lead. This can be accounted for in the definition of a
particular projection superoperator. We introduce

P ¯ = �
�

Ŵ�
�eq�tr�
̂� . . . � , �24�

with

Ŵ�
�eq� = ŴleadR̂R
̂�. �25�

This density operator characterizes electronic equilibrium in
the leads 	cf. Eq. �17�
 and vibrational equilibrium with re-
spect to the reservoir coordinates of the molecule �described

by the equilibrium density operator R̂R�. One easily verifies
that P is indeed a projector. Once P has been applied to

Ŵ�t�, the population is obtained as

P��t� = tr�
̂�PŴ�t�� . �26�

There are different ways to derive rate equations governing
the time evolution of populations. Here, we start with the

Nakjima–Zwanzig equation for PŴ�t�:

�

�t
PŴ�t� = − iPL�t�PŴ�t� − 

t0

t

dt̄PL�t�UQ�t, t̄�QL�t̄�PŴ�t̄� .

�27�

In deriving this equation, it has been assumed that the term

UQ�t , t0�QŴ�t0� vanishes �absence of initial correlations�.
L�t� is the time-dependent Liouvillian referring to the total
Hamiltonian 	Eq. �2�
. Moreover, the time evolution super-
operator introduced above reads �T indicates the respective
time ordering�

UQ�t,t0� = T exp�− i
t0

t

d�QL���� . �28�

We note that so far, we have not yet separated the full Hamil-
tonian into a zero-order part and a perturbation. Strictly
speaking, however, this separation has already been fixed
implicitly by the specific structure of the projection superop-
erator 	Eq. �25�
 because it holds that
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̂�,H�t�
− = 	
̂�,V̂�t�
−, �29�

with the interaction Hamiltonian

V̂�t� = Hint + Hfield�t� + Hmol-lead. �30�

Applying the procedure introduced in Eq. �26� to the
Nakjima–Zwanzig identity 	Eq. �27�
, one arrives at an equa-
tion of motion for the state populations �generalized rate
equation�. It contains two trace expressions both of the type

tr�
̂�PL�t�Ô�=tr�
̂�L�t�Ô� with the operator Ô given either

by PŴ�t� or by UQ�t , t̄�QL�t̄�PŴ�t̄�. The first trace vanishes

since 
̂� commutes with Ŵ�
�eq�. The second one which will

be written in the form tr�	
̂� ,H�t�
−Ô� defines the kernel of
the generalized rate equation which follows as

�

�t
P��t� = �

�


t0

�

dt̄K���t, t̄�P��t̄� . �31�

The kernel takes the form

K���t, t̄� = −
1

�2��t − t̄�tr�	
̂�,H�t�
−UQ�t, t̄�	H�t̄�,Ŵ�
�eq�
−� .

�32�

Here, we have used for the kernel that QL�t̄�PŴ�t̄� leads to

the expression QL�t̄�Ŵ�
�eq� where the PL�t̄�Ŵ�

�eq� part does
not contribute.

The two commutators in the kernel 	Eq. �32�
 specify the
perturbation part of the Hamiltonian, see Eqs. �29� and �30�.
The second commutator reads

	H�t̄�,Ŵ�
�eq�
− = 	V̂�t̄�,Ŵ�

�eq�
−. �33�

Introducing the interaction Liouvillian V�t� referring to V̂�t�
	Eq. �30�
, the kernel 	Eq. �32�
 is written as

K���t, t̄� = − ��t − t̄�tr�
̂�V�t�UQ�t, t̄�V�t̄�Ŵ�
�eq�� . �34�

This expression fulfills the sum rule

�
�

K���t, t̄� = 0, �35�

which directly follows from the completeness relation

��
̂�=1 and the fact that the remaining expression vanishes
�trace of a commutator equals zero�. The result guarantees
probability conservation and we can further introduce transi-
tion kernels according to

K���t, t̄� = ��,�K��t, t̄� + �1 − ��,��K�→��t, t̄� . �36�

Noting the sum rule, we may deduce that

K��t, t̄� = − �
���

K�→��t, t̄� . �37�

This enables us to rewrite the generalized rate equation �31�
in the more suggestive form

�

�t
P��t� = − �

�


t0

�

dt̄	K�→��t, t̄�P��t̄� − K�→��t, t̄�P��t̄�
 .

