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Nanoscale transport processes offer new possibilities for direct refrigeration by electron emission at room
temperature. Because the energy of emitted electrons may be higher or lower than that of their replacement
counterparts, a heating or cooling effect, known as the Nottingham effect, can occur at the emitter. Prior
theoretical studies indicate the possibility of very large ��100 W /cm2� cooling rates for emitters with low
work functions; however, ultrasmall emission gaps are necessary to produce a device with a reasonably high
coefficient of performance. In this regime of low work function and narrow emission gap, the traditional
approach used to model electron transmission, which is based on the WKB approximation, is not suitable. In
this study, a nonequilibrium Green’s function method is employed to simulate the energy exchange attending
electron emission for a range of emitter work functions and vacuum gap distances, yielding important insights
into the thermodynamics associated with electron emission across ultrasmall vacuum gaps. Cooling density and
efficiency curves depending on the vacuum gap distance and applied electric field are presented for flat-plate
electrodes with work functions ranging from 0.4 to 1.7 eV, and the results indicate that a practical emission
device will require that the electrode work function and vacuum gap separation be reduced to approximately
0.4 eV and 20 nm, respectively.
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I. INTRODUCTION

Refrigeration by thermionic electron emission across a
vacuum gap has been considered for many years, although,
as Mahan suggested in 1994,1 such devices are limited to
high temperatures because of the lack of suitable emitter ma-
terials with work functions below approximately 0.3 eV.
However, continuing advances in microscale and nanoscale
devices offer new possibilities for achieving low-temperature
refrigeration by the emission of electrons across nanoscale
vacuum gaps. High-energy electrons can escape from a sur-
face by emitting over the surface potential barrier �thermi-
onic emission�, while low-energy electrons can penetrate
through thin potential energy barriers by quantum tunneling
�field emission�.2 The local energy exchange that results
from electron emission, known as the Nottingham effect,
may produce heating or cooling depending on the average
energy of the emitted electrons relative to that of the elec-
trons that replace them. Refrigeration occurs when the emis-
sion of high-energy electrons is favored through filtering pro-
cesses that depend on geometric scale effects,3 Schottky
depletion,4 and resonant-tunneling phenomena.5 For ex-
ample, Hishinuma et al. showed that reducing the vacuum
gap between the emitter and collector significantly reduces
the emission barrier and reported room-temperature cooling
of a few millikelvin.6 The use of nanostructured field emit-
ters, such as carbon nanotubes, may also significantly in-
crease the refrigeration achievable at room temperature.7 The
local electric field at small tips greatly increases the cooling
power by amplifying the field emission current8 and by fa-
voring the emission of high-energy electrons.9 Quantum con-
finement in nanoscale emitter structures may also enhance
cooling performance by restricting electron momentum per-
pendicular to the direction of transport.10

Realization of refrigeration by electron emission at room
temperature will depend on a thorough understanding of how

nanoscale features affect energy transport and the ability to
fabricate devices capable of exploiting these possibilities.
Unfortunately, the quantum phenomena inherent in such de-
vices are not well captured by traditional models that rely on
Richardson’s equation for thermionic emission and the
Wentzel–Kramers–Brillouin �WKB� approximation for field
emission. Further, these models do not apply to electron
emission from low-work function emitters separated by a
nanometer vacuum gap—the most promising conditions for a
vacuum-gap emission refrigerator. The present work em-
ploys a nonequilibrium Green’s function �NEGF� approach
to accurately simulate the quantum transmission of electrons
across a vacuum gap and provides important insights into the
factors that affect total cooling power and efficiency of a
one-dimensional device operating under ideal conditions.

Numerous experimental studies have investigated the en-
ergy exchange attending electron emission. Swanson et al.11

conducted extensive experiments measuring the heat ex-
change involved in emission from high and low work func-
tion wires in the temperature range 300–1160 K and dem-
onstrated the transition of the Nottingham effect from
heating to cooling. Bergeret et al.12 measured Nottingham
heating in the absence of Joule heating using niobium super-
conducting samples. Xu et al.13 investigated the heat transfer
between a scanning tunneling microscope �STM� tip and a
sample surface by integrating planar thermocouples into the
STM tips and reported Nottingham heating with a sensitivity
of 10 nW. Recently, Hishinuma et al.14 reported an estimated
cooling effect of 1–10 nW produced by thermionic emission
across a nanometer gap at room temperature.

