
Singlet-triplet relaxation in two-electron silicon quantum dots

M. Prada,1 R. H. Blick,2 and R. Joynt1
1Physics Department, University of Wisconsin-Madison, 1150 University Avenue, Wisconsin 53705, USA

2Electric and Computer Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53705, USA
�Received 9 January 2008; revised manuscript received 28 January 2008; published 21 March 2008�

We investigate the singlet-triplet relaxation process of a two-electron silicon quantum dot. In the absence of
a perpendicular magnetic field, we find that spin-orbit coupling is not the main source of singlet-triplet
relaxation. Relaxation in this regime occurs mainly via virtual states, and is due to nuclear hyperfine coupling.
In the presence of an external magnetic field perpendicular to the plane of the dot, the spin-orbit coupling is
important and virtual states are not required. We find that there can be strong anisotropy for different field
directions: parallel magnetic field can increase substantially the relaxation time due to Zeeman splitting, but
when the magnetic field is applied perpendicular to the plane, the enhancement of the spin-orbit effect shortens
the relaxation time. We find the relaxation to be orders of magnitude longer than for GaAs quantum dots, due
to weaker hyperfine and spin-orbit effects.
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I. INTRODUCTION

A promising technology for the implementation of quan-
tum computation �QC� involves the storage of quantum in-
formation in the spin of electrons in quantum dots �QDs�.
The key requirement is that the lifetime of the spins is long
compared with the time required for the operation of logic
gates. This has motivated the development of dots in silicon,
where spin-orbit coupling is weak and isotopic enrichment
can eliminate hyperfine coupling �HC�. Indeed, recent ex-
periments demonstrate the presence of long-lived spin states
in silicon QDs.1 Understanding the processes that relax spins
can point to strategies for minimizing relaxation and coher-
ence times, thereby improving coherent control of quantum
systems. In the case of electron spins embedded in semicon-
ductor nanostructures, the relaxation properties are strongly
affected by the regime of operation. Thus, it is important to
identify the dominant sources of fluctuations in these sys-
tems and the mechanisms by which they couple to the spins,
and to analyze the nonequilibrium decay laws in different
regimes of external fields. Considerable theoretical work has
been performed on lifetimes for single-electron spin flip T1
and dephasing T2 for GaAs �Refs. 2–4� and for Si.5 In GaAs,
these times have been measured. Single-spin values for T1 of
about 0.5 ms at a field of 10 T up to 170 ms at 1.75 T were
obtained,6,7 while for T2, one finds a value of about 1 �s.8 A
qubit consisting of the singlet and triplet states of a two-
electron system is also proposed for QC. The singlet-triplet
lifetime has been studied in GaAs.9–12 In particular, Hanson
et al. found T1 for the singlet-triplet transition in a two-
electron GaAs dot to be 2.6 ms at B=0.02 T. We shall call
this TST. Extensive theoretical work has been done for TST in
GaAs,4,13–16 and our methods are similar to those found in
these references.

In this paper, we study the relaxation process for a doubly
occupied Si QD in an excited �triplet� state to the ground
�singlet� state, focusing on the computation of TST. Our main
motivation is to understand transport through double quan-
tum dots. Thus, we are concerned with lateral dots defined by
gates in strained silicon quantum wells. Such dots have a

twofold valley degeneracy as well as spin degeneracy, but we
will deal here with dots where the valley splitting is large
compared with the first orbital excitation energy. We will
focus on natural Si with a 4% concentration of 29Si nuclei,
since this is the material on which experiments have been
performed,17 but we comment on isotopically enriched Si
below.