�38�

In the limit t→� �and for a quasistationary action of external
fields�, the generalized rate equation should result in station-
ary populations P�

�stat�:

0 = �
�

�k�→�P�
�stat� − k�→�P�

�stat�� . �39�

Here, Fourier-transformed transition kernels 	Eq. �34�
 at
zero-frequency enter �note also the limit t0→−��

k�→� = K�→��	 = 0� . �40�

A. Current formula

We relate Eq. �21� for the current to the projection super-
operator approach presented in the preceding section and set

tr�Ŵ�t�N̂X� = tr�N̂X�P + Q�Ŵ�t�� . �41�

The term including P is easily computed, whereas that with

QŴ�t� is obtained by the second term on the right-hand side
of Eq. �27� without the prefactor −iPL�t�. As a result, we
may write

tr�Ŵ�t�N̂X� = �
�
��N̂X�P��t�

− i
t0

t

dt̄tr�N̂XUQ�t, t̄�V�t̄�Ŵ�
�eq��P��t̄�� .

�42�

The first term on the right-hand side includes the mean elec-
tron number in lead X:

�N̂X� = tr�N̂XŴ�
�eq�� , �43�

and the second term stemming from QŴ�t� has been rewrit-
ten according to the results of the foregoing section. Both
expressions are inserted into Eq. �21�, where a time deriva-
tive gives the current according to

IX�t� = − �e��
�
��N̂X�

�

�t
P��t� − i tr�N̂XV�t�Ŵ�

�eq��P��t�

− 
t0

t

dt̄ tr�N̂XQL�t�UQ�t, t̄�V�t̄�Ŵ�
�eq��P��t̄�� . �44�

The second term on the right-hand side vanishes, which can
be shown by using the same reasoning as in the foregoing
section 	V�t� is incorporated in a trace expression which con-
tains two operators which are diagonal with respect to lead
and molecular states
. Using Q=1−P, the third term on the
right-hand side of Eq. �44� is separated into two terms, giv-
ing the current as
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IX�t� = − �e��
�
��N̂X�

�

�t
P��t�

− 
t0

t

dt̄ tr�N̂XL�t�UQ�t, t̄�V�t̄�Ŵ�
�eq��P��t̄�

− �
�


t0

t

dt̄�N̂X�K���t, t̄�P��t̄�� . �45�

The first and third terms on the right-hand side cancel each
other because of the generalized rate equation �31�. Thus, the

current reads 	note the rearrangement of N̂XL�t� in the re-
maining term


IX�t� = �e��
�


t0

t

dt̄ tr�	L�t�N̂X
	UQ�t, t̄�V�t̄�Ŵ�
�eq�
�P��t̄� .

�46�

Obviously, the expression contributes to the current only by

those terms where L�t�N̂X�0. Within the present descrip-
tion, this is the case for the molecule-lead coupling, i.e.,

L�t�N̂X can be replaced by �Hmol−lead , N̂X�− /�.
To have a more compact notation, we introduce a kernel

which describes the transition from molecular state � into
lead X:

K�→X�t, t̄� = − ��t − t̄�tr�	L�t�N̂X
	UQ�t, t̄�V�t̄�Ŵ�
�eq�
� ,

�47�

and write

IX�t� = − �e��
�


t0

�

dt̄K�→X�t, t̄�P��t̄� . �48�

If the kernel K�→X�t , t̄� only depends on the time difference
t− t̄ as discussed in the next section, one obtains a stationary
current at t→�:

I�stat��t� = − �e��
�

K�→X�	 = 0�P�
�stat�. �49�

Here, we again assumed t0→−�, which results in the zero-
frequency Fourier-transformed kernel.

IV. SECOND-ORDER TRANSITION RATES

The following considerations focus on the determination
of second-order rates in the case of weak molecule-lead cou-
pling. In the Appendix, we outline how to go beyond a
second-order theory in the case of a memory kernel without
a time-dependent external field. The kernels account for the
molecule-lead coupling of type 1 �K�mol-lead��, of type 2
�K�dec��, of IVR �K�IVR��, and of optical excitation �K�opt��:

K�→� = K�→�
�mol-lead� + K�→�

�dec� + K�→�
�IVR� + K�→�

�opt� . �50�

The current is also calculated at the same order of perturba-
tion theory.