The present work employs the NEGF method to predict
the effects of emitter work function and vacuum gap distance
on this electrical-thermal energy conversion process. Effi-
cient cooling requires that the majority of electrons emitting
across the gap originate from energy states above the emit-
ter’s Fermi level and that these electrons tunnel through the
vacuum barrier near the barrier peak. Unfortunately, the
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WKB approximation is not applicable in this regime.15 In
addition, because the WKB approximation involves an inte-
gral along the electron’s trajectory through the potential bar-
rier, it is not well suited to calculate electron transmission
probabilities across complicated potential barriers, such as
those incorporating image charges from multiple electrodes
and/or space charge.

Under these conditions, numerical methods, such as trans-
fer matrix,16 Airy function,17 and NEGF18 approaches, must
be employed to model quantum tunneling. These methods
numerically solve Schrödinger’s equation in the barrier re-
gion and are valid for electrons of all incident energies. Ad-
ditional advantages embodied in these numerical methods
include the ability to account for space-charge and band-
structure effects, as well as quantum confinement and other
effects relating to the wavelike nature of electrons. The
NEGF simulation approach is chosen in this work because it
is efficient and straightforward for nanometer-size device
modeling.19 An Airy function approach is also employed for
some cases to validate the NEGF results, although accurately
determining the values of the Airy functions and their deriva-
tives over a wide range of values necessary to solve field
emission problems is computationally expensive.

We note that although prior work has employed exact
quantum simulations to determine the error introduced by the
WKB approximation in estimating the total emission current
from a low work function planar electrode,20 a similar study
exploring the limitations of the WKB approximation for cal-
culating the energy exchange at the emitter surface has not
yet appeared in the literature. In this work, we show that
using the WKB approximation introduces substantial error in
predicting room-temperature cooling by electron emission
because the electron transport in this situation is dominated
by electrons with energies near the peak of the vacuum po-
tential energy barrier—the regime in which the WKB ap-
proximation is not applicable.

In subsequent sections, the electron emission model is
first outlined, and the equations to be solved are presented.
Then, the basic principles underlying the NEGF simulation
are summarized, after which results obtained using the
NEGF method are compared to those obtained from the
WKB approximation and Airy function approaches for flat-
plate field emission from emitters with work functions of 0.7,
1.7, and 3.5 eV. This example establishes the accuracy of the
NEGF and Airy function approaches and illustrates the limi-
tations of the WKB approximation for an accurate modeling
of energy exchange, particularly for low work function emit-
ters. In the last section, the NEGF simulation is applied to
flat-plate electrodes emitting across a nanometer vacuum
gap, and results are presented to illustrate the influence of the
electrode work functions, vacuum gap distance, applied elec-
tric field, and space charge in the vacuum region.

II. ELECTRON EMISSION

A. Emission current

The theory of electron emission has been described in
detail by Good and Müller.21 Consequently, only a brief sum-
mary of the major results is provided here. The application of

an electric field between two closely spaced electrodes pro-
duces a potential energy field of the form22

U�x� =
�

q
− Fx −

q

4��0
� 1

4x
� + Uanode�x� + Uscf�x� , �1�

where q is the magnitude of the electron charge, x is the
distance from the emitter, F is the applied electric field, and
�0 is the permittivity of free space. The last term in Eq. �1�
represents the self-consistent increase in the potential energy
profile due to space-charge effects and is negligible for
nearly all practical cooling applications, as shown in the Ap-
pendix. The third term on the right side is the classical cor-
rection due to image charge effects from the emitter �cath-
ode�, and Uanode�x� is the image potential due to the collector
�anode�. Equation �1� assumes that the emitter and collector
have similar work functions, and in this case Uanode�x� can be
estimated using semiclassical theory as22

Uanode�x� = −
q

8��0
�
n=1

� � nd

n2d2 − x2 −
1

nd
� , �2�

where the infinite series represents the effects of reflections
of the image charge on the electrode surfaces. In reality, the
image charge potential between two closely spaced elec-
trodes is a quantum mechanical phenomenon involving infi-
nite numbers of charges in both electrodes,23 making exact
solutions elusive. For this reason, a semiclassical approxima-
tion is chosen to estimate the potential barrier reduction due
to image charges from both electrodes. More importantly,
however, electron emission across a nanometer vacuum gap
is quite sensitive to the exact form of the image charge po-
tential reduction; consequently, experimental validation of
Eq. �2� is needed in order to ensure an accurate simulation of
electron emission across a nanometer vacuum gap.

