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A Drude-Boltzmann theory is used to calculate the transport properties of bilayer graphene. We find that for
typical carrier densities accessible in graphene experiments, the dominant scattering mechanism is over-
screened Coulomb impurities that behave like short-range scatterers. We anticipate that the conductivity ��n�
is linear in n at high density and has a plateau at low density corresponding to a residual density of n*

=�nimpñ, where ñ is a constant which we estimate, using a self-consistent Thomas-Fermi screening approxi-
mation, to be ñ�0.01 qTF

2 �140�1010 cm−2. Analytic results are derived for the conductivity as a function of
the charged impurity density. We also comment on the temperature dependence of the bilayer conductivity.
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I. INTRODUCTION

The recent experimental realization of a single layer of
carbon atoms arranged in a honeycomb lattice has prompted
much excitement in both the theoretical and experimental
physics communities �for a recent review, see Ref. 1 and
references therein�. The focus of the current work is on bi-
layer graphene which has received less attention both theo-
retically and experimentally, but it is nonetheless of equal
importance both for technological application and for funda-
mental science. Bilayer graphene is two monoatomic layers
of graphene separated by about 0.3 nm, which is the inter-
plane distance in bulk graphite. Similar to single-layer
graphene, bilayer graphene has been realized experimentally
through the mechanical exfoliation of graphite onto SiO2
substrates.1 While the band structure of a single layer of
graphene has a linear dispersion, theoretically, bilayer
graphene has a quadratic dispersion with an effective mass of
about 0.03me, making it similar to the regular two dimen-
sional electron gas �2DEG�. Despite the quadratic spectrum,
bilayer graphene shares two important features with single-
layer graphene �hereafter referred to simply as graphene�,
which distinguish it from regular 2DEGs. First, the bilayer
effective Hamiltonian2–6 is chiral is which gives rise to the
anomalous integer quantum Hall effect.7 Second, unbiased
bilayer graphene is a semimetal implying that one continu-
ously moves from electronlike carriers for positive gate volt-
ages to holelike carriers for negative gate voltages without
any gap in the spectrum. We note that although recent
experiments8 on graphene bilayers have been able to open a
gap by connecting the upper layer to an external top gate,
here we ignore this additional degree of freedom.9,10

By considering the gapless bilayer situation, the low-
density transport resembles that of single layer where Cou-
lomb impurities in the substrate create an inhomogeneous
density profile breaking the system into puddles of electrons
and holes. The bulk residual density n* induced by these
impurities has been calculated for single-layer graphene11,12

which shows agreement with recent experimental
studies.13–15 The high-density transport in single-layer
graphene with screened Coulomb impurities was discussed
in Refs. 11 and 16–20. The goal of the present work is to
generalize these high-density and low-density single-layer

graphene Boltzmann transport theories to the case of
graphene bilayers. We note that the Boltzmann transport
theory developed here ignores the effects of phase coherence
which was studied in Refs. 21 and 22.

II. BILAYER HAMILTONIAN AND BOLTZMANN
TRANSPORT

The effective Hamiltonian for bilayer graphene is now
well established in the theoretical literature �see Refs. 2–6
and 23–25�. First principles and band structure calculations
show that at both very small energies and very large ener-
gies, bilayer graphene has a linear spectrum. For energies of
2�10−3 eV���0.1 eV, bilayer graphene has a quadratic
spectrum �see, e.g., Refs. 2 and 4�. In principle, bilayer
graphene should have a complicated crossover Hamiltonian
moving from linear to quadratic and back to linear as one
increased the carrier density. To our knowledge, a theoretical
framework to understand the structure and effects of chirality
within this crossover has not yet been developed. However,
as we argue below, charged impurities in the substrate induce
a residual density n* in bilayer graphene that corresponds to
a typical Fermi energy ��0.01 eV which is larger than the
lower-energy scale for using the quadratic Hamiltonian, and
the range of experimental gate voltages Vg�50 V induces a
maximum carrier density with Fermi energy ��0.1 eV
which is comparable to the limit where the low-energy effec-
tive quadratic Hamiltonian begins to break down. Therefore,
for realistic samples, the condition 2�10−3 eV���0.1 eV
is mostly satisfied and the quadratic Hamiltonian H proposed
by McCann and Falko should be an excellent approximation,
where, in addition, bilayer graphene is weakly interacting in
this energy window. In what follows, we use2