To arrive at second-order kernels, the time-evolution su-
peroperator UQ�t , t̄� appearing in Eq. �34� has to be replaced

by a zero-order expression U0 with respect to the coupling
Liouvillian V defined via Eq. �30�. We note that Q	L�t�
−V�t�
=L0, where the latter zero-order Liouvillian is defined

by H0=H�t�− V̂�t�, i.e., by the Hamiltonian of the unper-
turbed lead molecule electron-vibrational system �H0
=Hel+vib+HR+Hlead�. The zero-order time-evolution superop-
erator simply reads

U0�t� ¯ = Ulead�t�UR�t�Uel+vib�t� ¯ Uel+vib
+ �t�UR

+�t�Ulead
+ �t� .

�51�

This expression includes the electron-vibrational contribu-
tion Uel+vib, the reservoir coordinate contribution UR, and the
contribution Ulead referring to the various leads.

The respective transition kernel follows as �note the intro-
duction of �= t− t̄, the interchange of � and �, and ����

K�→�
�2� �t,t − �� = − ����tr�
̂�V�t�U0���V�t − ��Ŵ�

�eq��

� −
����

�2 tr�
̂�	V̂�t�,Ulead���UR���Uel+vib���

�	V̂�t − ��,Ŵ�
�eq�
−Uel+vib

+ ���

�UR
+���Ulead

+ ���
−� . �52�

This expression can be cast into a more explicit form by
introducing matrix elements with respect to the molecule
electron-vibrational states �� 	Eq. �5�
. Since ���, there
remain two terms:

K�→�
�2� �t,t − �� =

����
�2 trlead+R�����V̂�t�Ulead���UR���Uel+vib���

�ŴleadR̂R��������V̂�t − ��Uel+vib
+ ���

�UR
+���Ulead

+ ������� + ����Ulead���UR���

�Uel+vib���V̂�t − ��ŴleadR̂R����

�����Uel+vib
+ ���UR

+���Ulead
+ ���V̂�t������ .

�53�

We take into account that Uel+vib�������=exp�−i��������
	cf. Eq. �13�
 and obtain ����=��−���

K�→�
�2� �t,t − �� =

����
�2 trlead+R�e−i��������V̂�t�

�����Ulead���UR���ŴleadR̂R����V̂�t − ��

�����UR
+���Ulead

+ ��� + ei����Ulead���UR���

�����V̂�t − ������ŴleadR̂RUR
+���Ulead

+ ���

�����V̂�t������ . �54�

This can be put into the following form:
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K�→�
�2� �t,t − �� =

����
�2 e−i����trlead+R�ŴleadR̂R����V̂�t − ��

�����UR
+���Ulead

+ �������V̂�t�����

�Ulead���UR���� +
����

�2 ei����

�trlead+R�ŴleadR̂RUR
+���Ulead

+ �������V̂�t�����

�Ulead���UR�������V̂�t − ������� . �55�

If the coupling Hamiltonian becomes time independent, the
second matrix element product in the trace represents the
Hermitian conjugate of the first one.

The remainder of this section is devoted to a computation

of K��
�2� for the different parts entering V̂. According to Eqs.

�30� and �50�, there are four different contributions, two re-
lated to the molecule-lead coupling �with and without Cou-
lomb coupling causing electron exchange between the mol-
ecule and the leads�. The other two contributions are related
to the mechanism of IVR and describe the action of time-
dependent external fields �mixed contributions do not exist in
the second-order theory�.

A. Kernel of molecule-lead coupling causing electron transfer

For completeness, we briefly indicate how to compute the
rate �for a discussion, see also Refs. 5, 22, and 25� but also
indicate how to go beyond a second-order expression. To get

the second-order rate K�mol-lead�, we have to replace V̂ in Eq.
�55� by Hmol-lead

�1� 	Eq. �19�
. Moreover, we notice that the
trace with respect to the reservoir coordinates gives unity and
only matrix elements of Hmol-lead with electronic states ap-
pear. The vibrational states simply result in vibrational over-
lap integrals �Franck–Condon factors�.