The potential profile in Eq. �1� differs in three respects
with the development by Good and Müller.21 In the present
work, the zero energy datum is located at the emitter’s Fermi
energy, instead of at the vacuum level; also, Good and
Müller neglected the image charge correction due to the an-
ode Uanode�x� and the self-consistent increase in the potential
energy profile due to space-charge effects Uscf�x�.

The total emission current density J from the emitter due
to the electric field is given by

J = q�
−Wa

�

N�W�D�W�dW , �3�

where −Wa represents the bottom of the emitter’s conduction
band, W is the electron energy associated with the x compo-
nent of momentum, N�W� is the electron supply function,
and D�W� is the quantum tunneling transmission function.
Traditionally, the transmission function has been calculated
using the WKB approximation,24

D�W� = s�W�exp��
x1

x2 1

�
�8m	U�x� − W	dx
 , �4�

where s�W� is a slowly varying function of W that depends
on the shape of the energy potential barrier U�x� and is often
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approximated as unity. x1 and x2 are the zeros of U�x�−W,
and m is the rest mass of an electron. In general, the WKB
approximation is limited to relatively low fields and high
work functions, and is not applicable to electrons with ener-
gies near the barrier peak. For electrons that have sufficient
energy to pass over the barrier, the transmission function is
taken as unity. The supply function N�W� in Eq. �3� repre-
sents the number of electrons incident on the emitter surface
per second per unit area and can expressed analytically as21

N�W�dW =
4�mkBT

h3 ln�1 + exp�−
W

kBT
�
dW , �5�

where h is Planck’s constant, kB is Boltzmann’s constant, and
T is the emitter temperature.

B. Energy transport

The rate of net energy flux from the emitter due to elec-
tron emission may be found by multiplying the total emis-
sion current density Eq. �3�� by the total average energy
difference between the emitted and replacement electrons
and dividing by the electronic charge per electron,

Q� =
J

q
���emit� − ��repl�� =

J

q
	� , �6�

where ��emit� and ��repl� are the average total energies of the
emitted and replacement electrons, respectively. Chung et
al.25 were the first to calculate the average energy of the
replacement electrons and found that ��repl� could lie as
much as 50 meV below the Fermi level. Here, we follow the
work of Fisher and Walker26 who separated the emitted and
replacement energies into axial and transverse components
�in the emission direction and perpendicular to the emission
direction, respectively�. Thus, Q� becomes

Q� =
J

q
��Wemit� + �
emit� − �Wrepl� − �
repl�� , �7�

where 
 represents energy associated with momentum in the
transverse direction, and the subscripts emit and repl refer to
emitted and replacement electrons, respectively. This separa-
tion is possible because the energy associated with electron
motion perpendicular to the surface normal does not interact
with the potential field in the vacuum region. Thus, in order
to determine the heating or cooling per unit area at the emit-
ter, it is necessary to calculate the average normal and trans-
verse energies of the emitted and replacement electrons.

The average energy of the emitted electrons in the longi-
tudinal direction �Wemit� is calculated by taking an energy
moment of Eq. �3� and dividing by the total current density.
The average energies of the replacement electrons can be
computed by recognizing that the emitted electrons leave
vacant states near the surface of the emitter. Expressions for
�
emit�, �Wrepl�, and �
repl� as functions of D�W� and f�W,��
have been previously given by Fisher and Walker26 and are
not repeated here. The present work differs from that of
Fisher and Walker26 in two respects; first, the transmission
function D�W� has been calculated using the nonequilibrium
Green’s function method instead of the less accurate WKB

approximation. Second, the present work includes the image
potential terms from the anode Eq. �2��, which is significant
for vacuum gap distances approaching a few nanometers.

