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Full electrodynamic analysis of self-similar cascades of plasmonic nanospheres �nanolenses� that exhibit
nanofocusing is performed. Electrodynamic resonances are identified and a significant local field enhancement
�by a factor of hundreds� is found for different sizes and fractal ratios of the cascade system, and for different
polarizations and directions of incidence of the excitation radiation. Supporting the earlier findings, the nano-
focus �“hottest spot”� is found to be located in the gap between the two smallest nanospheres of the cascade.
Somewhat surprisingly, field enhancement is maximized when the incoming wave is polarized at an angle to
the symmetry axis. The influence of the dielectric substrate on field enhancement is also evaluated. The results
obtained show ways to optimize the nanolenses for their applications in spectroscopy and sensing.
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I. INTRODUCTION

Nano-optics is experiencing a period of explosive growth
in both fundamental development and applications, with
more important applications foreseeable in the near future.
Nanoplasmonics, one of the key directions in nanooptics,
deals with electric �surface plasmons �SPs�� and electromag-
netic �surface plasmon polaritons� excitations at metal sur-
faces and metal and/or dielectric interfaces. While the local-
ization radius of electromagnetic waves cannot under normal
circumstances be significantly less than their wavelength �the
diffraction limit�, the SPs, as purely electric oscillations, can
localize on the nanometer scale.1–9 In the framework of mac-
roscopic electromagnetics, the minimum localization length
of SPs is determined only by the smallest scale of the
nanostructure.3,4 The nanolocalization is intimately related to
the large enhancement of the local plasmonic fields. This
enhancement plays a key role in many effects and in multiple
applications of nanoplasmonics—specifically, in near-field
scanning optical microscopy9 and detectors of chemical and
biological objects.10–12

Surface-enhanced Raman scattering �SERS�13–17 can be
singled out as a phenomenon that exhibits the greatest en-
hancement of all known natural phenomena, which enables
Raman spectroscopy of single molecules18,19 and the obser-
vation of the surface-enhanced hyper-Raman scattering.20

The SERS enhancement coefficient gR is approximately on
the order of the fourth power of the local field enhancement
g, gR�g4, where g= �E� / �E0�; E is the local optical electric
field, and E0 is the electric field of the excitation wave �see,
e.g., Ref. 21�. The estimates obtained from the single-
molecule SERS show that the enhancement factor can be as
high as gR�1012–1014. From this, it appears that the local
field can be enhanced �in the red and near-infrared spectral
region� by a factor g�103. At the same time, electrodynamic
computations for realistic models show that the SERS en-
hancement is still several orders of magnitude lower than the
experimental estimates would suggest.21 One possible expla-
nation is the so-called chemical enhancement due to the am-
plification of the transition dipole moments of a molecule
chemically bound to a metal surface at the junction of silver

nanoparticles.22 Cascade enhancement, considered in detail
below, has been proposed in Ref. 23 as another possibility of
explaining the experimentally observed SERS enhancement
via a purely electromagnetic mechanism.

II. CASCADE ENHANCEMENT

Cascade amplification produces high local fields in the
gaps between the smallest particles in nanoparticle clusters
of significantly different sizes. A specific system considered
in Ref. 23 is a self-similar cluster of three spherical silver
particles aligned along the symmetry axis �Fig. 1�. The idea
of the cascade enhancement is very simple. The largest nano-
particle has a SP resonance that is not significantly perturbed
by smaller particles because their polarizabilities, propor-
tional to their volumes, are much smaller. The local optical
field of this large particle is enhanced by a quality factor of
the SP resonance Q with respect to the external field E0. This
enhanced local field acts on the smaller particles of the clus-
ter as the excitation field. Then the next, smaller, particle
responds in kind and generates a local field enhanced by a
factor on the order of Q2, and so on. Obviously, the nth
particle in this enhancement cascade produces amplification
by a factor of �Qn. The strongest enhanced local field tends
to localize in the gap between the two smallest nanoparticles,
producing a nanofocus as small as the minimum gap. The
quality factor can be estimated as21 Q�−Re �m / Im �m,
where �m is the dielectric permittivity of the metal at the
excitation frequency. For silver in the optical range, Q�10,
which shows that a cascade of just three silver nanoparticles
can provide a field enhancement of g�103, which corre-
sponds to the SERS enhancement gR�1012.
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FIG. 1. A cascade of three particles and reference points for
field enhancement.
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This idea has been confirmed in Ref. 23 for self-similar
cascades of three, five, and six nanospheres, where the ratio
of the sizes of the neighboring nanospheres in the cascade
�=Rn /Rn−1=1 /3. The gaps in this cascade also form a geo-
metric series with the same ratio dn /dn−1=�, where dn is the
surface-to-surface gap between nth and �n−1�th nano-
spheres. Depending on this ratio, the enhancement predicted
for a cluster of three nanospheres was in the range of
gR=1200–600 for the range of the ratios dn /Rn=0.3–0.6.
For a symmetric cascade of six nanospheres, the enhance-
ment was computed to be approximately two times higher.
The numerical computations in Ref. 23 have been carried out
under the quasistatic approximation, which is valid only if
the size of the system is much smaller than all relevant elec-
tromagnetic lengths, in particular, the reduced wavelength
�=c /�, where c is the speed of light and � is the optical
frequency. However, the most restrictive of these applicabil-
ity conditions is R1� ls, where R1 is the radius of the largest
nanosphere, and ls is the skin depth, which is less than 30 nm
for plasmonic metals in the optical range. This condition is
not fully satisfied in Ref. 23.

