
Thermodynamic Casimir effects involving interacting field theories with zero modes

Daniel Grüneberg and H. W. Diehl
Fachbereich Physik, Universität Duisburg-Essen, D-47048 Duisburg, Germany

�Received 22 October 2007; published 6 March 2008�

Systems with an O�n� symmetrical Hamiltonian are considered in a d-dimensional slab geometry of mac-
roscopic lateral extension and finite thickness L that undergo a continuous bulk phase transition in the limit
L→�. The effective forces induced by thermal fluctuations at and above the bulk critical temperature Tc,�

�thermodynamic Casimir effect� are investigated below the upper critical dimension d*=4 by means of field-
theoretic renormalization-group methods for the case of periodic and special-special boundary conditions,
where the latter correspond to the critical enhancement of the surface interactions on both boundary planes. As
shown previously �Europhys. Lett. 75, 241 �2006��, the zero modes that are present in Landau theory at Tc,�

make conventional renormalization-group-improved perturbation theory in 4−� dimensions ill-defined. The
revised expansion introduced there is utilized to compute the scaling functions of the excess free energy and
the Casimir force for temperatures T�Tc,� as functions of L�L /��, where �� is the bulk correlation length.
Scaling functions of the L-dependent residual free energy per area are obtained, whose L→0 limits are in
conformity with previous results for the Casimir amplitudes �C to O��3/2� and display a more reasonable small-
L behavior inasmuch as they approach the critical value �C monotonically as L→0. Extrapolations to d=3 for
the Ising case n=1 with periodic boundary conditions are in fair agreement with Monte Carlo results. In the
case of special-special boundary conditions, extrapolations to d=3 are hampered by the fact that the one-loop
result for the inverse finite-size susceptibility becomes negative for some values of L when ��0.83.
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I. INTRODUCTION

When a classical or quantum fluid or an n-vector magnet,
with n=1, 2, and 3, is confined by macroscopic bodies such
as two parallel plates, walls, surfaces, or interfaces, of area
A, its free energy F depends on the distance L between these
boundary planes. The L dependence implies a force

FC�T,L� = − kBT
�fex�T,L�

�L
�1.1�

between the plates, where fex= �F /kBT�−Lfb is the reduced
excess free energy per unit area and fb is the reduced bulk
free-energy density, and the limit A→� has been taken.1–5

By analogy with the familiar Casimir force6 produced by
vacuum fluctuations of the electromagnetic field between
two metallic plates �and slight abuse of language�, FC is
conventionally called “thermodynamic Casimir force.”

Provided long-range interactions are either absent or neg-
ligible, this force decays exponentially for separations L
����T�, where ���T� is the bulk correlation length. Near a
continuous phase transition in d bulk dimensions, ���T� di-
verges as �T−Tc,��−� at the bulk critical temperature Tc,�.
Therefore, the Casimir force FC�T ,L� extends to distances L
much larger than the microscopic scale a ��radius of atoms,
lattice constant�.

Writing

fex�T,L� = fs�T� + f res�T,L� , �1.2�

let us decompose the excess free energy fex into an
L-independent surface part fs�T�� fex�T ,�� and a residual
finite-size contribution f res�T ,L�. The latter behaves as

f res�Tc,�,L� �
L→�

�CL−�d−1� �1.3�

at the bulk critical point T=Tc,�, and hence produces the
long-ranged effective force

FC�Tc,�,L�
kBTc,�

�
L→�

�d − 1��CL−d. �1.4�

Here, �C, the so-called Casimir amplitude,2 is a universal
quantity which depends on the bulk universality class of the
phase transition considered and gross properties of the
boundary plates, but is independent of microscopic details.

Such thermodynamic Casimir forces have been the sub-
ject of much interest recently.7–11 Clear experimental evi-
dence for their existence has been found in the thinning of
wetting layers of liquid 4He as a function of temperature on
approaching the lambda line.10,11

Near the bulk critical point, the residual free-energy den-
sity and Casimir force are expected to have the scaling forms

f res�T,L� � L−�d−1�	�L/��� �1.5�

and

FC�Tc,�,L�
kBT

� L−d
	 L

��

 , �1.6�

where 	 and


�L� = �d − 1�	�L� − L	��L� �1.7�

should be universal functions of L�L /��. These expecta-
tions rest on the assumption that �� and L are large compared
to other lengths, which means, in particular, that the symme-
try breaking field h vanishes and long-range interactions are
either absent or negligible.
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In studies of the Casimir effect in QED, matter usually is
taken into account only through the choice of appropriate
boundary conditions on the surfaces of macroscopic bodies.
Hence, they involve free field theories under given boundary
conditions. Systematic theoretical investigations of the Ca-
simir effect at critical points are a much greater challenge in
that one has to deal with interacting field theories in finite
and bounded systems.12,13

A first fairly detailed study of the thermodynamic Casimir
effect was made about 15 years ago by Krech and Dietrich
�KD� for the �4 theory on a slab Rd−1� �0,L� of thickness
L.7,8 Building on Symanzik’s work14 in the 1980s and the
simultaneously emerging field-theory approach to critical be-
havior of systems with boundaries,12,13,15–18 these authors
considered five different boundary conditions �, namely, pe-
riodic ��=per�, antiperiodic ��=ap�, and the three non-
equivalent combinations �D ,D�, �D , sp�, and �sp,sp� of Di-
richlet �D� and special �sp� boundary conditions on the slab’s
two boundary planes. Here, the former �D� means �=0 as
usual, while the latter �sp� is the case of a Robin boundary
condition �n�= c̊�, for which c̊ takes the special value c̊sp
corresponding to the critical enhancement of the surface in-
teractions on the respective boundary plane.