C. Efficiency

For electron emission devices, performance is often as-
sessed in terms of a so-called electronic efficiency, which is
the efficiency associated solely with electronic transport un-
der ideal conditions, neglecting all parasitic losses.27 Overall
device efficiency is always less than the electronic efficiency
but may approach the electronic efficiency as an upper limit.
In the case of a refrigeration device, electronic efficiency
may be represented as a coefficient of performance �COP�,
which is defined as the ratio of the output cooling power to
the required electrical consumption. Assuming ideal condi-
tions and neglecting all parasitic losses, the �COP� can be
expressed as

COP =
J	�

JVbias
=

	�

Fd
, �8�

where d is the vacuum gap distance separating the elec-
trodes.

III. NONEQUILIBIUM GREEN’S FUNCTION
FORMALISM

The NEGF approach is an established and powerful tool
for studying quantum transport and has been described in
detail by Datta.18 This section briefly outlines the NEGF al-
gorithm used to calculate the quantum transmission function
D�W� in Eq. �3�. We start with the time-independent, one-
dimensional Schrödinger equation24

−
�2

2m

d2�

dx2 + U� = E� ⇒ H� = E� , �9�

where H is the Hamiltonian operator, which may be formu-
lated as a tridiagonal matrix by discretizing the calculation
domain and then employing finite differences to approximate
the second order derivative of the wave function with respect
to position.18 The first grid point is located on the emitter
�cathode� surface, and the last is located on the collector
�anode� surface, while the rest of the grid points are distrib-
uted over the vacuum region with uniform grid spacing a. In
the Green’s function formalism, the transmission function
D�W� is given by18

D�W� = trace
1GR
2�GR�†� , �10�

where GR is the retarded Green’s function matrix and the ‘†’
superscript indicates the complex conjugate transpose opera-
tion. 
1 and 
2 are energy broadening matrices that are de-
fined below. The retarded Green’s function can be expressed
as

GR�W� = �W + i0+�I − H − 1�W� − 2�W��−1, �11�

where i are the self-energy matrices and i0+ is a small
imaginary perturbation introduced to make the system irre-
versible. All effects due to excitations from the emitter and
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collector are accounted for in the self-energy matrices of Eq.
�11�. Assuming that the emitter is semi-infinite, 1�W� can be
simplified such that all terms are zero except for the first
term 1�1,1�, which is given by −t0 exp�ik1a�, where t0

=�2 / �2ma2� and k1a is defined by W=U1+2t0�1−cos k1a�.
Similarly, 2�W� can be simplified such that the only
nonzero term is the last term 2�N ,N�, which is given by
−t0 exp�ikNa�, where kNa is defined by W=UN+2t0�1
−cos kNa�.

To finish the calculation for the transmission function, we
define the broadening matrices 
1 and 
2, which describe the
electron exchange rate between the vacuum and the contacts.
They may be written in terms of the self-energy matrices as


 j = i j −  j
†� . �12�

We note that because the broadening matrices 
1 and 
2 each
have only a single nonzero term, evaluating the quantum
transmission function in Eq. �10� only requires the final col-
umn of GR, which can be calculated efficiently because H is
tridiagonal. The quantum transmission function can also be
computed efficiently using the contact block reduction
method outlined by Mamaluy et al.19 In this approach, the
eigenvectors of a decoupled device Hamiltonian matrix need
be determined only once. Thereafter, the transmission func-
tion D�W� is calculated using 2�2 matrices, which represent
the portion of the retarded Green’s function that corresponds
to the contacts.

IV. RESULTS

A. Comparison of the WKB, NEGF,
and Airy function approaches

1. Total emission current

Figure 1 shows the ratios of the total emission current
calculated using the WKB approximation to that calculated
using the NEGF and Airy function approaches for flat-plate
emitters with �=0.7, 1.7, and 3.5 eV. The integral in Eq. �3�
was evaluated numerically using the WKB, NEGF, and Airy
function approaches independently to calculate the transmis-