A separate source of corrections originates at the mini-
mum length scale of the system due to the local optical fields
rapidly changing in space. This leads to spatial dispersion of
the dielectric responses and related Landau damping that
limit the nanolocalization of energy24,25 �see also Ref. 26�.
Note that often these effects are taken into account by simply
increasing the dephasing collision rate � of electrons as
�→�+AvF /a, where vF is the electron velocity at the Fermi
surface, a is a characteristic size of the system, and A�1 is
a dimensionless constant.27,28 Actually, effects associated
with small dimensions of the particles are due to the nonlo-
cality of both real and imaginary parts of the dielectric func-
tion �Landau damping� and do not reduce to the increase of
the electron scattering rate. There is substantial experimental
evidence that these effects depend strongly on the geometry
of nanoparticles. For instance, thin metal-dielectric
nanoshells do not show any significant impact of the in-
creased electron scattering rates: there is no discernible spec-
tral broadening of the plasmonic resonances.29 Because of
that, and also because there is currently no theory satisfacto-
rily incorporating the dielectric-response nonlocality into
nanoplasmonics, we will not consider such effects at this
time.

III. PHYSICAL ASSUMPTIONS AND THE MODEL

It has been noted in the literature that there may be some
corrections to the computation results due to both the elec-
trodynamic effects and the nonlocality �Landau damping�.23

Electrodynamic effects have been reported to result in cor-
rection factors on the order of 2 for the maximum value of
the electric field.30 However, as argued in Ref. 31, the grid
size in the finite-difference time-domain simulation of Ref.
30 was too coarse to accurately represent the rapid variations
of the local field at the focus of the nanolens. The objective
of this paper is to analyze the impact of electrodynamic ef-
fects on the nanofocusing of the optical field more accu-
rately. For this purpose, we use adaptive finite element analy-

sis, one of the most robust numerical techniques available.
Our simulations are performed in the frequency domain,
which is a straightforward and reliable approach.

We shall assume �as was done in Ref. 23� that, to a rea-
sonable degree of approximation, the permittivity of the par-
ticles is equal to its bulk value for silver.32 In the specific
example considered in Ref. 23, the radii of the silver par-
ticles are 45, 15, and 5 nm, with the air gaps of 9 and 3 nm.
Under the quasistatic approximation, the maximum field en-
hancement is calculated to occur in the near ultraviolet at
��=3.37 eV, with the corresponding wavelength of
�367.9 nm.

The optical electric field can be split up into the excitation
field E0 and the scattered field Es that vanishes at infinity:
E=E0+Es. The governing equation is

� 	 � 	 Es − k0
2
Es = − �� 	 � 	 E0 − k0

2
E0� , �1�

where k0=� /c is the wave number in free space. The relative
dielectric permittivity is 
=�m��� in metal and 
=1 in a
vacuum. The Maxwell boundary conditions are implied at
the metal-dielectric interfaces describing the interfacial
charges and currents. In our computations, the incident field
E0 is always a plane wave with the amplitude normalized to
unity. In the quasistatic limit, the governing continuity equa-
tion is written for the total electrostatic potential �=�0+�s
that is presented as a sum of the excitation field �external�
potential �0 and the scattered field potential �s exactly the
same way as the electric field is,

� · �
 � �s� = − � · �
 � �0� , �2�

where �0�r� is the applied potential corresponding to the
uniform unity electric field in the vicinity of the system.