Restricting themselves to temperatures T�Tc,�, KD per-
formed two-loop calculations for �4−��-dimensional slabs
under these boundary conditions � and determined the � ex-
pansions of the Casimir amplitudes �C

��� as well as those of
the corresponding scaling functions 	��� to first order in �.

In a recent paper with Shpot,19 we have shown that con-
ventional renormalization-group �RG� improved perturbation
theory, on which both Symanzik’s14 and KD’s7,8 analyses are
based, becomes ill-defined at Tc,� beyond two-loop order due
to infrared singularities for those boundary conditions that
involve a zero mode at Tc,� in Landau theory. This applies to
both �=per and �= �sp,sp�. To remedy these deficiencies,
we performed a reorganization of field theory such that the
resulting RG-improved perturbation theory remained mean-
ingful at Tc,�. It was found that the small-� expansions of the
corresponding Casimir amplitudes �C

��� involved fractional
powers �k/2, with k�3, and powers of ln �. Furthermore,
explicit results for these series to order �3/2 were given.

In this paper, we will utilize this approach to compute the
scaling functions 	���, and hence 
��� for �=per and �sp,sp�
to the same order of RG-improved perturbation theory. The
results are consistent with and reproduce those of Ref. 19
when T=Tc,�.

Let us note that KD’s two-loop results for these boundary
conditions, though well defined down to Tc,�, gave clear in-
dications of existing problems. To see this, consider the scal-
ing functions 	�per� for n=1, 2, 3, and � displayed in Fig. 1,
which were obtained by extrapolating their O��� results to
d=3.

The behavior of these curves at small L differs in a quali-
tative fashion from that of the exact scaling function for
n=� and d=3, which follows from the exact solution of
the mean spherical model under periodic boundary
conditions.5,21,22 Unlike the latter, which decreases mono-
tonically to its critical value

�C
�per,SM� =

− 2�3�
5�

� − 0.153 05 �1.8�

at L=0, the former go through a minimum at small L�0 and
then increase as L→0. Such a minimum is neither expected
at L�0 nor in conformity with the Monte Carlo results of
Ref. 23 and announced more recent ones.24–26 Note also that
as n increases, the extrapolations actually move away from
the exact n=� curve since the deviations at small L get big-
ger.

A second problem was pointed to by KD: Since for finite
L no phase transition takes place at Tc,�, the free energy per
unit area must be an analytic function of temperature at Tc,�,
which imposes conditions on the small-L behavior of the
scaling functions 	����L� �which will be recalled in Sec.
IV C�. KD found their O��� results to be consistent with
these conditions only in the considered cases of nonzero-
mode boundary conditions �=ap, �D ,D�, and �D , sp�. In the
remaining cases of the zero-mode boundary conditions �
=per and �sp,sp�, these conditions turned out to be violated
by terms of first order in �.

The results our approach yields for the scaling functions
	�per� do better in two regards. First, the small-L behavior is
improved inasmuch as the Casimir amplitudes �C

�per� are ap-
proached in a monotonically decreasing manner as L→0.
Second, the order of the terms violating the analyticity con-
dition is increased from O��� to O��3/2�. In the case of sp-sp
boundary conditions, our results raise questions whose an-
swers might require a generalization of our analysis in which
the surface enhancement variables are allowed to vary. As we
shall see, the one-loop expression for the scaling function of
the inverse finite-size susceptibility becomes negative in a
small interval of L=L /�� when evaluated at �=1. This prob-
ably simply means that this extrapolation to d=3 is not suf-
ficiently accurate. In any case, this violation of a necessary
stability condition of the disordered phase is a problem even
for KD’s original O��� results.

The remainder of this paper is organized as follows. In the
next section, we specify the model utilized in our analysis—
the �4 theory in slab geometry. We briefly recapitulate the
general fluctuating Robin boundary conditions it involves, its
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FIG. 1. Scaling functions 	�per� for n=1, 2, 3, and � obtained by
extrapolating the O��� results of Ref. 8 to d=3, compared with the
exact large-n result for d=3 �Refs. 5 and 20�.
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renormalization, the fixed points that are relevant for the sub-
sequent analysis, and the renormalization of its free energy.
In Sec. III, we first recall the conventional theory of the
Casimir effect based on RG improved perturbation theory in
4−� bulk dimensions, and then discuss the problems into
which it runs when a zero mode appears in Landau theory.
This is followed by a detailed exposition of how these prob-
lems can be overcome through an appropriate reformulation
of field theory. In Sec. IV, our results for the residual free
energies and their scaling functions are presented. In Sec. V,
we employ the solution of the mean spherical model under
periodic boundary conditions5,20,21 for d�4 to show that our
small-� results are in conformity with these exact ones in the
limit n→�. A brief summary and discussion of our work are
given in Sec. VI. Finally, there are four appendixes in which
technical details are described.

II. CONTINUUM MODEL, BOUNDARY CONDITIONS,
AND BACKGROUND

A. Definition of model

We consider a d-dimensional slab of finite thickness L
occupying the region V=Rd−1� �0,L� of d-dimensional
space. Let xj, j=1, . . . ,d, be Cartesian coordinates, with xd
�z taken along the finite direction. We write the position
vector x= �x1 , . . . ,xd� as x= �y ,z�, where y= �x1 , . . . ,xd−1� is
the component along the slab.

The Hamiltonians of the �4 models we are concerned
with are sums of a bulk and a boundary term,

H��� = �
V

LV�x�dV + �
�V

L�V�x�dA , �2.1�

where LV�x� and L�V�x� depend on ��x� and its derivatives.
We either consider periodic or free boundary conditions

along the z direction. In the first case, where

��x + Lêd� = ��x� , �2.2�

there is no boundary, �V=�, and the boundary term ��V. . .
is absent. In the case of free boundary conditions, the bound-
ary �V=B1�B2 is the union of B1, the z=0 plane, and B2,
the z=L plane.