sion function for each value of W. Also in Fig. 1, the vacuum
gap distance d is assumed to be greater than approximately
15 nm so that the image charge correction due to the anode
Eq. �2�� can be neglected. For the emission currents repre-
sented in Fig. 1, space charge is negligible, as shown in the
Appendix; therefore, Uscf�x� in Eq. �2� has also been ne-
glected. For the curves shown, the total emission current
predicted by the NEGF and Airy function approaches differs
by less than 0.25%, illustrating the accuracy of both. The
error associated with the WKB approximation is consider-
ably larger, although still less than 50% for all curves. For
relatively large values of �, the ratio of the total emission
current calculated by the WKB approximation to the exact
emission current is nearly independent of the emission cur-
rent, indicating that the error is principally caused by ap-
proximating the function s�W� in Eq. �4� as unity. For �
=0.7 eV, the ratio of the total emission current calculated by
the WKB approximation to the exact emission current is not
constant because the WKB approximation is not applicable
to low work function emitters as explained earlier because a
significant portion of the emitted electrons possess energies
near the potential barrier peak, as will be shown in the next
section.

2. Energy exchange at the emitter surface

The error that arises in using the WKB approximation to
model the energy exchange process as outlined in Eqs.
�3�–�7� is even more pronounced. Figure 2 shows the calcu-
lated cooling density due to the Nottingham effect as a func-
tion of applied field for a flat emitter with �=1.7 eV using
the WKB, NEGF, and Airy function approaches. As the ap-
plied field increases, the emission current rises exponentially,
increasing the cooling effect at the emitter. However, as the
applied field increases, the net energy exchange per electron
decreases and ultimately becomes negative, producing heat-
ing at the emitter surface. The maximum error between the
energy exchange curves calculated by the NEGF and Airy
function approaches in Fig. 2 is less than 0.3%. In contrast,
the WKB approximation overpredicts the maximum cooling
effect at the surface by a factor of approximately 3 and also

FIG. 1. �Color online� Ratios of the total emission current cal-
culated using the WKB approximation to that calculated using the
NEGF and Airy function approaches for flat-plate emitters with �
=0.7, 1.7, and 3.5 eV. T=300 K and d�15 nm.

FIG. 2. �Color online� Predicted net energy exchange at emitter
�cathode� for a flat-plate emitter using the WKB, Airy function, and
NEGF approaches. The coefficient of performance was estimated
using the NEGF approach. �=1.7 eV, T=300 K, and d=20 nm.
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significantly overpredicts the critical electric field at which
the Nottingham effect transitions from cooling to heating.
The error trends in Fig. 2 are similar for other values of the
emitter work function, although as � increases above 1.7 eV,
the maximum predicted cooling at room temperature quickly
approaches zero. The predicted electronic COP calculated
using the NEGF approach is also included in Fig. 2 and
reveals that refrigeration from such a device would be ex-
tremely inefficient. The necessary conditions to increase the
COP are discussed below.

B. Optimal conditions for a cooling device

1. Overview

This section focuses on the optimization of a field emis-
sion refrigeration device and provides sample calculations
illustrating the effects of the relevant parameters on such a
device. The ideal potential barrier to maximize the cooling
efficiency of a flat-plate field emission device is a moderately
thick, nearly rectangular barrier. For such a barrier, the quan-
tum tunneling transmission function decreases very rapidly
as the electron energy falls below the top of the barrier; yet,
the transmission function is nearly unity for electrons with
energies greater than the barrier height. Thus, only high-
energy electrons are emitted, and the cooling efficiency is
maximized as long as the top of the barrier lies above the
emitter’s Fermi energy.

Figure 3�a� shows the potential energy field in the vacuum
region near an emitter with �=0.7 eV subject to applied
electric fields of 0.1 and 0.4 V /nm. The bare solid lines cor-
respond to the potential barrier formed between parallel elec-
trodes separated by a large vacuum gap for which Uanode�x�
is negligible, and the solid lines with triangles correspond to
electrodes separated by a vacuum gap of 6 nm for which
Uanode�x� in Eq. �1� is significant. As the applied electric field
increases from 0.1 to 0.4 V /nm, the barrier peak becomes
more pronounced and decreases below the Fermi energy. The
resulting effects enhance the emission of lower energy elec-
trons and consequently shift the electron energy distributions
to lower energies. Figure 3�b� shows the normalized longitu-
dinal energy distributions of electrons emitted across the four
potential energy barriers of Fig. 3�a� and illustrates the strong
effect of the applied electric field on the emitted electron
energy distributions as well as the weaker effect of the
vacuum gap distance.