IV. NUMERICAL SIMULATION AND RESULTS

Our numerical simulations are based on the finite element
method �FEM� with Eqs. �1� or �2� rewritten in the weak
�variational� form. The Maxwell boundary conditions on the
surfaces are automatically satisfied by the solution of this
variational problem. The mathematical details of this ap-
proach are well known �e.g., Refs. 33, 34, and 36�. The elec-
trostatic problem is solved numerically for the total potential
�. We use the commercial software packages HFSS™ by An-

FIG. 2. �Color online� Electric field enhancement factor around
the cascade of three plasmonic spheres.
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soft Corp. for electrodynamic analysis and FEMLAB™
�COMSOL Multiphysics� in the electrostatic case. Both of
these packages are FEM based: second-order triangular
nodal elements for the electrostatic problem and tetrahedral
edge elements with 12 degrees of freedom for wave analysis.
The HFSS employs automatic adaptive mesh refinement for
higher accuracy and either radiation boundary conditions or
perfectly matched layers to truncate the unbounded domain.

To assess the numerical accuracy, we first considered a
single particle of radius from 5 to 60 nm. In this range, for
the electric field computed at the surface, the differences
between the Mie theory35 and HFSS field values are within
1.2%–3.5% for a dielectric particle with 
=10 and within
3.4%–6.3% for a silver particle with 
s=−2.74+0.232i.

This agreement allowed us to proceed to the simulation of
particle cascades. A sample distribution of the amplitude of
the electric field �as a reminder, the amplitude of the incident
field is normalized to unity� in the the cross section of the
cascade is shown in Fig. 2. The incident wave is polarized
along the axis of the cascade and propagates in the down-
ward direction.

A fragment of a typical FE mesh is shown in Fig. 3. The
total number of tetrahedral elements in the computational
domain is 99 168. A salient advantage of FEM, as compared
with finite-difference methods, is that the mesh is geometri-
cally conforming and represents the curved boundaries accu-
rately. Automatic adaptive mesh refinement leads to higher
element density in the vicinity of the smallest silver particle.
While the tetrahedral mesh is fully three dimensional, for
visual clarity a combined two-dimensional–three-
dimensional �2D-3D� rendition of the mesh is used in Fig. 3.

We consider four independent combinations of the direc-
tions of wave propagation and polarization �left-right and
up-down directions are in reference to Fig. 1�.

�i� The incident wave propagates from right to left. The
electric and magnetic fields are both perpendicular to the axis
of the cascade �mnemonic label: ⇐��.

�ii� Same as above, but the wave impinges from the left
�labeled as ⇒��.

�iii� The direction of propagation and electric field are
both perpendicular to the axis of the cascade �labeled as ⇑��.

�iv� The direction of propagation is perpendicular to the
axis, and the electric field is parallel to it �labeled as ⇑��.

Table I shows the local field magnitudes �i.e., the field
enhancement factors� at the reference points for cases �i�–
�iv�. The “hottest spot,” i.e., the point of the maximum en-
hancement, is indicated in bold and is different in different
cases. When the electric field is perpendicular to the axis of
the cascade, the local field is amplified by a very modest
factor g�40. As expected, the enhancement is much greater
�g�250� in case �iv�, when the field and the dipole moments
that it induces are aligned along the axis.

The maximum enhancement �g�250� in Table I is
smaller than the enhancement g�600 predicted for this sys-
tem in the quasistatic approximation in Ref. 23. However,
does it imply that electrodynamic effects always reduce the
enhancement relative to the quasielectrostatic limit?

To answer this question and to gauge the influence of
electrodynamic effects, we consider field enhancement g as a
function of the system size by scaling the system proportion-
ally. This scaling is applied across the board to all dimen-
sions: the radii of all nanospheres and the air gaps between
them are multiplied by the same factor. In Fig. 4, we show
the dependence of the maximum enhancement �for the ⇑�
case� as a function of the radius R3 of the smallest nano-

TABLE I. Field enhancement at the reference points �see Fig. 1� for different directions of propagation
and polarization of the incident wave.