The bulk density is always given by

LV��� =
1

2 
�=1

n

�����2 +
�̊

2
�2 +

ů

4!
�4, �2.3�

where ��x�= (���x�) is the n-component order parameter
field and � denotes its absolute value ���.

The boundary density we utilize when considering free
boundary conditions reads

L�V��� =
c̊�x�

2
��x�2, �2.4�

where c̊�x�, the surface enhancement variable, is allowed to
have different values on B1 and B2, i.e.,

c̊�x� = �c̊1 for x � B1

c̊2 for x � B2.
� �2.5�

B. Boundary conditions

Using well-known arguments,12,13 one concludes from the
boundary terms in the classical equations of motion �H=0
that the derivative �n� along the inner normal n on �V sat-
isfies

�n���x� = c̊j���x� for x � B j . �2.6�

This is a boundary condition for Landau theory, which holds
beyond it in an operator sense �inside of averages�.

C. Renormalization of correlation functions

To absorb the ultraviolet �uv� singularities of the
�N+M�-point cumulant functions

G�1,. . .,�M

�N,M� �x1, . . . ,yM� =��
j=1

N

��j
�x j��

k=1

M

��k
�yk��cum

�2.7�

involving N interior points x j ��V and M boundary points
yk��V for dimensions d�4, bulk and boundary counter-
terms are needed, which can be chosen to correspond to the
reparametrizations

� = Z�
1/2�R,

�̊ − �̊c,� � ��̊ = Z��
2� ,

ůNd = ��Zuu , �2.8�

and

�c̊j � c̊j − c̊sp = �Zccj ,

����B = �Z�Z1�1/2����B
R . �2.9�

Here, ����B means ��yk� at a boundary point yk, and � is an
arbitrary momentum scale. Further, ��̊ is the deviation of �̊
from �̊c,�, the critical-point value of �̊ of the bulk system. In
a theory regularized by a large-momentum cutoff �, �̊c,�
would diverge ��2. We prefer to use dimensional regular-
ization; then �̊c,� vanishes in perturbation theory. The renor-
malization factors Z�, Z�, and Zu are standard bulk quantities.
The renormalization factors Z1 and Zc are properties of the
semi-infinite system that results in the limit L→� when c1
=c2 with �c1���.

We choose the factor that is absorbed in the renormalized
coupling constant as27

Nd =
2��3 − d/2�

�d − 2��4��d/2 =
1

16�2�1 +
1 − CE + ln�4��

2
� + O��2�� ,

�2.10�

where CE is the Euler-Mascheroni constant. It differs from
the one advocated by Schloms and Dohm �see, e.g., Ref. 28
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and references therein� by a trivial factor of 2. Ours agrees to
zeroth order in � with �2−d�−d/2�, the one employed in Ref.
12 and by KD. Therefore, all of the above bulk and surface
renormalization factors Z� , . . . ,Z1 remain the same as in
Refs. 8 and 12 when determined by minimal subtraction of
poles at �=0. Explicit two-loop expressions for these func-
tions can be found in Eqs. �3.42a�–�3.42c� and Eqs. �3.66a�
and �3.66b� of Ref. 12 or in Refs. 17 and 18. The advantage
of our choice of Nd is that it simplifies the resulting expres-
sions for renormalized one-loop bulk vertex functions while
leaving the renormalization factors of Ref. 12 and KD un-
changed.

The quantity c̊sp is the special value of c̊1 corresponding
to the critical enhancement of the surface interactions in a
semi-infinite system with surface plane B1, i.e., the value at
which the so-called special transition occurs �provided the
surface dimension d−1 is large enough to allow long-range
surface order above Tc,��. Analogous to �̊c,�, it would diverge
�� as �→� in a cutoff regularized theory, but vanishes in
a perturbative approach based on dimensional
regularization.29–31

D. Fixed points

Let u* be the infrared-stable zero of the beta function
�u�u�������0u, where ����0 means a derivative at fixed bare
parameters ů, �̊, c̊1, and c̊2 of the theory. In the enlarged
space �� ,u ,c1 ,c2� of bulk and surface variables, the RG
yields fixed points on the hyperplane �� ,u�= �0,u*� located
at the nine pairs �c

1
* ,c

2
*� of the fixed-point values

c
j
* = �cord

* = �

csp
* = 0

cex
* = − � .

� �2.11�

These values pertain to the fixed points describing the critical
behavior at the ordinary, special, and extraordinary transi-
tions of the semi-infinite system. Each one of these fixed
points is specified by a pair ��1 ,�2� with �1 ,�2=ord, sp,
and ex of the respective surface universality classes. Uni-
versal finite-size quantities such as the Casimir amplitudes
�C

��� and the scaling functions 	���, 
��� generally are differ-
ent, depending on the basin of attraction of the fixed point
��1 ,�2� to which they belong. Recall that for � j =ord, the
cumulants �2.7� satisfy the Dirichlet boundary condition
limxk→Bj

G�N,0�=0. Thus, the universality classes �ord,ord�,
�ord,��, and �� ,ord� with ��ord can equivalently be la-
beled as �D ,D�, �D ,��, and �� ,D�, respectively. We shall
continue to employ this convention.

E. Renormalization of free energy

The counterterms implied by the reparametrizations �2.8�
and �2.9� are sufficient to absorb the uv singularities of the
cumulants �2.7�. However, the free energy requires additional
additive counterterms.8,12 They can be chosen to be indepen-
dent of L.12,14 We therefore add to the Hamiltonian defined
by Eqs. �2.1�–�2.5� a contribution

Aadd = �
V

CV��̊, ů�dV + 
j=1

2 �
Bj

C�V��̊, ů, c̊j�dA ,

�2.12�

where CV is a polynomial in �̊ of degree 2, and C�V is a
polynomial of degree 1 in �̊ and degree 3 in c̊j, whose coef-
ficients depend on ů, but neither on L nor on the position x.
The coefficients �power series in ů� are fixed as follows.32

Let TNP
�4f��̊� denote the Taylor series expansions of the func-

tion f to second order in �̊ �fourth order in �̊1/2�, and

TNP
�3g��̊, c̊� = 

j,k

0�2j+k�3

� 1

j!k!