A high cooling density requires that the emission current J
and the net energy exchange per electron 	� should be large.
From Eq. �8�, maintaining a high COP in a field-emission
refrigeration device also requires maximizing 	�; however,
the electric field and the vacuum gap distance must be mini-
mized. Figure 3�a� shows that these conditions produce op-
posing effects. Increasing the applied electric field reduces
the potential barrier and causes an exponential increase in
emission current see Eq. �4��; yet, increasing the electric
field also decreases the average energy of emitted electrons
and thus reduces 	�. Consequently, increasing the electric
field reduces the COP of a field emission refrigeration device
both by decreasing 	� and by increasing the power density
supplied to the device, JFd. Figure 3�b� reveals further that

decreasing the electrode separation distance to 6 nm also
slightly reduces 	�, and this effect is examined in the next
section.

2. Effects of emitter work function and vacuum gap distance

From the above discussion, it is apparent that the applied
electric field must be as low as possible for an optimal cool-
ing device; therefore, the electrode work functions must be
as small as possible to reduce the potential energy barrier
encountered by emitting electrons. Surfaces with work func-
tions as low as 0.7 eV have been reported by evaporating
cesium on tungsten or silver to form W20-Cs �Ref. 28� or
Ag20-Cs �Ref. 29�, respectively. Work functions below
0.7 eV have been reported from unstable compounds involv-
ing alkalides and electrides; however, stable emitters of these
compounds have not been demonstrated.30 In addition to ob-
taining a low work function emitter, the vacuum gap distance
between the electrodes should be optimized to improve the
electronic coefficient of performance. Assuming that a
nanometer-scale vacuum gap distance can be achieved and
maintained over a sufficiently large area to be useful, the
electrode separation distance should be reduced until the net

(arb. units)

FIG. 3. �Color online� �a� Potential energy field of a 0.7 eV
emitter subject to applied electric fields of 0.1 and 0.4 V /nm. Po-
tential barriers are shown for d�15 nm �solid lines� and for d
=6 nm �solid lines with triangles�. T=300 K. �b� Normalized en-
ergy distributions of electrons emitted across the potential energy
barriers in �a�.
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energy exchange per electron begins decreasing rapidly, so
that a larger emission current would be necessary to maintain
the desired cooling density.

Figure 4 contains predicted coefficient of performance
and current density graphs as functions of the vacuum gap
separation distance for work functions ranging from
0.4 to 0.7 eV. All curves correspond to a condition in which
the emission current is adjusted as needed such that a fixed
emitter cooling density of 30 W /cm2 is achieved. For the
curves in Fig. 4, reverse electron emission from the collector
to the emitter is significant, and this effect has been taken
into account by assuming that the emitter and collector tem-
peratures are 300 and 340 K, respectively. The required cur-
rent density increases sharply for narrow vacuum gap sepa-
ration distances because many electrons near the Fermi
energy, which do not contribute to cooling, are able to pen-
etrate the vacuum barrier and tunnel to the collector. Figure
4�a� reveals that this effect becomes more pronounced as the
electrode work functions decrease. For example, for elec-
trodes with �=0.7 eV, the emission current density required
to maintain 30 W /cm2 of cooling increases rapidly as the
vacuum gap decreases below approximately 5 nm. However,
for electrodes with �=0.4 eV, the required emission current

rises sharply for vacuum gaps below approximately 20 nm.
Figure 4�b� shows that the electronic COP increases dramati-
cally as the electrode work function decreases and reaches a
maximum of more than 6 for planar electrodes with work
functions of 0.4 eV. This COP value approaches that of a
Carnot refrigerator �COP=7.5� operating between thermal
reservoirs at similar temperatures. Of course, it must be re-
membered that the high COP values shown in Fig. 4�b� in-
clude only the electronic contributions to the total device
efficiency and neglect parasitic losses such as heat conduc-
tion through electrical contacts and support structures, ther-
mal radiation between the electrodes,31 and electrical lead
losses.