H = −
1

2m
� 0 �px − ipy�2

�px + ipy�2 0
� . �1�

This Hamiltonian can be diagonalized giving �k
= ��2k2 /2m, where m=2	1�2 / �3	0

2a2��0.033me, 	0
�3.16 eV is the in-plane coupling, 	1�0.39 eV is the out-
of-plane coupling, a�0.246 nm is the lattice constant, and
me is the electron mass. The eigenvectors 
�= �e−i2�k , �1�
give the aforementioned chiral properties where k
=k exp�i�k�.
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Using this diagonal basis, one can calculate the scattering
time � using the Boltzmann transport theory26 to find

�

��k�
= 2�	

k�

nimp
ṽ�q�
2�1 − k̂ · k̂��Fk̂k̂���k − k�� , �2�

where the momentum transfer q= 
k−k�
=2kF sin�� /2�, ṽ�x�
is the screened scattering impurity potential, and k̂ · k̂�
=cos �. The effects of chirality are captured in Fk̂k̂�. For a
regular 2DEG whose Hamiltonian is not chiral, we have
F���=1, whereas F���= �1+cos �� /2 for graphene and F���
= �1+cos 2�� /2 for bilayer graphene. The term �1
− k̂ · k̂��Fk̂k̂� determines the scattering cross section. We ob-
serve that in contrast to single-layer graphene, both bilayer
graphene and the 2DEG are dominated by backscattering
��=��. Introducing x=q / �2kF�, we find

�

�
=�nimp

16m

�
�

0

1

dx
ṽ�x�
2
�x − 2x3�2

�1 − x2 for bilayers

nimp
4F

�vF
2�

0

1

dx
ṽ�x�
2x2�1 − x2 for graphene,
�3�

where the single-layer graphene result was reported previ-
ously in Refs. 11, 19, and 27.

Before calculating the Boltzmann conductivity �
= �2e2 /h�kFvF�, we first use dimensional arguments to deter-
mine the dependence of conductivity on carrier density. In
2DEGs and bilayer graphene, the Fermi velocity vF=�kF /m
depends on carrier density through n�kF

2, while the inverse
screening length qTF=4me2 / ���2� is density independent.
Since the gas density parameter rs�vF

−1, it scales as n−1/2.
This is all in sharp contrast to single layer graphene where
vF�106m /s is constant, qTF=4kFrs depends on carrier den-
sity, and rs=e2 / ��vF��0.8 is a density independent constant
that depends mostly on the dielectric constant of the sub-
strate.

One finds that for bilayer graphene ��kF
2�, and that for

unscreened Coulomb impurities �C�kF
2 giving �C�n2,

whereas overscreened Coulomb scatterers behave similar to
white-noise disorder giving density independent � and �
�n /nimp �this is similar to a low-density 2DEG, where Cou-
lomb scatterers are strongly screened if qTF�2kF�. Writing
��n��n�, we note that �=1 in both the linear and quadratic
Hamiltonians arising from very different reasons �see Table
I�. The solution within a crossover between quadratic and
linear Hamiltonians �see above� is beyond the scope of this
work, but we observe that approaching the crossover from
either side gives ��1, and for Coulomb scatterers located at
the SiO2 interface, we have ��2. In what follows, we focus
on the experimentally relevant regime, where we assume that
qTF /2kF�1 which is typically called the low-density regime
in 2DEG literature.28 In this context, even in GaAs hetero-
structures �where m�0.07me� moving to higher density re-
sult in a complicated crossover where the exponent � slowly
decreases with increasing density as other scattering mecha-
nisms come into play.28