� j+kg

��̊ j�c̊k�
NP

��̊ − �̊NP� j�c̊ − c̊NP�k

�2.13�

be the corresponding expansion of g in �̊ and c̊ to orders j
and k, respectively, with 2j+k�3, about the normalization
point ��̊ , c̊�= ��̊NP, c̊NP�.33 We choose

�̊NP � ��̊��=1 = �̊c,� + �2Z�,

c̊NP � �c̊�c=1 = c̊sp + �Zc, �2.14�

and define the dimensionless renormalized bulk free-energy
density fb,R by

�−dfb,R��,u� = fb��̊, ů� − TNP
�4fb��̊, ů� . �2.15�

The excess surface free-energy density fs��̊ , ů , c̊1 , c̊2� of
the infinitely thick film is a sum of contributions fs��̊ , ů , c̊1�
associated with the respective semi-infinite systems bounded
on one side by B j; i.e.,

fs��̊, ů, c̊1, c̊2� = fs��̊, ů, c̊1� + fs��̊, ů, c̊2� . �2.16�

We define the dimensionless renormalized analogs of the lat-
ter by

�−�d−1�fs,R��,u,c� = fs��̊, ů, c̊� − TNP
�3fs��̊, ů, c̊� . �2.17�

By construction, these renormalized bulk and surface
free-energy densities satisfy the normalization conditions

�fb,R�NP � fb,R�1,u� = 0 = � �fb,R

��
�

NP
= � �2fb,R

��2 �
NP

�2.18�

and

� � j+kfs,R

�� j�ck �
NP

�
� j+kfs,R

�� j�ck �1,u,1� = 0, 0 � 2j + k � 3,

�2.19�

respectively. The renormalization functions CV and C�V are
fixed by these requirements.

The renormalized excess surface free-energy density
fs,R�� ,u ,c1 ,c2� one obtains from the action H+Aadd upon
insertion of the reparametrizations is uv finite. Since CV and
C�V are independent of L, the subtractions they provide can-
cel in the residual free energy f res�L ; �̊ , ů , c̊1 , c̊2� of the film.
Accordingly, its dimensionless renormalized counterpart
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f res,R��L;�,u,c1,c2� = �−�d−1�f res�L; �̊, ů, c̊1, c̊2� �2.20�

satisfies a homogeneous RG equation, whereas both fb,R and
fs,R satisfy inhomogeneous ones.

Following the notation conventions of Ref. 12, we intro-
duce the beta function �u= �����0u, the RG functions ��

= �����0 ln Z�, �=� ,� ,u ,c ,1, and the operator

D� = ��� + �u�u − �2 + ����� − �1 + �c�
j=1

2

cj�cj
.

�2.21�

Then the RG equation of f res,R can be written as

�D� + �d − 1��f res,R��L;�,u,c1,c1� = 0. �2.22�

Note that the RG functions �u and �� are either bulk quan-
tities �such as �u�� ,u� and ���u�� or properties of semi-
infinite systems such as �c�u�. In accordance with Ref. 12,
we have chosen them independent of cj and � �fixing them by
minimal subtraction of poles in ��. Explicit two-loop expres-
sions for these functions can be found in Eqs. �3.75a�–
�3.76b� of Ref. 12.

The RG equation �2.22� can be solved in a standard fash-
ion by means of characteristics. Upon setting �=1 and
choosing the scale parameter � of the transformation �
→�� equal to 1 /��, the inverse bulk correlation length, we
see that the residual free-energy density, on sufficiently long
length scales, takes the finite-size scaling form

f res,R�L;�,u,c1,c1� � L−�d−1�	�L/��;c1��
�,c2��

�� .

�2.23�

Here, � is the surface crossover exponent of the special tran-
sition. The scaling function 	 is universal up to the nonuni-
versal amplitude of �� and the nonuniversal metric factor
associated with c1 and c2 �Ref. 34�; it is given by

	�L;c1,c2� = Ld−1f res,R�L;1,u*,c1,c2� . �2.24�

From it the functions 	����L� with �= �sp,sp�, �D ,D�, and
�sp,D� follow by setting �c1 ,c2� to the respective fixed-point
values �0,0�, �� ,��, and �0,��. For example,

	�sp,sp��L� = Ld−1f res,R�L;1,u*,0,0� . �2.25�

For reasons explained in the Introduction, we shall mainly
be concerned with the cases of periodic and �sp,sp� boundary
conditions.

III. REVISED FIELD-THEORY APPROACH

A. Infrared problems due to zero modes

We now turn to the problem of computing the scaling
functions 	��� and 
��� for �=per and �sp,sp� by means of
RG-improved perturbation theory. Only the case T�Tc,�
will be considered.

The free propagator can be written as

GL
����x;x���̊� = �

p

�d−1�


m

�z�m��m�z��
p2 + km

2 + �̊
eip·�y−y��, �3.1�

where

�
p

�d−1�

� � dd−1p

�2��d−1 �3.2�

is a convenient shorthand for a normalized �d−1�-
dimensional momentum integral. Further, �m�= �m���� are
eigenstates given by

�z�m��per� =
exp�ikmz�

�L
, km =

2�m

L
, m � Z �3.3�

and

�z�m��sp,sp� =
1
�L
�1 for m = 0

�2 cos�kmz� for m � N ,�
km = m�/L, m = 0,1, . . . ,� , �3.4�

respectively. For either boundary condition, the mode with
m=0 and p=0 becomes massless at �=0.