We assume the levels to be ordered as shown in Fig. 1:
The relevant energy scales are then the exchange, J=Es�
−ET, and the difference between the ground singlet and the
first triplet, �ST=ET−ESg

, where the triplet is formed with a
higher energy orbital, as depicted in Fig. 1�a�. The dominant
mechanism available in the absence of an external magnetic
field is the hyperfine coupling with nuclei18,19 via a virtual
state20 �left arrows of Fig. 1�b��. HC cannot cause a direct
T→S transition because the nuclei cannot absorb the energy.
So the change in energy of the electron spin must be accom-
panied by the emission of a phonon.20–22 The electron-
phonon interaction mixes, thus, different orbital states via a
deformation potential in this process, while the spin flip is
provided by the HC. This is the dominant process at zero
applied magnetic field. A second relaxation channel is
through spin-orbit �SO� coupling. SO coupling mixes differ-
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FIG. 1. �a� Level scheme for a doubly occupied silicon QD: the
ground singlet involves only one orbital, whereas an additional or-
bital is needed to form the triplet and higher states, increasing the
level separation. �b� Dominant processes in the quantum dot. The
two rates indicated are the combined hyperfine and phonon rates,
�hc-ph, and the combined spin-orbit and phonon rates, �so-ph. The
energy separation of the ground-state singlet and first triplet is de-
noted by �ST=ET−ESg

, and the exchange splitting by J.
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ent spin states through the Rashba SO coupling.23 This leads
to a nonvanishing matrix element for the phonon-assisted
transition between a singlet and a triplet state in the absence
of time-reversal symmetry �right of Fig. 1�, leading to an
increase in the relaxation rate �ST as the field is increased.
Our aim here is to compute the singlet-triplet relaxation rates
due to these two mechanisms as a function of external field.

We outline the method in the following section, and jus-
tify the approximations that are made. We then present re-
sults and discussion.

II. METHOD AND RESULTS

We consider first the case of low fields. For reasons to be
discussed below, we may neglect the spin-orbit coupling, and
the Hamiltonian is written as H0+�H, where H0 contains the
confining potential of the QD and �H=Hhc+Hph. Here, Hph
corresponds to the electron-phonon coupling �which con-
serves spin�, and Hhc is the hyperfine coupling that causes
spin mixing in the dot. The confining potential is taken as
parabolic with circular symmetry. We do not consider the
Coulomb interaction explicitly in the Hamiltonian, as was
done, for example, by Golovach et al.,17 whose main interest
was in the regime close to the singlet-triplet crossing. In-
stead, the interaction is included phenomenologically
through a parameter J, which denotes the singlet-triplet split-
ting. This is a crude form of mean field theory, but is reason-
able as long as we are far from the singlet-triplet crossing
point. Far from this point, there are no energy denominators
that depend sensitively on the interaction strength, and ma-
trix elements depend smoothly on the strength.

For the purpose of this paper �QD formed in a biaxially
strained quantum well grown along the z axis�, we consider
the lowest electric subband, so that the wave function ��z� in
the z direction is fixed. We utilize the Fock–Darwin states for
the lateral dimensions ��n,m� �x ,y� to construct our wave
functions, ��i�, that diagonalize H0. For these states, orbital
and spin degrees of freedom factorize: ��Sg

�=��z�
� ��1��1�� � �S�, ��T�=��z�� ��1��2�− �2��1�� /	2 � �T�, and
��s��=��z�� ��1��2�+ �2��1�� /	2 � �S�. Here, �S�
��↑ ↓ �
− �↓ ↑ �� /	2 and �T+,0,−�
��↑ ↑ � ; ��↑ ↓ �+ �↓ ↑ �� /	2; �↓ ↓ �� de-
note spin states, �1�
��0,0��r� and �2�
��0,	1��r�, so �1��2�

��0,0��r1���0,	1��r2�. The electron-electron interaction is
taken into account through the parameter J. The amplitude of
a transition between the triplet ��T� and singlet ��Sg

� ground
state via an excited ��s�� state is given in second-order per-
turbation theory,

��Sg
��H��T� �

��Sg
�Hph��s����s��Hhc��T�

ET − Es�
. �1�

The transition rate from ��T� to ��Sg
� is then given by Fer-

mi’s golden rule:

�ST =
2


�
���Sg

f ��H��T
i ��av

2 ��Ei − Ef� . �2�

In this notation, ��T
i � denotes the initial state of electron,

nuclei, and phonons, ��T
i �
��T� � �in� � �iph�; likewise,

��Sg

f �
��Sg
� � �fn� � �fph�. The av subscript indicates that the

initial states of the nuclear and phonon systems are averaged
over thermal ensembles, and that the final states of these
systems are summed over. In this paper, we take the tempera-
ture to be 100 mK, as this is roughly the temperature at
which experiments are done. The chief approximations in-
volved in the calculation are the use of second-order pertur-
bation theory and the truncation of the Hilbert space to just
two singlet states and one triplet state. The first approxima-
tion is excellent—the rates turn out to be on the order of
seconds; at those time scales, the Born–Markov approxima-
tion implicit in golden-rule calculations is surely valid—the
time scales in the bath are probably of the order of the time
for a phonon to traverse the dot. The validity of the second
approximation is less clear—in high-symmetry dots such as
we are considering here, the phonons do not couple to highly
excited states in the dipole approximation, but real dots may
be more disordered.

For silicon under compressive stress along �001�, the elec-
tron interacts with a phonon of momentum q via deformation
potentials5,24,25 so the Hamiltonian reads

Hph = 
s,q

i�a
qs
* e−iqr + aqse

iqr�q��dêx
sq̂x + �dêy

sq̂y

+ ��d + �u�êz
sq̂z� , �3�

where �nq−1�aq�nq�=	�nq /2Mcq, Mc is the mass of the unit
cell, nq is the phonon occupation number, and �q is the
phonon energy. Here, s denotes the polarization of the pho-
non �two transverse and one longitudinal�, q is the wave
vector, and �u and �d are the electron-phonon coupling pa-
rameters. This is slightly simpler than the corresponding
Hamiltonian in GaAs because of the absence of the piezo-
electric coupling in �centrosymmetric� Si.

Next, we evaluate the spin-flip matrix element given by
��s��Hhc��T�, which is provided, at low magnetic fields, by
the bath of nuclear spins of the 29Si isotope.18 Accordingly,
we consider a contact Hamiltonian,

Ĥhc = 
i,j

4�0

3I
�B�I�SiI j��ri − R j� = A

i,j
SiI j��ri − R j� ,

�4�

where Si �I j� and ri �R j� denote the spin and position of the
ith electron �jth nuclei�, and � and A are hyperfine coupling
constants. Inserting Eqs. �4� and �3� into Eq. �2�, we get an
expression for the singlet-triplet rate:

�ST = �ph� A

2J
�2


i,j

���T��Si
+Ij

−��ri − R j���s���2� . �5�

�ph describes the phonon rate derived from Eq. �3� and mixes
the different orbitals contained in �s�� and �Sg�. We use the
electric dipole approximation �e	iqr�1	 iqr� in Eq. �3�
which is valid for the range of energies considered here
��200 �eV �Ref. 1��,
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�ph �
�nq + 1�

2�Si�2
�2
s
� d��

0

� dqq6

q
��dêx

sq̂x

+ �dêy
sq̂y + ��d + �u��êz

sq̂z��2���s��x�Sg��2�êx
s�2

+ ��s��y�Sg��2�êy
s�2 + ��s��z�Sg��2�êz

s�2���� − �J + �ST�� .

�6�

To evaluate the integral over momenta of Eq. �6�, we assume
an isotropic phonon spectrum, Eph=�qs, and a linear disper-
sion relation, qs=vsq, where vs is being the sound velocity
of the mode s.

The sum over j of Eq. �5� can be transformed to an inte-
gral by introducing Cn as the volume density of 29Si nuclei,
resulting in a compact expression for triplet-singlet relax-
ation:

�ST � � A

2J
�2

Cn�� d3Rj����0,0��Rj��2

− ���0,	1��Rj��2�2� 1

2�Si�
� J + �ST

�
�5


i,s

�si�xi
2�

vs
7 , �7�

where �si contains the result of the angular integral which
depends on the mode s along the coordinate i: �lx=�ly
=4
���d

2 /3�+ �2�d�u /15�+ ��u
2 /35��, �lz=4
���d

2 /3�
+ ��d�u /5�+ ��u

2 /7��, �tx=�ty =4
�u
2 /35, and �tz

=4
�u
2 /70.