In single-layer graphene, it was shown by Refs. 29 and 30
that for q�2kF, the static dielectric function calculated in the
random phase approximation is identical to that of the much
simpler Thomas-Fermi approximation. A similar result holds
for 2DEGs. While it is not clear if this holds in bilayer where
the polarizability has only been calculated numerically �see
Ref. 31�, these results indicate that Thomas-Fermi approxi-
mation �which allows for analytical results� should capture
both qualitatively and quantitatively the transport properties
of bilayer graphene. Within the Thomas-Fermi approxima-
tion, the potential of a charged impurity located at a distance
d from the substrate is

ṽ�q� =
2�e2

�

e−qd

q + qTF
�

��2

2m
, �4�

where in the second equation, we have used the further ap-
proximation �also called “complete screening approxima-
tion”� that qTF=4me2 / ���2��1 nm−1 is larger than the
maximum transferred momentum q�0.3 nm−1. Herein lies
an important difference between single-layer graphene and
bilayer graphene. For single-layer graphene, qTF=4kFrs de-
pends on density, so that both the screened and unscreened
Coulomb potentials scale as kF

−1. It is this property of single-
layer graphene that gives rise to the conductivity with Cou-
lomb scatterers being linear in density and the inapplicability
of Gaussian white-noise models �i.e., zero-range scattering�
to capture the transport properties. In contrast, for bilayer
graphene and 2DEG, qTF is a density independent constant
which is larger than the typical momentum transferred in
current experiments, and therefore the strong screening ap-
proximation �qTF�2kF� applies except at very high carrier
densities. In this context, bilayer graphene is much more
similar to two dimensional �2D� Si metal-oxide-
semiconductor field-effect transistors �MOSFETs� than to
single-layer graphene. Analytic results for the conductivity
can be obtained both in the limit d→0 and 2kF /qTF→0.
Keeping both to leading order, we find

��n� �
4e2

�h

n

nimp
�1 +

1216

105��
�n�d + qTF

−1�� . �5�

The result �= �4e2 /�h��n /nimp�, where conductivity is
linear in density, is valid for d−1 ,qTF�2kF, although we ex-
pect deviations from this linear behavior for n�6
�1011 cm−2, a regime, which, in principle, should be acces-

TABLE I. Summary of Boltzmann transport results in two di-
mensional electron gas �2DEG�, single-layer graphene, and bilayer
graphene. For screened Coulomb scattering results in 2DEG and
bilayer graphene, we assume that qTF /2kF�1 �see text� and observe
that arising from different physics, screened Coulomb scattering
gives ��n in all three cases.

2DEG Graphene Bilayer

Bare Coulomb scattering ��n2 ��n ��n2

Screened Coulomb ��n ��n ��n

Short-range scattering ��n ��const ��n
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sible in future experiments. We note that the linear in density
behavior was anticipated in Refs. 5 and 24, but we point out
that the low-density saturation in Ref. 5 arises from a com-
pletely different and universal mechanism23,25 that we be-
lieve is unobservable in current bilayer graphene samples
because of the large and nonuniversal n* arising from the
disorder induced electron-hole puddles.11,32 In the following
section, we calculate the voltage fluctuations and residual
density induced by charged impurities.

III. LOW-DENSITY RESIDUAL DENSITY

This section follows closely the derivation in Refs. 11 and
33 and applies the same formalism to the case of bilayer
graphene. We consider Nimp impurities located at the points
�ri� in a 2D plane. If each impurity has a potential ��r�, then
the disorder averaged potential

V̄ =� dr1dr2 ¯ P�r1�P�r2� ¯ 	
i=1

Nimp

��ri� ,

=nimp�̃�q = 0� , �6�

where to get the second line, we have assumed that the im-
purities are uncorrelated and uniformly distributed. For
sample area A, nimp=Nimp /A, P�ri�=A−1, and �̃�q� is the 2D
Fourier transform of the impurity potential ��r�. For ex-
ample, the real space Coulomb potential for an impurity lo-
cated at distance d from the graphene �or bilayer� plane,
��r�= �e2 /���r2+d2�−1/2. This gives for the bare potential
�̃0�q�= �2�e2 /��exp�−qd� /q. Using the Thomas-Fermi di-
electric function, ��q�=1+qTF /q gives the screened Thomas-
Fermi potential shown in Eq. �4�. Since the static polarizabil-
ity at q→0 is related to the density of states � by the
compressibility sum rule, the result for the disorder averaged

potential V̄=nimp /� is actually quite general. For bilayer
graphene, � is constant, and the threshold voltage shift can

be immediately obtained from n̄= V̄�=nimp. It is the property
that qTF is independent of carrier density that explains why
the threshold voltage shift in bilayers is n̄=nimp, which is in
contrast to graphene11 where the density dependent inverse
screening length gives n̄=nimp