In their calculation of �C
��� directly at Tc,�, KD therefore

subtracted the contribution from the m=0 mode to avoid
infrared problems, the rationale being that the subtracted
one-loop contribution is formally independent of L so that it
does not contribute to the Casimir force. Computing the one-
and two-loop graphs at ��0,8,19 one finds that the contribu-
tions from the k0=0 modes vary as a positive power of � and,
hence, vanish as �→0. However, at the three-loop level, this
is no longer the case because one encounters infrared diver-
gent contributions of the form depicted in Fig. 2. Thus, con-
ventional RG-improved perturbation theory is ill-defined at
Tc,�.

The origin of this problem is that Landau theory yields
sharp transitions for both the bulk and the film system at the
same critical value �̊=0. It is, thus, of a similar kind as en-
countered in the study of finite-size effects of systems that
are finite in all, or in all but one, direction under periodic
boundary conditions.35,36 As discussed in Ref. 19, the remedy
is to separate the k0=0 mode and construct an effective field
theory for the k0=0 part of the order parameter.

B. Construction of effective zero-mode action

To this end, we write

��x� = 
m

�m�y� �z�m� = L−1/2��y� + ��y,z� , �3.5�

decomposing the order parameter into its component along
�0�y�=��y� and a remaining km�0 contribution ��y ,z�
with

FIG. 2. �Color online� Infrared divergent contribution to the free
energy. The dashed full blue lines represent the km�0 part of the
free propagator �3.1�; the dotted red lines denote its km=0 part. The
blue subgraphs approach a finite L-dependent limit as �→0; the red
dashed subgraphs vary as a negative power of � and, hence, is
infrared singular �Ref. 19�.
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�
0

L

dz��y,z� = 0. �3.6�

Tracing out � defines us a �d−1�-dimensional effective field
theory with the Hamiltonian

Heff��� = − ln Tr� e−H�L−1/2�+�� =
F�

kBT
+ H�L−1/2��

− ln�e−Hint��,����. �3.7�

Here, F�, defined by

exp�− F�/kBT� = Tr� exp�− H���� , �3.8�

is the free energy due to the km�0 modes. Further,

Hint��,�� � �
V

dV� ů

4L
�2�2 +

ů

6�L
�� · ���2� �3.9�

is the interaction part, and

H�L−1/2�� =� dA�1

2
j=1

d−1 	 ��

�xj

2

+
�̊

2
�2 +

ů

4!L
�4� .

�3.10�

Computing the last term on the right-hand side of Eq.
�3.7� in a loop expansion gives

Heff��� =
F�

kBT
+ H�L−1/2�� + Heff

�1���� + ¯ , �3.11�

with

H[1]
eff [ϕ] =

1

2
Tr ln

�
11 +

ů

6L
G

(℘)
L,ψ

�
δαβ ϕ2 + 2ϕαϕβ

��

= − ϕ ϕ − ϕ

ϕ

ϕ

ϕ
+ O(̊u3) ,

�3.12�
where the dashed blue lines �color online� represent free �
propagators

GL,�
��� �x;x���̊� = �

p

�d−1�


m�0

�z�m��m�z��
p2 + km

2 + �̊
eip·�y−y�� �3.13�

and the red bars indicate � legs.
Writing

��� g�
−1�y − y�� = � �2Heff���

����y�����y��
�

�=0

= ��� ��− �2 + �̊���y − y�� − ���y − y��� ,

�3.14�

where �2 means the Laplacian  j=1
d−1� j

2 in Rd−1, and

 �1,. . .,�k

�k� �y1, . . . ,yk� = � �kHeff���
���1

�y1� ¯ ���k
�yk�
�

�=0

,

�3.15�

we introduce the propagator g� associated with the �2 term
of Heff��� and the corresponding self-energy �� as well as

the vertices  �k� of the effective action Heff���. Though not
indicated here, all these quantities depend on L and the
boundary condition �.

The first graph in the second line of Eq. �3.12� is the
one-loop contribution to ��. It is local in y space. As can be
seen from Fig. 3, both local and nonlocal contributions ap-
pear beyond one-loop order. The second graph in the lower
line of Eq. �3.12� is the nonlocal one-loop contribution to
 �4�. Evidently, vertices  �k� of arbitrary even order k are
generated through the coupling to the km�0 modes.

C. Renormalization-group-improved perturbation theory

Now suppose the bulk critical point is approached so that
�� becomes large. Then the vertices  �k� cannot be computed
by perturbation theory below the upper critical dimension
d*=4. However, for arbitrary small ��0, we can employ the
RG to map to a system with a minimal length scale on the
order of ��, and then employ perturbation theory. The vertex
functions  �k� are expected to decay as a function of the
relative differences yij = �yi−y j� on the scale of ��.

The renormalized counterparts  R
�k� of these vertices sat-

isfy the RG equations37

	D� −
N

2
��
 R

�k� = 0. �3.16�

Solving them in a standard fashion, one finds that the Fourier
transforms  ̂�k��2��d−1�� j=1

k p j� of these functions on suffi-
ciently large length scales take the scaling forms

 ̂R
�2k���pi�� � �k�L1−d+�d−3+��kX2k

�����pi���;L/��� ,

�3.17�

where � is a standard bulk critical exponent, while �� is
the second-moment bulk correlation length. The latter is
defined in the conventional manner in terms of the bulk

vertex function �̃b
�2��q�=1 / G̃b

�2��q� of the �4 theory in
d-dimensional momentum space or its position-space back
transform Gb

�2��x� via

��
2 � �� �

�q2 ln �̃b
�2��q���

q=0
=

1

2d

� ddx x2Gb
�2��x�

� ddx Gb
�2��x�

.

