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We theoretically propose to directly observe the chiral nature of charge carriers in graphene mono- and
bilayers within a controlled scattering experiment. The charge located on a capacitively coupled scanning-
probe microscope �SPM� tip acts as a scattering center with controllable position on the graphene sheet.
Unambiguous features from the chirality of the particles in single and bilayer graphene arise in the ballistic
transport in the presence of such a scattering center. To model the scattering from the smooth potential created
by the SPM tip, we derive the space-dependent electron Green function in graphene and solve the scattering
problem within the first-order Born approximation. We calculate the current through a device with a SPM tip
between two constrictions �quantum point contacts� as a function of the tip position.
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The isolation of few and single layer graphene,1–3 the
two-dimensional carbon allotrope, triggered tremendous re-
search activities �for a review, see Ref. 4�. Graphene is tech-
nologically of high interest,5–7 as it is chemically stable, but
is also very appealing for fundamental scientific research.
The electronic eigenstates in graphene obey a linear gapless
dispersion relation around the Fermi energy, and bear a pseu-
dospin, which is always aligned parallel in the direction of
momentum. These properties imitate the behavior of chiral
massless Dirac particles,2,3,8 discussed in relativistic quantum
mechanics. Therefore, many concepts of solid-state physics
are now being reconsidered for pseudorelativistic carriers,
while at the same time, effects known from relativistic quan-
tum mechanics can be found in solid-state physics. Examples
for this are the unusual energies of the Landau levels and the
Klein paradox.8 Moreover, long spin relaxation lengths9

make graphene an interesting system for spintronics10 and
spin-based quantum information processing.11

The high carrier mobility of graphene has lead to an ac-
tive discussion of impurity scattering. Currently, it is as-
sumed that scattering from Coulomb potentials12–21 limits the
conduction electron mobility, while short-ranged defects are
less relevant.22

In the following, we discuss the possibility for a con-
trolled experiment to test whether the charge carriers in
graphene behave like chiral particles in a scattering event.
We propose to use the method of mapping electron flow by
scanning-probe microscopy �SPM� as developed and applied
to two-dimensional electron gases �2DEGs� in semiconduc-
tors by Topinka et al.23 it was demonstrated24,25 that coherent
electron flow in a 2DEG formed in a GaAs /GaAlAs hetero-
structure can be imaged directly by placing a charged SPM
tip on top of the sample. The tip, being capacitively coupled
to the sample, repels the conduction electrons beneath, form-
ing a circular scatterer with a precisely controllable position.
By scanning the tip over the conductor, the conductance of
the sample is modified depending on the current density be-
neath. By setting the SPM tip directly behind a constriction
�quantum point contact �QPC��,24,25 the dominant mechanism
of the conductance change is direct backscattering through
the QPC next to the source �see Fig. 1�. In single layer
graphene, this backscattering is forbidden,8 and therefore,
one cannot expect any resistance change between the respec-

tive contacts S and M in such a setting. To actually use
forward scattering from the tip, one might consider setting
the tip in front of the constriction. Such a setup, however,
suffers from the uncontrolled direction of propagation of the
incoming particles. To control the direction of propagation of
in- and outgoing particles, i.e., the scattering angle, we pro-
pose to use two constrictions �QPCs�, as in Ref. 26. By ap-
plying a voltage V between regions S and M, a current is
injected into the middle region �M�. The coherent scattering
from one QPC to the other gives rise to a measurable current
I in the drain D, which can be precisely measured as voltage
between M and D.27 The middle region M is supposed to be
large, acting as a reservoir, absorbing all electrons that are
not scattered into the drain D. Such an experiment could
directly probe the differential scattering cross section for
pseudorelativistic chiral particles, and thus it demonstrates
the chiral nature of the particles.