2 /4n*. This nonlinear depen-
dence of the threshold voltage on charged impurity density in
monolayer graphene has recently been verified
experimentally.14

The disorder averaged potential fluctuations �V2� are ob-
tained in a similar fashion,

�V2� =� dr1dr2 ¯ P�r1�P�r2� ¯ 	
i,j=1

Nimp

��ri���rj� ,

�V2� − V̄2 =� dr1dr2 ¯ P�r1�P�r2� ¯ 	
i=j=1

Nimp

��ri���rj� ,

=nimp� dq

�2��2 ��̃�q��2. �7�

For the Thomas-Fermi potential �Eq. �4��, we have

�V2� − V̄2 =
nimp

2�
� qdq�2�e2

�

e−qd

q + qTF
�2

,

=2�nimp�e2/��2C0
TF�x = 2qTFd� , �8�

where C0
TF�x�=�x�xexE1�x�� and E1�x�=�x

�dte−t / t is the expo-
nential integral function. While the results presented here are
for the Thomas-Fermi potential �Eq. �4��, it is straightfor-
ward to generalize this result to obtain C0

RPA for random
phase approximation screening �e.g., using the numerical bi-
layer dielectric function calculated in Ref. 31�, but for the
relevant density scale set by qTF, we expect these results to
be quantitatively quite similar. The self-consistent density n*

is found by setting EF
2 = ��V2� �see discussion in Refs. 11 and

12�, where this approximation ignores the exchange and cor-
relation contributions which are believed to be small.10,29,30

Applying this self-consistent procedure to bilayer graphene,
we find ��n* /2m�2=2�nimp�e2 /��2C0

TF and

n* = �nimpñ ,

ñ =
1

2�
qTF

2 C0
TF�2qTFd� � 140 � 1010 cm−2, �9�

where we approximate C0
TF�x�1��0.085. This disorder in-

duced residual density gives rise to a nonvanishing conduc-
tivity even as the external gate voltage is tuned through zero.

IV. SELF-CONSISTENT TRANSPORT THEORY

Combining the low- and high-density results developed in
the preceding sections, we find for bilayer graphene,

��n − n̄� = �
4e2

�h
� ñ

nimp

if n − n̄ � n*

4e2

�h

n

nimp
if n − n̄ � n*, �10�

where n̄=nimp and ñ�140�1010 cm−2. This result predicts
that a reasonably clean bilayer sample with nimp=5
�1010 cm−2 would have a mobility ��nimp

−1

�6000 cm2 /V s. The residual density n*=�nimpñ�25
�1010 cm−2 with a plateau width �V�4 V and minimum
conductivity �min�7e2 /h. When compared to recent experi-
mental results,34 these estimates agree well for the mobility,
plateau width, and minimum conductivity, although not for
the offset gate voltage determined from n̄ �see Refs. 35 and
36 for a discussion of other factors that could determine the
threshold voltage shifts and could account for this discrep-
ancy�. These results do not depend qualitatively on the pre-
cise choice of d, although the results do depend quantita-
tively; for example, for the same value of nimp, increasing d
by a factor of 2 gives n*�15�1010 cm−2. This may be im-
portant for bilayer graphene, since the distance between the
two layers c�0.3 nm suggests that for the same substrate,
the effective distance from the charged impurities would be
larger for bilayers than for graphene. The results of Eq. �10�
are shown in Fig. 1 for both a clean �nimp=1011 cm−2� and
dirty �nimp=5�1011 cm−2� samples and compared with the
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results of Ref. 11 for graphene using the same charged im-
purity densities and keeping d=1 nm fixed. One notices im-
mediately that for the same charged impurity concentration,
graphene has a factor of 16 higher mobility, smaller plateau
widths, and larger minimum conductivities than the bilayer
system. These predictions can be easily tested in future ex-
periments. We also note that only ��n��n behavior was ob-
served in the experiments of Ref. 34 indicating that the cur-
rent experiments are adequately described by the complete
screening approximation, although future experiments
should observe a “superlinear” conductivity �i.e., ��1� at
higher density arising both from the high-density Thomas-
Fermi corrections as well as from the high-density graphene
bilayer Hamiltonian crossing over from quadratic to linear.