�3.18�

Let us verify explicitly to first order in u*=O��� that RG-
improved perturbation theory yields such scaling behavior.
Consider, for example,  R

�2�=g�,R
−1 . The first graph in the sec-

ϕ ϕ

ϕ ϕ

FIG. 3. �Color online� Two-loop contributions to ��. The left
graph is local, the one on the right-hand side is nonlocal.
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ond line of Eq. �3.12� is the O�ů� contribution to �̂��p�.
Introducing

Ij
����L; �̊� � �

0

L dz

L
�GL,�

��� �x;x��̊�� j, j = 1 and 2,

�3.19�

we have

�̂��p� = − ů
n + 2

6
I1

����L; �̊� + O�ů2� . �3.20�

The integrals Ij
����L ; �̊� are computed in Appendix A. The

results for I1
�per� and I1

�sp,sp� are

I1
�per��L; �̊� =

Ad−1

L
�̊�d−3�/2 − Ad�̊

�d−2�/2 +
2Qd,2��̊L2�

�̊Ld

�3.21�

and

I1
�sp,sp��L; �̊� = I1

�per��2L; �̊� , �3.22�

where

Ad =
2Nd

4 − d
= − �4��−d/2�	1 −

d

2

 . �3.23�

Here, Qd,2�r� is a special one of the functions defined by

Qd,��r� �
r

2� 
k�2�Z

�
p

�d−1�

− �
q=�p,k�

�d� � q�−2

q2 + r
, �3.24�

where p and k are the �d−1�-parallel and one-dimensional
perpendicular components of the wave vector q= �p ,k�. The
properties of these functions are analyzed and discussed in
Appendix D, where we compute them for the required pa-
rameter values of d and �. Plots of the functions Qd,2�r� with
d=4 and 6 are displayed in Fig. 9 �Appendix D�.

To facilitate subsequent comparisons with KD’s results,
let us note how the Qd,2�r� are related to the functions

ga,b�z� �
1

a
�

1

�

dt
�t2 − 1�a lnb�t2 − 1�

e2zt − 1
�3.25�

utilized by these authors. As shown in Appendix C, one has

Qd,2�r� =
21−d��1−d�/2rd/2

���d − 3�/2�
g�d−3�/2,0��r/2� . �3.26�

Using the results �3.21� and �3.22�, and expressing g�,R
−1

=Z�g�
−1 in terms of the renormalized variables � and u, one

finds that the pole ��−1 cancels. The resulting renormalized
expression is easily evaluated at the fixed-point value u=u*.
It conforms with the scaling form

�ĝ�,R
��� �p,�,L��−1 � ��L�−2X2

����p��,L/��� �3.27�

and yields for the scaling functions the � expansions

X2
�per��p,L� = �p2 + 1�L2 +

n + 2

n + 8
��2� L + 16�2Q4,2�L2�

L2 �
+ O��2� �3.28�

and

X2
�sp,sp��p,L� = �p2 + 1�L2 +

n + 2

n + 8
��� L + �2Q4,2�4L2�

L2 �
+ O��2� . �3.29�

A few comments are in order here.
�i� The above results imply that �g�,R

��� �0,� ,L��−1 does not
vanish at �=0 when L��. Using the fact that �=O��2� and
the small-r behavior of Q4,2�r� implied by Eq. �A15� yields

�g�,R
�sp,sp��0,0,L�*�−1 = �4g�,R

�per��0,0,L�*�−1 + O��2�

= �
n + 2

n + 8

�2�
L2 + O��2� , �3.30�

where the asterisk indicates evaluation at u=u*.
The physical meaning of this result is obvious. The cou-

pling of the k0=0 mode to the km�0 modes has produced an
L-dependent shift of the temperature at which � becomes
critical, making � noncritical at Tc,� when L��.

�ii� Verifying the scaling form �3.27� to higher orders in �
and the appearance of a nontrivial exponent � by extending
RG-improved perturbation theory to O��u*�2� or higher is, in
principle, straightforward.

�iii� It is instructive to see what our procedure yields for
boundary conditions such as �= �D ,D�, �D , sp�, and �ap�,
where Landau theory does not involve a zero mode at Tc,�.
In those cases, we have ��0 and �=�. Accordingly, Eq.
�3.11� simply yields F /kBT�F� /kBT for the reduced free
energy. It is, therefore, clear that for those nonzero-mode
boundary conditions, conventional expansions in integer
powers of � will result for the Casimir force, the scaling
functions 
��� and 	���, and similar quantities for T�Tc,�,
which must be in accordance with KD’s results to O���.

�iv� The procedure utilized above for constructing the ac-
tion of an effective lower-dimensional field theory by inte-
grating out modes via RG-improved perturbation theory that
do not become critical for T=Tc,� at zero-loop order is simi-
lar to the one employed in the study of static and dynamic
finite-size effects in systems that are finite in all, or in all but
one, directions.35,38–41 In the latter cases, one arrives for
small deviations �=d*−d�0 from the upper critical dimen-
sion d*=4 at expansions in powers of �1/2 and �1/3, respec-
tively. The main difference between these cases and ours is
that a sharp transition to a low-temperature phase with long-
range order is ruled out for the former because they involve
systems of finite extent along d or d−1 Cartesian axes �and
the presumed short-range interactions�. By contrast, in the
case of the slab geometry considered here, such a sharp tran-
sition should occur for finite thickness L at a shifted tempera-
ture Tc,L�Tc,� whenever d−1, the effective dimensionality,
is sufficiently large for such a long-range ordered low-
temperature phase to occur. �Evidently, d−1 must exceed
d*�n�, the lower critical dimension, which is d*�1�=1 in the
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Ising case n=1, and d*�n�1�=2, depending on whether a
discrete Z2 or continuous O�n� symmetry gets spontaneously
broken.� When no sharp transition is possible, one expects a
rounded one at a shifted pseudocritical temperature �see, e.g.,
Refs. 42 and 43�. The case of d=3 and n=2, corresponding
to an XY model on a slab or liquid 4He film below the bulk
! line T!, is exceptional in that a transition of Kosterlitz-
Thouless type to a low-temperature phase with quasi-long-
range order is expected to occur for finite L.