From the above discussion, we see that as the electrode
work functions decrease, the ideal vacuum gap distance in-
creases in order to maintain a sufficiently high potential en-
ergy barrier to prevent emission of low-energy electrons. For
electrode work functions of 0.4 eV operating at a vacuum
gap distance of 15 nm, the electronic COP is still nearly 5. If
electrode work functions below 0.4 eV can be achieved,
even larger electrode separation distances would be feasible;
however, as d increases significantly beyond 20 nm, space-
charge effects become significant. In reality, however, devel-
oping an emitter with a work function of 0.4 eV is unlikely
in the near future; consequently, the remainder of this section
is devoted to optimize conditions for refrigeration using a
0.7 eV work function emitter. Figure 4 indicates that the op-
timum vacuum gap for a 0.7 eV work function emitter is
approximately 5 nm because the required emission current
rises dramatically as the vacuum gap decreases below this
value and the coefficient of performance deceases for wider
vacuum gaps. Figure 5 shows the predicted cooling density
and coefficient of performance for electrodes with �
=0.7 eV separated by a vacuum gap of 5 nm. The emitter
and collector temperatures are 300 and 340 K, respectively.
The lower cooling density curve was calculated self-
consistently by the method described in the Appendix, while
the higher cooling density curve neglects the self-consistent
potential energy component Uscf.

As discussed previously, q� exhibits a maximum and then
decreases to zero as the field increases because the net en-
ergy exchange per electron 	� decreases as the electric field
increases until it eventually becomes negative, producing
heating rather than cooling at the emitter. At high current
densities, space-charge effects increase the potential energy
barrier and, hence, decrease the total emission current and
cooling power. However, as shown in the Appendix, Uscf is
approximately a quadratic function of position in the vacuum
gap region, and this behavior tends to smooth out the sharp
peak in the energy barrier and thus increases 	�. The result
is that, as shown in Fig. 5, space-charge effects extend the
region of cooling to higher applied electric fields.

The COP curve shown in Fig. 5 neglects space-charge
effects and decreases with increasing electric field, as dis-
cussed previously. The electronic coefficient of performance
including space-charge effects is not shown for clarity be-
cause it deviates very little from the displayed curve. We also
note that the COP shown in Fig. 5 was calculated using Eq.
�8� and does not includes parasitic losses, which are expected
to be significant, particularly because high current densities

FIG. 4. �Color online� �a� Predicted net current density and �b�
electronic coefficient of performance as functions of electrode sepa-
ration distance for a flat-plate field emitter with � ranging from
0.4 to 0.6 eV. All curves correspond to a cooling density of
30 W /cm2 with emitter and collector temperatures of 300 and
340 K, respectively.
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are still needed to obtain the predicted cooling fluxes.31 For
example, the emission current density at maximum cooling is
nearly 4�108 A /cm2, corresponding to a net energy ex-
change per electron of approximately 0.03 eV and a COP
less than 2%.

At lower applied electric fields, an electronic COP greater
than 1 is possible, although the total cooling density is re-
duced considerably. As illustrated in Fig. 5�b�, the electronic
COP is approximately 0.6 for a cooling density of
100 W /cm2. However, an emission current density of ap-
proximately 350 A /cm2 is still needed to produce this cool-
ing density. Maintaining an emission current of this magni-
tude would introduce significant parasitic losses not included
in the electronic COP calculated here, and thus a work func-
tion below 0.7 eV would seem to be necessary to realize a
practical refrigeration device operating in a flat-plate con-
figuration.

V. CONCLUSIONS

The WKB, NEGF, and Airy function approaches have
been used to simulate electron emission and Nottingham
cooling for flat-plate electrodes emitting across a nanometer
vacuum gap. The results obtained from the NEGF and Airy

function approaches are in excellent agreement and show
that the WKB approximation introduces significant error for
low work function emitters ��1.7 eV� operating at applied
fields of approximately 1 V /nm. The NEGF and Airy func-
tion approaches predict that flat-plate electrodes having work
functions of 0.7 eV emitting across a narrow gap �3–10 nm�
are capable of producing a cooling density of 30 W /cm2. For
such a device, an optimum electrode separation distance ex-
ists at approximately 5 nm for which the required emission
current is approximately 85 A /cm2 and the electric coeffi-
cient of performance could be as high as 0.84. A similar
device with electrode work functions of 0.4 eV operating
with a vacuum separation of approximately 15 nm could
have an electronic COP as high as 5. In either case, however,
parasitic losses and nonideal effects such as undesirable heat
conduction through electrical contacts and support structures,
Joule heating, and heat transfer between the electrodes
through radiation would substantially reduce the device effi-
ciency, and these effects would need to be addressed before a
practical field emission refrigeration device could be devel-
oped.
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APPENDIX