V. TEMPERATURE DEPENDENCE

Shown in Fig. 2 is the effect of chirality on the dominant
scattering angle, where the suppression of backscattering
seen in graphene is absent for bilayer graphene. It was

argued recently that the suppression of 2kF scattering in
graphene implied weak temperature dependence18 until
higher temperatures where phonon effects are observed. The
fact that 2kF scattering is not suppressed in bilayer graphene
does not, however, necessarily lead to any screening �or
equivalently, Friedel oscillation� induced strong temperature
dependence in the resistivity. The temperature dependence in
bilayer graphene depends on three dimensionless parameters:
qTF /2kF; T /TF; and T /TD, where TD�� /2� is the Dingle
temperature and TF is the Fermi temperature. The tempera-
ture dependence from screening will be weak if any one of
these three parameters is not large.

The actual value of the dimensionless screening param-
eter,

qTF

2kF
=

2me2

��2��n
�

2me2

��2��n*
� 6, �11�

is reasonably small even at the lowest accessible carrier den-
sity set by n*�2.5�1011 cm−2, making the temperature de-
pendence arising from screening rather weak. Second, the
dimensionless temperature T /TF is rather small since the
Fermi temperature TF changes from 120 K at low density
�set by n*� to 1200 K at high density �set by n=kF

2 /�=aVg

�3.6�1012 cm−2, where a�7.2�1010 cm−2 V is a geom-
etry related factor�.

The Fermi temperature is relatively high due to the very
small carrier effective mass ��0.03me� in bilayer graphene.
In fact, the effective mass for bilayer graphene is less than
half of that for 2D electrons in GaAs ��0.07me�, where the
temperature dependence arising from screening is extremely
small28 even at much lower carrier densities. Therefore, we
do not anticipate any strong screening-induced temperature
dependence in bilayer graphene resistivity. Finally, the cur-
rently available bilayer graphene samples have very small
mobilities resulting in relatively strong collisional broaden-
ing effects �i.e., high Dingle temperature� which would sup-
press any small screening-induced temperature dependence
that could have arisen at low temperatures. In particular, a
mobility of 5000 cm2 /V s as observed in Ref. 34 corre-
sponds to a TD�50 K, leading to further suppression of any
screening-induced temperature dependence in the conductiv-
ity.

It is therefore gratifying to see that the recent experiment
on bilayer graphene34 does not see much temperature depen-
dence in the low temperature resistivity in spite of the im-
portance of 2kF scattering in bilayer graphene. The tempera-
ture dependence seen in the plateau region is likely to be
caused by thermal population of carriers since TF�120 K,
and the temperature dependence is seen for T�100 K. For
T�TF, the thermally excited carrier density n�T�
=����f� ,T�d, where f� ,T� is the Fermi distribution
function. This gives n�T for bilayer graphene, while n
�T2 for graphene giving for the conductivity �ignoring any
phonon or electron-hole scattering contributions�,
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Dirty bilayer

FIG. 1. �Color online� Self-consistent Boltzmann theory for bi-
layer graphene �solid lines� compared with results of Ref. 11 for
monolayer graphene �dashed lines�.
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FIG. 2. �Color online� Scattering cross section as a function of
angle. Unlike single-layer graphene, both bilayer graphene and
2DEG are dominated by backscattering.
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��T � TF� = �
8 ln 2