For the microscopic description of scattering, and in the
closely related Coulomb impurity problem,28 the method of
partial-wave expansion was adapted.21,22,29,30 This method is
primarily suitable for strong short-ranged potentials such as
impurities. To describe the scattering from the weak potential
created by a SPM tip, we apply the method of first-order
Born approximation by deriving the Green functions for
single and bilayer graphene, in real space representation.29

FIG. 1. The proposed setup. An applied bias voltage V between
the source S and the middle region M injects a current into the
graphene sheet. The injected electrons scatter from an artificial scat-
terer created by a SPM tip above the surface. The flux of electrons
that are coherently scattered into the drain D can be detected in the
drain current I.
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For single layer graphene, the free Dirac Hamiltonian for
the envelope wave function at the K point is given by H
=−i�vF��x�x+�y�y� and in cylindrical coordinates r= �r ,��
by

H = − i�vF� 0 e−i���r −
i

r
���

e+i���r +
i

r
��� 0 � . �1�

The scattering solution of the Dirac equation �H+U�r���
=Ek�, with Ek=�vFk, can be constructed using the Green
function,

G��� = −
i

4

k2

Ek
	 H0�k�� − iH−1�k��e−i�

iH1�k��ei� H0�k�� 
 , �2�

where �=r−r�= �� ,��. The Green function is a solution of
�H−E�G=−����, satisfying the outgoing radiation condition;
thus, the use of the nth order Hankel function Hn�z��Hn

�1�.
The functional form of the Green function is consistent with
Ref. 31. Since the Dirac Hamiltonian is formally closely re-
lated to the Rashba spin-orbit interaction, the derivation of
the Green function in Eq. �2� is analogous to Refs. 32 and 33.

The idealized scattering experiment is depicted in Fig. 2.
A chiral plane wave �0�r�=eikx�1,1�T propagating along the
�so chosen� x axis hits the scattering potential. After the in-
teraction with the potential, a detector measures the flux of
the scattered wave as a function of the deflection angle �.
Within first-order Born approximation, the total wave func-
tion ��r� of an electron which scatters at a potential U�r� is
given by ��r�=�0�r�+�d2r�G�r−r��U�r���0�r��. Far away
from the scattering center, the wave function has the
asymptotic form ��r�=�0�r�+ f���eikr�1,ei��T /r. The scat-
tered wave describes a chiral circular outgoing wave. The
scattering amplitude is given by

f��� = − e−i�/2 ik3

2	
cos

�

2

U�q�
Ek

, �3�

with the Fourier transform U�q�=�d2r�U�r��eiqr�. The orien-
tation of the vector q=k�ek−er� of the momentum transfer
during the scattering process is determined by the unit vec-
tors er and ek in r and k directions, while its magnitude is

given by q=2k sin�� /2�. The functional form of the scatter-
ing amplitude is in close analogy to nonrelativistic two-
dimensional scattering.34 Two main differences appear. First,
the prefactor e−i�/2 cos �

2 �Ref. 29� leads to the absence of
any backscattering at potentials, irrespective of the potential
shape. Second, the forward scattering is enhanced by a factor
of 2 compared to classical electrons. In gapped 2DEGs, scat-
tering at potentials smaller than the Fermi wave length is
dominated by s-wave scattering. For chiral particles in
graphene, the free angular momentum eigenstates bear half-
integer angular momentum related to the appearance of a
Berry phase of 	.12 Therefore, the scattering amplitude is
dominated by states with orbital angular momenta of +1 /2
and −1 /2. In backward direction, the interference of the two
states is destructive, leading to a suppression of scattering. In
forward direction, the interference is constructive, enhancing
the scattering amplitude by a factor of 2. For scatterers larger
than the Fermi wavelength �beyond the range of validity of
the Born approximation�, one can expect that the enhance-
ment of forward scattering becomes nonuniversal, depending
on the details of the potential.