It is important to note that �ST is proportional to Cn, i.e.,
to the total number of nuclei Nn with which the electrons
interact. This is consistent with the simple picture that the
relaxation rate is proportional to the mean-square fluctua-
tions in the random hyperfine field. Formulas for spin relax-
ation rates due to hyperfine coupling that give an apparent
proportionality to Nn

−1/2 are common in the literature, and
have given rise to the incorrect notion that some sort of mo-
tional narrowing is at work. This is not possible, since the
fluctuations in the nuclear spin system are slow. In any case,
the rate must vanish as Nn→0. These formulas are correct,
but they generally involve other parameters that actually
vary with Nn.

Figure 2 represents TST=�ST
−1 obtained as described in Eq.

�7�, as a function of the level separation, J=Es�−ET for a
given �ST. In the case of Si, �=186,26 yielding A�2
�10−7eV nm3. Only about 4% of the nuclei have spin, so
Cn�0.04�8 /v0��2 nm−3 �v0�0.17 nm3�. Other parameters
used are �u=9.29 eV, �d=−10.7 eV, �i=2330 kg m−3, vl
=9330 ms−1, vt=5420 ms−1, and �ST=200 �eV. At small J,
TST increases as a function of J: the triplet �T	,0� and singlet
�S�� levels are strongly mixed by the hyperfine interaction,
and the phonon density of states increases as a function of
level separations. In the limit J=0, the rate is given by pho-
non emission, which we found to be of the order of 1012 s−1.
Thus, TST appears very small as J→0 in Fig. 2, but it is not
zero. At large J, spin mixing is lessened because there is an
energy denominator, and phonon relaxation is then sup-
pressed by spin conservation.

The calculations are obviously consistent with the ob-
served lower bound of TST�15 �s given in Ref. 1. It is

expected that more stringent bounds, hopefully also upper
bounds, will be available soon.

We now move to the case of finite applied magnetic field
B. We first take the field along the growth direction �perpen-

dicular to the two-dimensional electron gas �2DEG��: B�

=B� �. This allows a direct T→S transition to occur in the
presence of a Rashba SO coupling.28 The Rashba field is a
consequence of structural inversion asymmetry23 in the het-
erostructure. Note that no bulk inversion asymmetry �BIA�
needs to be considered in a centrosymmetric crystal like Si.
The SO Hamiltonian due to the full confining potential for
the device considered here, where l� /rQD�1, l� being the
Data–Das device length,30 is then given by29

HSO = ���� � p��z. �8�

HSO mixes the spin states �Sg� and �T	�, and the orbital wave
functions as well, so virtual transition to a higher state �s�� is
no longer needed and we have

�Sg��HSO�T	� �
�iph�Hph�fph��Sg�HSO�T	�

�ST + �	 , �	 = 	 g�BB .

�9�

Here, the phonon just ensures energy conservation. Notice
that �Sg��HSO�T� is zero if B=0. This “Van Vleck cancella-
tion” has been known for decades,31,32 but has been clarified
in recent years,34 particularly by performing a spin-
dependent unitary transformation in which the first-order
term in � is eliminated.33 In explicit calculations in the origi-
nal basis, the cancellation occurs due to the fact that the
admixture of T+ and T− is equivalent in magnitude but oppo-
site in sign. The key point is that spin-orbit-induced transi-
tion rates are always proportional to B2 �or higher powers of
B in the case of spin 1 /2 dots�.5
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FIG. 2. TST as a function of J for the process depicted in the
inset: when levels �T� and �s�� are close in energy �J→0�, the pro-
cess is dominated by hyperfine coupling �fast�, and as this energy
splits, the process is dominated by the phonon emission, J �Ref. 5�.
For higher energies, the dipole approximation breaks down �Ref.
27�.
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Proceeding as in Eqs. �1�–�5�, we find the rate for the
direct transition:

�ST
D = �ph

D �
i=	

�Sg�HSO�Ti�
�ST + �i �2

.