�v� That the coupling of the k0=0 mode � to the k�0
modes � produces an L-dependent mass gap for g�

−1 is cru-
cial for making RG-improved perturbation theory well-
defined at Tc,�. However, it must be emphasized that such a
perturbative approach using u*=O��� as expansion param-
eter by itself must not be expected to give a proper descrip-
tion of the ��d−1� dimensional� critical behavior at Tc,L. One
way to see this is to note that the bare �4 coupling constant
appearing in Heff��� is ů /L. To make it dimensionless, we
must multiply by the �5−d�th power of a length. An appro-
priate one is �L, the finite-size analog of ��, defined by

�L
2 � �� �

�p2 ln �̂��
�2��p���

p=0

=
1

2�d − 1�

� dd−1y y2���y� · ��0��cum

� dd−1y ���y� · ��0��cum

, �3.31�

where �̂���p� denotes the full �� vertex function in the
space of �d−1�-dimensional momenta p.

The appropriate dimensionless coupling constant, there-
fore, is �L

5−dů /L, which diverges as �L→� whenever d�5.
In accordance with general expectations, we thus see that
the appropriate smallness parameter for analyzing the �d
−1�-dimensional critical behavior at Tc,L by means of a di-
mensionality expansion is 5−d rather than �. Constructing a
RG approach that is reliable both at Tc,� and Tc,L and capable
of describing the crossover from d- to �d−1�-dimensional
critical behavior is a nontrivial problem, which has so far not
been solved in a satisfactory fashion and is beyond the scope
of this paper.

IV. CALCULATION OF FREE ENERGIES
AND SCALING FUNCTIONS

According to Eq. �3.11�, the reduced bare free-energy
density per unit area

fL
��� = lim

A→�

F

AkBT
�4.1�

is a sum

fL
�����̊� = f�

����L; �̊� + f�
����L; �̊� �4.2�

of a contribution f�
����L ; �̊� from the km�0 modes and a re-

mainder, which we denote as f�
���. We first consider the

nonzero-mode contribution f�
���.

A. Nonzero-mode contribution to the free energy

A standard loop expansion yields

f�
����L; �̊� = f�,�1�

��� �L; �̊� + f�,�2�
��� �L; �̊� + O�three-loops� ,

�4.3�

with

f�,�1�
��� �L; �̊� =

n

2 
km�0

�
p

�d−1�

ln�p2 + km
2 + �̊� = f�,�1�

��� �L;0�

+ L
n

2
J����L; �̊� �4.4�

and

f�,�2�
��� �L; �̊� = ůL

n�n + 2�
4!

I2
����L; �̊� , �4.5�

where

J����L; �̊� = �
0

�̊

I1
����L;t�dt . �4.6�

The �̊=0 contributions f�,�1�
��� �L ;0� are computed in Appendix

B. The results are in accordance with those of KD. Expressed
in terms of the familiar one-loop values

�C,�1�
�per� = 2d�C,�1�

�sp,sp� = − n�−d/2��d/2��d� �4.7�

of the Casimir amplitudes, they can be written as

f�,�1�
��� �L;0� = f�,0

��� + L−�d−1��C,�1�
��� . �4.8�

Here, f�,0
��� are the cutoff and L-dependent quantities defined

by Eqs. �B3�–�B5�; they vanish in dimensional regulariza-
tion.

The integrals I2
��� and J��� are worked out in Appendix A.

The results are given in Eqs. �A4�, �A9�, �A16�, and �A17�.
Inserting them into Eqs. �4.4� and �4.5� gives

f�,�1�
�per� �L; �̊� = f�,0

�per� + n� Ad−1

d − 1
�̊�d−1�/2 − L

Ad

d
�̊d/2

−
4� Qd+2,2��̊L2�

�̊Ld+1 � , �4.9�

f�,�2�
�per� �L; �̊� = ůL

n�n + 2�
4!

�Ad−1

L
�̊�d−3�/2 − Ad�̊

�d−2�/2

+
2Qd,2��̊L2�

�̊Ld �2

, �4.10�

and

f�,�1�
�sp,sp��L; �̊� = f�,0

�sp,sp� + n�1

2

Ad−1

d − 1
�̊�d−1�/2 − L

Ad

d
�̊d/2

−
� Qd+2,2�4�̊L2�

2d�̊Ld+1 � , �4.11�
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f�,�2�
�sp,sp��L; �̊� = ůL

n�n + 2�
4! ��Ad−1

2L
�̊�d−3�/2 − Ad�̊

�d−2�/2

+
Qd,2�4�̊L2�

2d−1�̊Ld �2

+
Bd

L
�A2d−4

2L
�̊d−3 − A2d−3�̊

d−5/2

+
Q2d−3,2�4�̊L2�
22d−4�̊L2d−3 �� , �4.12�

respectively, where f�,0
��� and Bd are constants defined in Eqs.

�B3� and �A10�.
The contributions −nLAd�

d/2 /d to f�,�1�
��� have simple poles

at d=4, which get cancelled upon renormalization by the
additive bulk counterterm "�2 implied by the subtraction
�2.15�. The two-loop terms f�,�2�

��� involve uv singular bulk

terms linear in Ad, whose poles at �=0 get cancelled by the
O�u� contribution to the counterterm �Z�Z�−1��2��V�R

2 /2.
That no pole-term singularities located at the boundary
planes B1 and B2 appear at �=0 in f�,�1�

�sp,sp� and f�,�2�
�sp,sp� is

because both renormalized enhancement variables c1 and c2
are zero.