For large electrode separation distances, space-charge ef-
fects have been shown to significantly affect field emission
for current densities greater than approximately 106 A /cm2

�Ref. 32�. For a nanometer-scale vacuum gap distance, sev-
eral approximations exist to obtain a reasonable estimate of
the range of current densities for which space charge signifi-
cantly affects the energy exchange associated with field
emission. First, space-charge effects are considered only for
electrons that actually traverse the potential barrier, neglect-
ing electrons that are reflected back to the emitter. Electron-
electron scattering is assumed to be negligible, making it
possible to model space-charge effects simply using a self-
consistent potential that depends only on the electric charge
distribution in the vacuum gap region. The first assumption is
reasonable because the reflected electrons are only present in
a very small region of the vacuum gap where the slope of the
potential barrier is very steep. Very high electron densities
would be needed to increase the barrier thickness signifi-
cantly under these conditions. The second approximation is
valid for relatively low electron concentrations where the
mean free path of the electrons is greater than the vacuum
gap separation distance.

Because efficient refrigeration by electron emission is
characterized by narrow vacuum gaps and low applied elec-
tric fields, it is also assumed that the electron velocity in the

FIG. 5. �Color online� �a� Predicted net energy exchange at the
emitter and coefficient of performance for a flat-plate field emitter
with d=5 nm and �=0.7 eV. The emitter and collector tempera-
tures are 300 and 340 K, respectively. �b� is a magnification of the
low electric field range of �a�.
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vacuum gap region is constant. This assumption becomes
necessary as the vacuum gap distance is reduced to the scale
of the electron wavelength because in this situation the local
electron velocity is somewhat uncertain.33 The local charge
density actually decreases as the electrons accelerate in the
vacuum gap region; hence, this approximation overestimates
space-charge effects and places a lower limit on the range of
emission currents for which space-charge effects are signifi-
cant. With these assumptions, the charge density � in the
vacuum gap region is constant, and Poisson’s equation is
used to calculate the self-consistent potential,

d2

dx2Uscf�x� = −
�

�0
�A1�

The total charge density in the vacuum gap region is de-
termined in the same manner as the total electron emission
current—that is, by discretizing the energy distribution and
summing the contributions from all discrete energy levels
Wi. The charge density �i arising from a discrete energy level
is given by Ji /vi, where Ji is the emission current and vi is
the longitudinal velocity of the electrons with energy Wi. The
emission current from each energy level is calculated in the
numerical evaluation of Eq. �3�, and the longitudinal velocity
of electrons with energy Wi is given by

vi =� m

2q
�Wi + �� �A2�

Once Ji, vi, and �i have been calculated for each discrete
energy level, the total charge density in the vacuum gap re-
gion is determined by summing all �i. Assuming that � is
uniform throughout the vacuum region and setting Uscf�x� to
zero at the electrode surfaces, the solution to Eq. �A1� is

Uscf�x� =
�

2�0
�xd − x2� . �A3�

The procedure to solve for the emission current and po-
tential energy barrier self-consistently entails first solving for
the emission current Eq. �3��, assuming that Uscf�x� in Eq.
�1� is negligible. Next, Uscf�x� is determined based on the
calculation for J, and then J is updated using the potential
energy field of Eq. �1� including Uscf�x�. This process is then
repeated until convergence is achieved. Figure 6 plots the
emission current as a function of applied electric field for
flat-plate electrodes ��=0.7 eV� spaced 5 nm apart and com-
pares the self-consistent emission current with the predicted
current, assuming that Uscf�x� is zero everywhere. In this
case, as well as in other cases investigated, space-charge ef-
fects become significant when the current density approaches
approximately 107 A /cm2, at which point the error is ap-
proximately 100% for both the emission current and the
cooling density. Thus, space-charge effects are not expected
to be significant in any practical cooling device operating
with emission currents in the ranges shown in Figs. 4 and 5.
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