Note that for B=0, �ST
D vanishes. Since the phonon does not

mix different orbitals in zeroth order in the multipole expan-
sion to zeroth order �i.e., e	iqr�1�, �ph

D now reads

�ph
D �

�nq + 1�
2�Si�2
�2

s
� d��

0

� dqq4

q
��dêx

sq̂x + �dêy
sq̂y

+ ��d + �u��êz
sq̂z��2��� − �ST� . �10�

Inserting Eq. �9� into Eq. �2� and evaluating Eq. �10�, we
get the spin-orbit-induced relaxation rate, which is quadratic
in B and �, in agreement with earlier treatments:4

�ST
D � �4�m�

�3 �2

�r2�
s

�s

vs
5 , �11�

with �l=4
��d
2+ ��d�u /2�+ ��u

2 /5�� and �t=4
���d
2 /5�

+ �4�d�u /15�+ �2�u
2 /15��. Here, we use ��50 m /s, fol-

lowing Ref. 5 and adapting the result to an electric field of
10−7 V /m, an estimate for Ez for a QD with a 2DEG density
of �4�1011 cm−3. �One should note, however, that this
value of � is very uncertain.� Figure 3�a� shows in black the
relaxation in the absence of the Rashba coupling ��=0�, and
in red the relaxation with the additional �ST

D ��ST+�ST
D �. We

plot the results for two values of J. For �=0, TST is a rela-
tively weak function of J, since the hyperfine interaction is
not very sensitive to field. At finite �, B� activates the mix-
ing and TST decreases rapidly.

If the magnetic field B� is parallel to the 2DEG, the only
effect is that the spin splitting increases, and larger relaxation
times are obtained �Fig. 3�b��, as this increases, on average,
the energy separation E�T	�−E�s�� �see diagram�. In contrast,
the perpendicular magnetic field B� decreases the relaxation
time, as we have seen. This anisotropy in applied field of TST
would be a critical signature of the spin-orbit effect. We
compare our result for a B� =0.02 T �TST�500 ms� to the

experimental value obtained for GaAs �2.6 ms �Ref. 10�� and
find that Si has a singlet-triplet relaxation time more than 2
orders of magnitude larger than GaAs.

Note that the behavior of TST here is different to the much
studied GaAs-based devices4,12,16 because of the nature of
spin-orbit coupling and electron-phonon coupling in noncen-
trosymmetric materials: The BIA is absent and there are no
piezophonons; also, avoided crossings of the singlet and trip-
let energy levels do not occur for the magnetic fields consid-
ered here, giving a monotonous behavior.

III. DISCUSSION

There are several ways to measure �ST. In single-dot sys-
tems, this can be realized using a single pulse.9 Alternatively,
one may use the following sequence: in the first phase, the
state can be prepared so that only one electron is present in
the QD, and in the next phase, the triplet would be available
for conductance, unless it relaxes to the singlet. Measure-
ment of the current for different values of the pulse duration
then gives a direct method to determine �ST. The latter ex-
periment has been performed in GaAs.12 In double-dot ex-
periments, �ST is one of the parameters in the rate equations
that determine the measured current, so these experiments
also provide an avenue for the determination of the singlet-
triplet lifetime.1

One should note immediately that TST is considerably
longer in natural Si than in GaAs, generally by orders of
magnitude. This is expected in a system with weaker spin-
orbit coupling and fewer spinful nuclei. The times we find
are of the order of seconds for the most part. It is possible to
reduce the time by applying a perpendicular field, which can
serve as a very useful diagnostic. It is also possible to
lengthen TST by the use of isotopically enriched Si, i.e., pure
28Si. This would eliminate the hyperfine mechanism, but it
would not get rid of spin relaxation entirely, as higher-order
effects of spin-orbit coupling are still present even at B=0.
However, these effects are quite small in Si. It seems likely
that other effects such as flux noise will be the limiting factor
in isotopically enriched Si.

In summary, we have calculated the dominant rates for
phonon-assisted triplet-singlet relaxation of a silicon quan-
tum dot. TST is found to be of the order of hundreds of
milliseconds, very sensitive to the exchange energy J, and
even longer in the presence of a B�, of seconds. In the pres-
ence of a B�, a direct transition becomes possible, increasing
�decreasing� �ST �TST�. Due to weak spin-orbit and hyperfine
coupling, silicon offers very long coherence times, which are
required for solid state qubits.
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