The electronic matrix elements of Hmol-lead �entering the
rate expressions� are obtained as �note the use of the new
indices K and L for excess electrons in the molecule�

��Ma�Hmol-lead��Nb�

= �
X,k,s

�
K,c

�
L,d

��Ma�	�K,L+1VX�L + 1c,Ld,ks���L+1c�

���Ld�aXks + �K,L−1VX�L − 1c,Ld,ks�

�aXks
+ ��L−1c���Ld�
��Nb�

= �
X,k,s

	�M,N+1VX�N + 1a,Nb,ks�aXks

+ �M,N−1VX�N − 1a,Nb,ks�aXks
+ 
 . �56�

Consequently, the trace in Eq. �55� takes the form

trlead�Ŵlead��Ma�Hmol-lead��Nb�Ulead
+ �t�

���Nb�Hmol-lead��Ma�Ulead�t��

= �
X,k,s

�
Y,q,s�

��N,M−1VX�Ma,M − 1b,ks�

�VX�M − 1b,Ma,qs��

�trlead�ŴleadaXksUlead
+ �t�aYqs�

+ Ulead�t��

+ �N,M+1VX�Ma,M + 1b,ks�

�VY�M + 1b,Ma,qs��

�trlead�ŴleadaXks
+ Ulead

+ �t�aYqs�Ulead�t��� . �57�

The remaining trace expressions follow as �any electron-
electron interaction within the electrodes has been neglected�

trlead�ŴleadaXksUlead
+ �t�aYqs�

+ Ulead�t��

= �Xks,Yqs�	1 − fF���Xks − �X�
exp�i�Xkst� �58�

and

trlead�ŴleadaXks
+ Ulead

+ �t�aYqs�Ulead�t��

= �Xks,Yqs�fF���Xks − �X�exp�− i�Xkst� . �59�

Since the different electrodes are independent of each other,
the expressions are diagonal with respect to the electrode
index. The used model for the lead electrons results in the
Fermi distribution fF and the electronic energies EXks.

We insert all into the general expression 	Eq. �55�
 for the
second-order kernel and get

KMa�→Nb�
�mol-lead� ��� =

����
�2 ���Ma���Nb���2e−i��Ma�,Nb��t

� �
X,k,s

��N,M−1�VX�Ma,M − 1b,ks��2

�	1 − fF���Xks − �X�
ei�Xkst

+ �N,M+1�VX�Ma,M + 1b,ks��2

�fF���Xks − �X�e−i�Xkst� + c.c., �60�

with ��Ma� ,Nb��=�Ma�−�Nb�. This can be rewritten as

KMa�→Nb�
�mol-lead� ��� = �N,M−1KMa�→M−1b�

�mol-lead� ���

+ �N,M+1KMa�→M+1b�
�mol-lead� ��� , �61�

covering the rate describing discharge of the molecule and
charging, respectively. Ordinary rates are obtained from
zero-frequency Fourier-transformed kernels. The discharge
rate reads

kMa�→M−1b�
�mol-lead� =

2�

�2 ���Ma���M−1b���2 �
X,k,s

�VX�Ma,M − 1b,ks��2

�	1 − fF���Xk − �X�


��	��Ma�,M − 1b�� − �Xk


�
4�

�2 ���Ma���M−1b���2�
X

NX	��Ma�,M − 1b��


��VX	Ma,M − 1b,��Ma�,M − 1b��
�2

��1 − fF	���Ma�,M − 1b�� − �X
�

� �
X

kX,Ma�→M−1b�
�mol-lead� , �62�

and the charging rate is
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kMa�→M+1b�
�mol-lead� =

2�

�2 ���Ma���M+1b���2 �
X,k,s

�VX�Ma,M + 1b,ks��2

�fF���Xk − �X��	��Ma�,M + 1b�� + �Xk


�
4�

�2 ���Ma���M+1b���2�
X

NX	��M + 1b�,Ma��


��VX�Ma,M + 1b,��M + 1b�,Ma����2

�fF	���M + 1b�,Ma�� − �X


� �
X

kX,Ma�→M+1b�
�mol-lead� . �63�

Here, an additional factor of 2 appears since coupling poten-
tials are assumed to be spin independent. Moreover, we in-
troduced the density of states NX��� of electrode X and the
frequency dependent transfer couplings VX. Since the k sum-
mation has been replaced by an � integral, the � function
disappears. For later use, we also introduced rates which de-
scribe charging and discharge of the molecule via the cou-
pling to a specific electrode X.

B. Kernel related to molecular de-excitation by
electron-hole pair formation

To calculate the second-order rate K�dec� for the decay of
excited molecular states �molecular de-excitation by elec-
tron-hole pair formation in the leads�, we proceed in analogy

to the foregoing section and, first, replace V̂ in Eq. �55� by
Hmol-lead

�2� 	Eq. �20�
. Again, we notice that the trace with re-
spect to the reservoir coordinates is unity. Only matrix ele-
ments of Hmol-lead with electronic states appear and the vibra-
tional states result in respective Franck–Condon factors.