By comparison with the exactly solvable problem of a
stepwise constant potential, the range of validity for the Born
approximation can be estimated as �kR�2
Ek /U0, where R
and U0 denote the characteristic potential size and strength.
As an interesting side note, for the physically relevant Cou-
lomb potential, the first-order Born approximation generates
accidentally good results in three as well as in two
dimensions.34

When we restrict the calculation to circularly symmetric
potentials, the scattering amplitude �Eq. �3�� can be further
simplified using

U�q� = 2	� dr�r�J0�qr��U�r�� . �4�

The integral in Eq. �4� can be solved analytically for a vari-
ety of different scattering potentials, including an unscreened
and the exponentially screened Coulomb potential, the step-
wise constant potential, potentials of Lorentzian and Gauss-
ian forms, and the potential of a point charge above the
graphene sheet.35

In graphene bilayers, arranged in an A-B �Bernal� stack-
ing, the charge carriers behave like massive gapless Dirac
fermions.37 To compute the Green function, one can directly
make an ansatz motivated by the observation that the opera-
tors a=−ie−i���r− i

r��� and a†=−iei���r+ i
r��� in Eq. �1� act

as a type of ladder operators on the Hankel functions,
i.e., a†Hn�k��ein�= + ikHn+1�k��ei�n+1�� and aHn�k��ein�

=−ikHn−1�k��ei�n−1��.36 Note the relative minus sign for a†

and a. With this representation, the Hamiltonian for the bi-
layer as derived in Ref. 37 is

H = −
�2

2m
	 0 aa

a†a† 0

 , �5�

and the basic functional structure of the Green function for
particle energy Ek=�2k2 /2m directly follows as

FIG. 2. Formulation of the scattering problem: an incoming
plane wave propagating along the x direction hits the scattering
potential. A detector measures the outgoing flux of the scattered
wave as a function of the deflection angle �.
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G��� = −
i

4

k2

Ek
	 H0�k�� H−2�k��e−2i�

H2�k��e2i� H0�k�� 
 . �6�

The overall prefactor can be deduced using38 that i /4�k2

+�2�H0�k��=−���� and the fact that aa†=a†a=−�2. Using
the Green function �Eq. �6��, we now construct the scattering
wave function. Within the first-order Born approximation,
the wave function takes the asymptotic form ��r�=�0�r�
+ f���eikr�1,−e2i��T /r. The scattering amplitude f��� is
then given by Eq. �3� with the substitution �→2�.

For a circularly symmetric potential, the scattering ampli-
tude can again be simplified further by using Eq. �4�. The
cases of nonrelativistic particles in a 2DEG �j=0� and of
single layer �j=1� and bilayer �j=2� graphene are distin-
guished by their respective factors e−ij�/2 cos �j� /2� which
are due to the Berry phase j	 acquired during the adiabatic
propagation along a closed orbit. For a Gaussian potential
U�r�=U0e−r2/2R2

, the resulting cross section d� /d�= �f����2
becomes

d�

d�
� e−�2Rk sin��/2��2

cos2 j�

2
. �7�

We plot this result in Fig. 3. While the Berry phase prohibits
backscattering in single layer graphene, backscattering is al-
lowed in bilayer graphene, instead scattering by an angle of
�	 /2 is forbidden in bilayers. These results are equivalent
to the calculation of the scattering cross section via the
k-dependent Green function �see Refs. 29 and 39�.

To describe the SPM experiment, as shown in Fig. 1, we
model the potential of the charged tip as a Gaussian. More-
over, we consider the QPC at the source S as point source of
chiral electrons �as determined by the Green function� at po-
sition �x ,y�= �0,0�. In the proximity of the scatterer, we ap-
proximate the incoming spherical wave � �centered around
the QPC� as a plane wave and derive the scattered outgoing
spherical wave �centered around the SPM tip�. The drain
current I is calculated as the current at the location of the

drain QPC at �x ,y�= �d ,0�, where d is the distance between
the source and drain QPCs. The normal component of the
current is given by Jx=vF�†�x� for single layer and by Jx

=− �

m Im��†��x�x+�y�y��� for bilayer graphene. Here, � la-
bels the sum of the incoming and outgoing spherical waves.
In Fig. 4, we plot the relative change of the drain current
I / I0 due to the presence of the tip as a function of the tip
position �x ,y�. Here, I= I− I0, where I0 is the current in the
absence of the SPM tip.