�2h

me2

�2nimp
�kT� for bilayers

10�e2

3h

1

nimp�
2vF

2 �kT�2 for graphene.
�12�

Note that the thermal excitation of carriers leads to an
enhanced34 ��T�, whereas temperature dependent 2kF screen-
ing typically suppresses ��T�. For bilayer graphene, this re-
sult suggests that for T�260 K, there would be a 300%
enhancement in the minimum conductivity which is consis-
tent with the observations and estimates of Ref. 34. The situ-
ation for single-layer graphene is quite different, since even
in the low-density saturation regime, T /TF�1. For example,
a residual density n*=2.5�1011 cm−2 corresponds to TF
�100 K for bilayer graphene and TF�700 K for single-
layer graphene. For this reason, one expects the minimum
conductivity in bilayer graphene to show stronger tempera-
ture dependence than single-layer graphene even though Eq.
�12� shows the bilayer conductivity scaling as �T �compared
to ��T2 for the monolayer�.

VI. CONCLUSION

The formalism developed here captures many features of
graphene bilayer transport. In particular, we show that both
the low-density saturation and the high-density linear in den-
sity behavior seen in recent experiments arise from the same
charged impurities that are invariably present in samples ex-
foliated onto a SiO2 substrate. We note that the agreement
between our self-consistent Boltzmann theory and available
graphene �and bilayer� transport experiments and direct mea-
surement of the electron and hole puddles, giving rise to the
residual density, indicate that in current experiments, most of
the charged impurities reside close to the graphene-substrate
interface �i.e., within �1 nm� similar to the corresponding
situation in Si-SiO2 MOSFET structures. If the typical dis-
tance of impurities from the graphene �or bilayer� sheet
could be changed in future experiments �e.g., by removing
the SiO2 substrate�, the formalism we have developed pre-
dicts quantitatively its effect on transport properties and on
the magnitude of the electron and hole puddles. Another con-
clusion of our work is that bilayer mobilities are an order of
magnitude smaller than corresponding mobilities for
graphene samples on similar substrates. We also argue that
the minimum conductivity, plateau width, and threshold volt-
age have different scalings in graphene and bilayers and have
different dependences on the substrate dielectric constant.

These differences could potentially be useful when designing
a particular device application. Moreover, a systematic study
of the differences in transport properties between single-
layer graphene and bilayer graphene could verify our claim
that the underlying mechanism for most of the observed
transport properties on current graphene �and bilayer�
samples is dominated by charged impurities.

In addition, we have argued that both graphene and bilay-
ers have weak temperature dependence, making these mate-
rials have among the highest room temperature mobility for
any field-effect device. One important consequence for tech-
nology is that since mobility is limited by charged impurities,
better samples can be made either by removing charged im-
purities in the SiO2 substrate or by using different substrate
�e.g., vacuum for the case of suspended graphene and bilay-
ers�. Attaining high mobility is also necessary to access new
physics such as the fractional quantum Hall effect or the
“universal” minimum conductivity, both of which we believe
is not seen in current experiments due to the large number of
charged impurities.

In one sense, bilayer graphene can be thought of as a
material that shares some properties with regular 2DEGs
�e.g., quadratic Hamiltonian� and some properties with
graphene �e.g., chiral Hamiltonian�. However, theoretically,
bilayer graphene is a far more interesting, where as discussed
earlier, modestly increasing the back gate voltage from that
of current experiments should induce a sufficiently large car-
rier density to see several interesting effects. For example, a
superlinear conductivity is predicted both by high-density
corrections in the Thomas-Fermi approximation �within the
quadratic Hamiltonian� as well as by the theoretically ex-
pected crossover between the quadratic and linear Hamilto-
nians. At even higher �and perhaps realistic� densities, one
would expect a strong increase conductivity as one populated
higher bands. The theoretical framework for understanding
these high-density effects �including the role of chirality� and
their observation remains an exciting avenue for future the-
oretical and experimental research. In summary, we have
proposed a simple theory for bilayer graphene transport in-
cluding the effects of screened Coulomb impurities. The re-
sult of our self-consistent Drude-Boltzmann semiclassical
diffusive transport theory11 is in good agreement with the
recent experiments of Ref. 34, and we make several predic-
tions that can be tested in future experiments.
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