First, the electronic matrix elements of Hmol-lead
�2� are ob-

tained as �note the use of the new index K for the number of
excess electrons in the molecule�

��Ma�Hmol-lead��Nb� = �
X,k,q,s

�
K,c,d

��Ma�VX�Kc,Kd,kqs���Kc�

���Kd�aXks
+ aXqs��Nb�

= �M,N �
X,k,q,s

VX�Na,Nb,kqs�aXks
+ aXqs.

�64�

The trace in Eq. �55� takes the form

trlead�Ŵlead��Ma�Hmol-lead��Nb�Ulead
+ �t�

���Nb�Hmol-lead��Ma�Ulead�t��

= �
X,k,q,s

�
k�,q�,s�

�N,MVX�Ma,Mb,kqs�VX�Mb,Ma,k�q�s��

�trlead�ŴleadaXks
+ aXqsUlead

+ �t�aXk�s�
+ aXq�s�Ulead�t�� .

�65�

The formula makes use of the assumption that exclusively
electrons of the same lead are correlated one to another. We
insert these expressions into Eq. �55� for the second–order
kernel and obtain

KMa�→Nb�
�mol-lead� ��� = �M,N

����
�2 ���Ma���Mb���2e−i��Ma�,Mb��t

� �
X,k,q,s

�
k�,q�,s�

VX�Ma,Mb,kqs�

�VX�Mb,Ma,k�q�s��trlead�ŴleadaXks
+ aXqs

�Ulead
+ �t�aXk�s�

+ aXq�s�Ulead�t�� + c.c. �66�

Ordinary rates are recovered from zero-frequency Fourier-
transformed kernels

kMa�→Nb�
�mol-lead� = �M,N���Ma���Mb���2

�2 Re �
X,k,q,s

�
k�,q�,s�

VX�Ma,Mb,kqs�

�VX�Mb,Ma,k�q�s��

�
0

�

dte−i��Ma�,Mb��ttrlead�ŴleadaXks
+ aXqs

�Ulead
+ �t�aXk�s�

+ aXq�s�Ulead�t�� . �67�

The obtained expressions contain an electron-hole pair cor-
relation function and can be related to the dielectric function
of the leads �see, for example, Ref. 37, and references
therein�.

C. Kernel related to intramolecular vibrational energy
redistribution

To compute K�IVR�, we have to replace V̂ in Eq. �55� by
Hint. The respective electron-vibrational state matrix ele-
ments follow as

��Nb��Hint��Ma�� = �Nb,Ma�ĥ�Nb,��;Z� �68�

and the other one by interchanging the quantum numbers.
Both expressions result in �	Ma,��=	Ma�−	Ma��

KMa�→Nb�;	
�IVR� ��� = �Ma,Nb����

��e−i	Ma,��� trR�ĥ�Ma,��;Z�UR���

�R̂ĥ�Ma,��;Z�UR
+���� + ei	Ma,���

�trR�UR���ĥ�Ma,��;Z�R̂UR
+���

�ĥ�Ma,��;Z��� . �69�

The obtained expression suggests the notation

KMa�→Nb�
�IVR� ��� = �Ma,NbKMa,�→�

�IVR� ��� . �70�

1. Bilinear single-mode reservoir coupling

As a specific case, we consider the bilinear coupling of a
single active molecular coordinate Q �with equilibrium value
QMa� to a reservoir of uncoupled harmonic oscillators with
coordinates Z� �normal-mode description of secondary mo-
lecular coordinates as well as environmental coordinates�.
Therefore, we set
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HMa
�int� = ��

�

k��Ma��Q − QMa�Z�, �71�

and

mMa���� = ��Ma��Q − QMa��Ma�� = ��,�−1
�� + ��,�+1

�� + 1,

�72�

which results in

ĥ�Ma,��;Z� = mMa�����
�

k��Ma�Z�. �73�

The kernel caused by IVR follows as

KMa,�→�
�IVR� ��� = ����e−i	Ma,��� trR�R̂ĥ�Ma,��;Z�UR

+���

�ĥ�Ma,��;Z�UR���� . �74�

The calculation of the reservoir correlation function is stan-
dard and yields

trR�R̂ĥ�Ma,��;Z�UR
+�t�ĥ�Ma,��;Z�UR�t��

= �ma�����2�
�

k�
2�Ma��	1 + n�	��
ei	�t + n�	��e−i	�t� .