Case Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7 Point 8 Point 9

⇐ � 5.45 17.3 10.2 9.43 34.4 10.7 5.53 10.4 3.21

⇒ � 6.37 6.49 2.41 1.43 4.17 3.39 3.91 11.2 2.00

⇑ � 2.44 8.48 6.65 7.60 23.3 8.31 4.69 10.1 2.61

⇑ � 90.8 35.9 250 146 10.3 70.9 51.9 2.72 6.47

FIG. 3. A sample HFSS™ mesh around the cascade. �hybrid
2D-3D rendition of the 3D mesh used for visual clarity.�
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FIG. 4. Maximum field enhancement vs radius of the smallest
particle. All dimensions of the system are scaled proportionately.
�LSB: dimensions as in the specific example in Ref. 23; the radius
of the smallest particle 5 nm. ES: the electrostatic limit.�
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sphere. Note that the original example of Ref. 23 corre-
sponds to R3=5 nm. As we can see, this enhancement de-
pends strongly on the size of the system for R3
3 nm. It
shows an interference pattern typical for antennas with two
zeros at R3=7.5 nm and R3=15 nm, where destructive inter-
ference takes place. It does tend to the value g=630 found in
the quasistatic approximation23 for R3�1 nm and is close to
this value for R3�2.5 nm. It exhibits an electrodynamic
resonance for R3=1.2, with g�750, exceeding significantly
the quasistatic value.

According to Fig. 4, the highest enhancement in the LSB
cascade with the fractal ratio �=3 occurs when the radii of
the silver particles are R3=1.2 nm, R2=R3	�=3.6 nm, and
R1=R2	�=10.8 nm, and the air gaps are 2.16 and 0.72 nm.
However, these dimensions are too small to be practical and
for the bulk permittivity to be applicable. Therefore in the
search for maximum enhancement as a function of the fractal
ratio �, we fix the radius of the smallest silver particle at
R3=5 nm and the smallest air gap at d3=3 nm. Under these
conditions, the field enhancement as a function of � is shown
in Fig. 5. Note that the vacuum wavelength is still 367.9 nm,
and the incident field is polarized parallel to the cascade axis.
The highest field enhancement is found at ��2.6 and is
approximately 25% higher than for the original value �=3.

In practice, particularly for optical sensor applications, the
particles are likely to be deposited on a substrate. A possible
configuration is shown in Fig. 6. The radii of the particles

and the air gaps are the same as Ref. 23. Two directions of
propagation are considered: �I� perpendicular to the substrate
and �II� perpendicular to the axis of the cascade.

The silicon dioxide substrate �
=1.5� reduces the maxi-
mum field enhancement �Table II�, which can be explained
by dielectric screening. Field enhancement at point a—the
point on the smallest nanosphere closest to the middle
one—is higher than at point b. Interestingly enough, the
maximum enhancement is found for the excitation field po-
larized at an angle to the axis of the cascade �compare cases
I and II�. The multipole-multicenter calculation for cylindri-
cal silver particles �data not shown� yields qualitatively simi-
lar results.

V. CONCLUSION

In summary, full electrodynamic computations confirm
the qualitative results of the quasistatic analysis:23 for a self-
similar cascade of silver nanoparticles there exists a pro-
nounced nanofocus where the local fields significantly �by a
factor of several hundred� enhanced with respect to the ex-
citation field. At the same time, these computations show a
wealth of electrodynamic effects related to the total size of
the cascade, with both positive and negative resonances pos-
sible. At the positive resonance, the enhancement is signifi-
cantly higher than in the quasistatic case, while at the nega-
tive resonances �nodes� it vanishes. The maximum
enhancement corresponds to the excitation field polarized at
an angle to the axis of the cascade. Hence the size of the
system and the excitation polarization are useful variables in
the optimization of the optical nanolenses. Another clear pos-
sibility to optimize and improve the nanofocusing of optical
radiation is to decrease the gaps between the nanoparticles.
However, for smaller gaps the continuous electrodynamics
approach is not applicable any more. A more comprehensive
theory needs to be developed, one that would take into ac-
count the nonlocality of optical responses and the electron
spillout at scales of 1 nm or less.
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TABLE II. Maximum field enhancement factor with and without
the substrate.

With substrate Without substrate

Case I Case II Case I Case II

Point a 292 209 338 250

Point b 217 154 252 178
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FIG. 5. Maximum field enhancement vs coefficient �, with the
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