In the presence of the scatterer, two ballistic trajectories
lead from source to drain: either the electrons travel directly
form the source �S� to the drain �D� or they scatter at the
SPM tip potential and from there into the drain �D�. The
spatial pattern due to the interference between these two tra-
jectories reveals the Fermi electron wavelength �F=2	 /k
=hvF /EF, the degree of coherence, as well as the scattering
phase.40

The required scattering angle to pass from source to drain
is a function of the tip position relative to source and drain.

FIG. 3. Differential cross section normalized by
2	�kR�4�U0 /E�2 in units of 1 /k for a circular scatterer of the Gauss-
ian shape. For single layer graphene, the Berry phase of 	 prohibits
backscattering, while for bilayer graphene, the Berry phase of 2	
prohibits rectangular deflection. The radius of the scatterer is cho-
sen kR=0.5 for this plot.

FIG. 4. Relative change I / I0 of the drain �D� current as a
function of the tip position �x ,y� in units of �F. The existence of
two possible trajectories, one directly from source �S� to drain, the
other via the scatterer at �x ,y�, generates an interference pattern.
Since scattering under an angle of 	 /2 is forbidden for a bilayer, a
circle without signal �dashed white line� appears. The scattering
potential radius and strength were chosen to be Rk=1 and U0 /E
=0.3, respectively.
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Therefore, this experiment realizes to some extent an angle-
resolved measurement of d� /d�. We assume the middle re-
gion �M� of the graphene sample to be large �but not larger
than the coherence length l��, i.e., R�d� l�, so that scatter-
ing events with other angles will not significantly contribute
to the drain current. For single layer graphene, one can ex-
pect a rapid loss of signal if ��	 /2, as scattering by larger
angles is strongly suppressed. For bilayer graphene, one can
expect forward as well as backscattering. However, a scatter-
ing angle of �=	 /2 is forbidden. Therefore, a circular line
appears �according to Thales’ theorem�, indicating a total ab-
sence of scattering. In contrast, for a conventional
semiconductor-based 2DEG, the intensity distribution is
much more homogeneous.

As shown in recent experiments,41 the minimal tip-
induced potential width is about 300 nm at a potential height
of 1 meV. At a Fermi energy of 10 meV in the graphene
sheet, the range of validity of the first-order Born approxi-
mation �kR�2
Ek /U0 is violated by about 1 order of magni-
tude. This violation leads to deviations mainly for forward
scattering. Since in the proposed experiment the large angle
scattering is of primary interest, first-order Born approxima-
tion is still expected to deliver qualitatively correct results.

Furthermore, sample roughness and disorder will also sig-
nificantly modify this idealized experimental result, as al-
ready observed in 2DEGs.23–25 Even so, if one assumes that
small-angle disorder scattering is dominant, then disorder
will be of most importance, when the tip is directly in be-
tween the source and the drain. With increasing scattering
angle, the experimental result will be more and more robust
against weak disorder.

Our calculation was done for one of the two degenerate
valleys �the Dirac point at momentum K�. For the other val-
ley �K��, only the sign of � must be reversed in Eq. �1�.
Therefore, the results for the scattering cross section �Eq.
�7�� and the current �Fig. 4� remain unchanged for K�, as
they are even functions of �. Therefore, we expect these
results to persist for arbitrary incoherent mixtures of K and

K� without any loss of interference visibility.
To test the ballistic current through a graphene sheet, it

would also be possible to use a multitip setup �see Fig. 5�, as
developed recently.42 Thereby, the roles of the source and
drain contacts are played by two additional SPM tips. The
SPM tip which is capacitively coupled and creates the scat-
tering potential can also be moved behind the other tips and
thus allows for a mapping of the complete angular depen-
dence of the scattering amplitude. The small cross sections of
the contacts on the graphene ensure the angular resolution of
the scattering experiment. This alternative setup, however,
bears the experimental disadvantage that the resistance
change as function of the scatterer position cannot be mea-
sured in a nonlocal geometry as in the case of the QPC setup.

In conclusion, we propose to test the chirality of electrons
in graphene mono- and bilayers in potential scattering,
probed by a SPM tip in a transport setting with two QPCs.
We describe the scattering within first-order Born approxi-
mation, which requires the derivation of the electron Green
function in real space.
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