�75�

We introduce the spectral density

JMa�	� = �
�

k�
2�Ma���	 − 	�� �76�

and obtain for the related rate

kMa,�→�
�IVR� = ��,�+12��� + 1�n�	vib�JMa�	vib�

+ ��,�−12��	1 + n�	vib�
JMa�	vib�

� ��,�+1kMa,�→�+1
�IVR� + ��,�−1kMa,�→�−1

�IVR� . �77�

D. Kernel related to the action of external fields

In the following, we use the coupling Hamiltonian 	Eq.
�10�
, which should induce exclusively electronic transitions.
This yields a second-order kernel as

K�→�
�field��t,t − �� =

����
�2 trlead+R�e−i���������̂Ulead���

�UR���ŴleadR̂R����

������̂UR
+���Ulead

+ �������

+ ei��������Ulead���UR����̂ŴleadR̂R����

�����UR
+���Ulead

+ ����̂�����E�t�E�t − �� .

�78�

This expression results in a rather simple formula:

K�→�
�field��t,t − �� =

����
�2 	e−i����d��E�t�d��E�t − ��

+ ei����d��E�t�d��E�t − ��
 , �79�

with the transition matrix elements d��= �����̂����. Focus-

ing on optical transitions and applying the Condon approxi-
mation, one obtains

d�� = �M,N��Ma���Mb��dMa,Mb. �80�

The electronic transition matrix element �at a given charging
state of the molecule� is denoted here by dMa,Mb, and the
field is written as

E�t� = nE�t�e−i	0t + c.c., �81�

where n is the polarization unit vector, 	0 the excitation
frequency, and E�t� the field envelope which is assumed to
vary rather weakly with time such as to approach a �quasi�
stationary regime. Applying the rotating wave approxima-
tion, we get �d��=nd���

K�→�
�field��t,t − �� =

�����d���2

�2 	e−i����+	0��E�t�E*�t − ��

+ e−i����−	0��E*�t�E�t − ��
 + c.c. �82�

If the time dependence of the field envelope gives rise to an
adiabatic switch on and switch off of the field, the kernel
exclusively depends on � and the related rate reads

k�→�
�field� = �M,NkMa�→Mb�

�field� , �83�

with

kMa�→Mb�
�field� =

2�

�2 �EMa,Mb
�R� �2���Ma���Mb���	���Ma�,Mb� + 	0�

+ ���Ma�,Mb� − 	0�
 . �84�

Here, we introduced the so-called Rabi energy EMa,Mb
�R�

=dMa,MbE0, where E0 is the field amplitude. For concrete
computations, one may broaden the � function by introduc-
ing electronic dephasing times to arrive at a Lorentzian line
shape 	���	�→� / �	2+�2�
.

E. Second-order stationary current

As indicated above for the particular chosen external
field, the respective kernel depends only on � and we can
expect the formation of a stationary current at a finite applied
voltage. According to Eq. �49�, it is determined by K�→X�	
=0�, which has to be calculated here with respect to the
second order in the molecule-lead coupling:

K�→X
�2� ��� = −

1

�2����tr��Hmol-lead
�1� ,N̂X�−U0���

��Hmol-lead
�1� ,Ŵ�

�eq��−� . �85�

The zero-order time-evolution superoperator U0��� has been
defined in Eq. �51�. One immediately realizes that it only
contributes via Ulead and Uel+vib. In the following, we briefly
demonstrate the computation of K�→X

�2� which is similar to
that of the molecule-lead coupling rates due to electron trans-
fer �Sec. IV A�. First, we note that
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�Hmol-lead
�1� ,N̂X�− = �

k,s
�

N,a,b
	VX�N + 1a,Nb;ks���N+1a���Nb�aXks

− VX�N − 1a,Nb;ks���N−1a���Nb�aXks
+ 
 �86�

and

�Hmol-lead
�1� ,Ŵ�

�eq��−

= �
X,k,s

�
b

R̂R��Na����Na��	VX�N + 1b,Na;ks���N+1b�

���Na�aXksŴlead + VX�N − 1b,Na;ks���N−1b�

���Na�aXks
+ Ŵlead − VX�Na,N − 1b;ks���Na�

���N−1b�ŴleadaXks − VX�Na,N + 1b;ks���Na�

���N+1b�ŴleadaXks
+ 
 . �87�

If both commutators are inserted into K�→X
�2� ��� 	Eq. �85�
, we

obtain expectation values of lead operators resulting in Fermi
distributions and expressions containing the trace with re-
spect to the molecular electron-vibrational states. The vibra-
tional part results in

trvib�UaN
+ �����a����a��UN�1b����

= �
�

���Na���N�1b���2ei��Na�,N�1b���. �88�

Correspondingly, we get ��=Na��

KNa�→X
�2� ��� = −

1

�2�����
k,s

�
b,�

	���Na���N−1b��

�VX�Na,N − 1b;ks��2ei��Na�,N−1b���

�	1 − fF���Xks − �X�
e−i�Xks�

− ���Na���N+1b��VX�Na,N + 1b;ks��2

�ei��Na�,N+1b���fF���Xks − �X�ei�Xks�
 + c.c.

�89�

After Fourier transformation at 	→0 and an interchange of
both terms, we may write

KNa�→X
�2� �	 = 0� = − �

b,�
�kX,Na�→N+1b�

�mol-lead� − kX,Na�→N−1b�
�mol-lead� � .

�90�

The molecule–single-lead coupling rates kX
�mol-lead��Na�

→N�1b�� have been introduced in Eqs. �62� and �63�, re-
spectively. The result indicates the consistency of the present
generalized master equation description. Together with the
current, it is determined by the same rate expressions �based
on the same level of approximation�.

V. CONCLUSIONS

A generalized master equation description of charge trans-
mission through a single molecule has been presented. It
goes beyond any perturbative treatment of electron-
vibrational coupling and accounts for nonequilibrium vibra-

tional distributions. Based on a projection superoperator for-
malism, exact expressions for the generalized master
equation kernels could be derived. Our approach accounts
for intramolecular vibrational energy redistribution, excited
electronic levels, as well as their optical excitation and de-
excitation. Respective second-order transition rates have
been derived for all mentioned processes:

kMa�→Nb� = kMa�→Nb�
�mol-lead� + kMa�→Nb�

�IVR� + kMa�→Nb�
�opt� + kMa�→Nb�

�dec� ,

�91�

with the molecule-lead coupling rate k�mol-lead� responsible for
charge transfer, and the rates k�IVR�, k�opt�, and k�dec� of IVR,
optical excitation, and non-radiative de-excitation, respec-
tively. They describe transitions from a charging state M of
the molecule into the charging state N with a possible change
of the electronic level from a to b and a change of the vibra-
tional state from � to �. Related numerical results for a
model with a singly charged state �M ,N=0,1�, an electronic
ground and a single excited state, and the vibrational levels
belonging to a single reaction coordinate will be given in an
accompanying publication.33 In particular, an optical current
switching is suggested for the case of weak electron-lead
coupling and large reorganization energy upon charging. Fur-
ther, a quantitative account will be given on how intramo-
lecular vibrational energy redistribution and excited state de-
excitation influence the current switching.

Although the approach has been explicitly outlined for the
case of second-order rate expression, the calculation of
fourth-order rates is straightforward. Future extensions of the
model therefore may account for cotunneling in a similar
fashion as it has been already done in the single-electron
description of Ref. 18. Furthermore, it would be interesting
to account for a direct rate of photoassisted charging or dis-
charging of the molecule in the relation to optical current
switching.
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APPENDIX: MEMORY KERNEL IN THE ABSENCE OF
TIME-DEPENDENT EXTERNAL FIELDS

In the following, some formal relations which are useful
when going beyond second-order rates in the case of no ex-
ternal field coupling will be presented. Here, the kernel 	Eq.
�34�
 depends on the time difference only. This makes it
convenient to introduce the Fourier-transformed kernel

K���	� = − i tr�
̂�VG̃�	�VŴ�
�eq��

= ��,�K��	� + �1 + ��,��K�→��	� . �A1�

The expression includes the Green’s superoperator
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G̃�	� = − i
0

�

dtei	tUQ�t� = �	 − QL + i��−1 �A2�

and the frequency dependent transition rates K�→��	� �ordi-
nary rates are met in the limit 	→0 and we introduced L
=L0+V with L0 . . . = 	Hmol+Hlead , . . . 
− /��. Next, but in a
more general frame, we again demonstrate the existence of a
particular sum rule already used in Sec. III.

1. Sum rule

First we note the general property of the kernel 	Eq.
�A1�
:

�
�

K�� = − i tr�VG̃�	�VŴ�
�eq�� = 0. �A3�

This result follows from the completeness relation ��
̂�=1.
Further, the obtained expression vanishes identically because

it is the trace of a commutator. Since G̃ has not been affected,
the relation, which can be understood as a certain type of
sum rule, is also valid for other types of Green superopera-
tors and their possible approximations. In the limit 	=0 Eq.
�A3� reflects probability conservation of the ordinary rate
equations �without memory effects�. In particular, we may
deduce

K��0� = − �
�

K�→��0� , �A4�

where −K��0� can be interpreted as the inverse lifetime of
state �.

2. Removal of the projection superoperator P

Next, we remove the Green superoperator G̃�	� from the
kernel Eq. �A1� by introducing the Green’ superoperator

G�	� = �	 − L + i��−1. �A5�

It is independent of the projector P. Taking into account

	G−1�	� + PV
G̃�	� = 1, �A6�

we may simply derive

G̃�	� = G�	� − G�	�PVG̃�	� . �A7�

If inserted into Eq. �A1�, one obtains

K���	� = − i tr�
̂�VG�	�VŴ�
�eq��

+ i tr�
̂�VG�	�PVG̃�	�VŴ�
�eq��

= − i tr�
̂�VG�	�VŴ�
�eq��

+ i�
�

tr�
̂�VG�	�Ŵ�
�eq��tr�
̂�VG̃�	�VŴ�

�eq�� .

�A8�

Here, the second trace in the � sum reproduces the kernel

K���	�. To rewrite the first trace in the � sum, we deduce
from Eq. �A5�

G�	� = G0�	� + G0�	�VG�	� �A9�

and

G�	� = G0�	� + G�	�VG0�	� . �A10�

Then, we may set

tr�
̂�VG�	�Ŵ�
�eq�� = tr�
̂�VG0�	�Ŵ�

�lead��

+ tr�
̂�VG�	�VG0�	�Ŵ�
�eq��

=
1

	 + i�
tr�
̂�VG�	�VŴ�

�eq�� . �A11�

The last line follows from the fact that trace expressions of

first order in V vanish and that G0�	� applied to Ŵ�
�eq� simply

produces a frequency denominator.
We denote the rate expressions which do not contain the

projector P as

L���	� = − i tr�
̂�VG�	�VŴ�
�eq�� . �A12�

Moreover, the notation

L���	� = ��,�L��	� + �1 − ��,��L�→��	� �A13�

is introduced. Then, K�� and L�� are related to each other by
the following equation:

K���	� = L���	� −
i

	 + i�
�
�

L��K��. �A14�

Introducing the matrix notation K̂ and L̂ for both sets K��

and L��, respectively, a closed expression for K̂ simply fol-
lows from Eq. �A14� as

K̂�	� = �1 + i
L̂�	�
	 + i�

�−1

L̂�	� . �A15�

This expression guarantees that the K�→� entering the rate
equations do not lead to a double counting of lower-order
rates. If, for example, K�� has been calculated in a certain
order with respect to the transfer coupling Hmol-lead, any

lower-order rate has been removed. Moreover, if K̂�	� be-
comes divergent for 	→0, Eq. �A16� indicates the way to
make the expression regular. A power expansion of Eq.
�A15� takes the form

K̂�	� = L̂�	� + �
n=1

� �− iL̂�	�
	 + i�

�n

L̂�	� . �A16�

3. Some approximations

We rewrite L�� in such a way to let the lowest-order con-
tribution appear explicitly. Therefore, G�	� in Eq. �A12� is
replaced according to
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G�	� = G0�	� + G0�	�VG0�	� + G0�	�VG�	�VG0�	� .

�A17�

If inserted into Eq. �A12�, the first term produces the second-
order rate

L��
�2��	� = − i tr�
̂�VG0�	�VŴ�

�eq�� . �A18�

Here, we note that L�2�=K�2� 	cf. Eq. �A14�
. Moreover, the
second term on the right-hand side of Eq. �A17� does not
contribute, and the third one gives higher-order contributions
in Hmol-lead. It is written as

L̃���	� = − i tr�
̂�VG0�	�VG�	�VG0�	�VŴ�
�eq�� .

�A19�

First, notice that this expression, at least in principle, ac-
counts for charge transmission processes leading directly
from one lead to another �cotunneling�. An ordinary fourth-

order approximation for L̃�� follows immediately by replac-
ing G by G0. To get K��

�4�, we utilize Eq. �A16� and directly
obtain

K�→�
�4� �	� = L�→�

�4� �	� −
i

	 + i�
�
�

L��
�2�L��

�2�. �A20�
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