Since our main interest is in the renormalized residual
free energy f res,R

��� , we can avoid dealing with additive coun-
terterms by focusing directly on its calculation. To determine
its nonzero-mode contributions f�,res,R

��� , we must subtract
from the sums of the above one- and two-loop terms the bulk
and surface contributions and express the difference in terms
of the renormalized variables � and u:

f�,res,R
��� �L;�,u,�� = f�

����L; �̊, ů� − Lfb
�����̊, ů� − f�,s

�����̊, ů� .

�4.13�

From the results �4.9�–�4.12�, one easily reads off the
��-independent� bulk terms

fb = fb,0 −
nAd

d
�̊d/2 + ů

n�n + 2�
4!

Ad
2�̊d−2 + O�ů2� �4.14�

as well as the �-dependent surface terms

f�,s
�per� = f�,s,0

�per� +
nAd−1

d − 1
�̊�d−1�/2 − ů

n�n + 2�
12

AdAd−1�̊
d−5/2 + O�ů2�

�4.15�

and

f�,s
�sp,sp� =

1

2
f�,s

�per� − ů
n�n + 2�

4!
Bd A2d−3�̊

d−5/2 + O�ů2� .

�4.16�

No confusion should arise from the fact that f�,s
�per� does not

vanish. As is easily checked, and our results for f�
�per� to be

given below will show, this term cancels exactly with the
surface contribution to f�

�per�, as it must. Of course, such can-
cellations are neither expected nor occur for �= �sp,sp� and
other boundary conditions.

With the aid of the property

d

dr
�Qd+2,2�r�

r
� = −

Qd,2�r�
4�r

�4.17�

derived in Appendix B of Ref. 21, the calculation of f�,res,R
���

becomes straightforward, giving

f�,res,R
�per�

�d−1n
= −

4� Qd+2,2��2�L2�
���L�d+1 +

u

�L

n + 2

4!
� 1

Nd
�Ad−1�

�d−3�/2

+
2Qd,2��2�L2�
���L�d−1 �2

−
�−�/2 − 1

�

8Qd,2��2�L2�
��L�d−1 �

+ O�u2� �4.18�

and

f�,res,R
�sp,sp�

�d−1n
= −

2� Qd+2,2�4�2�L2�
��2�L�d+1 +

u

�L

n + 2

4!
� 1

Nd
�Ad−1

2
��d−3�/2

+
Qd,2�4�2�L2�
��2�L�d−1 �2

+
Bd

Nd
�A2d−4

2
�d−3

+
Q2d−3,2�4�2�L2�
��2�L�2d−4 � −

�−�/2 − 1

�

2Qd,2�4�2�L2�
�2�L�d−2 �

+ O�u2� . �4.19�

B. Remaining free-energy terms

We next turn to the computation of f�
���. For ů=0, the

Hamiltonian Heff��� describes a free field theory whose two-
point function is the familiar Gaussian bulk propagator

G�
�d−1��y��̊� = �

p

�d−1�

�p2 + �̊�−1eip·y =
��̊/y2��d−3�/4

�2���d−1�/2 K�d−3�/2�y��̊�

�4.20�

in d−1 dimensions. As we have seen, using this as free
propagator in a Feynman graph expansion would lead to
Feynman integrals that are infrared divergent at Tc,� and
make the expansion ill-defined beyond two-loop order. This
suggests working with a free propagator whose mass param-
eter, first, remains positive for T�Tc,� when L��, and sec-
ond, has a well-defined physical meaning beyond perturba-
tion theory. A natural candidate that has these properties is
the inverse finite-size susceptibility rL

����rL, defined by

�rL�−1��� = #L��� =� dd−1y ����y����0��cum. �4.21�

We therefore use

G��y� � G�
�d−1��y�r̊L� �4.22�

as free propagator. A tacit assumption underlying our calcu-
lation is that the disordered phase is the correct reference
state to expand about for the parameter values of L and �
�0 considered. Since the transition temperature Tc,L for fi-
nite L is expected to be lower than the bulk critical tempera-
ture Tc,� �in those cases of d and n for which a sharp transi-
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tion occurs when L���, this is physically reasonable.
However, there is no a priori guarantee that extrapolations to
d=3 of results based on RG-improved perturbation theory
will fulfill all necessary requirements. In particular, we
should check whether the so-obtained approximate inverse
finite-size susceptibilities rL

��� remain positive when L��.
This issue may be expected to be more delicate for �
= �sp,sp� than for periodic boundary conditions. The reason
is that sp-sp boundary conditions are associated with a mul-
ticritical point of the surface phase diagram �located at c
=�=0� at which the line of surface transition Tc,s�c� meets
the bulk critical line �whose sections with c�0 and c�0
form the lines of ordinary and extraordinary transitions,
respectively�.12,44 For finite L, one expects shifts of this mul-
ticritical point and the phase boundaries. To account for these
shifts, one would have to vary the surface enhancement vari-
ables cj as well, giving up the restriction c1=c2=0. This is a
difficult problem and is beyond the scope of the present in-
vestigation.

Let us represent the propagator �4.22� by a red line, the
effective two-point vertex �̊− r̊L−�� by a red dot with
two legs, and the effective k-point vertices  �k� with k�2
by red dots with k legs. Then the Feynman graph expansion
of f�

����L� becomes

−−−−ffff ((((℘℘℘℘))))
ϕϕϕϕ ((((LLLL) =) =) =) = ++++ ++++ ++++ . . . .. . . .. . . .. . . .

�4.23�

The first graph on the right-hand side is given by

==== n fn fn fn fϕ,ϕ,ϕ,ϕ,0000 ++++
nnnn

2222

���� ˚̊̊̊rrrrLLLL

0000

GGGG((((dddd−−−−1)1)1)1)
∞∞∞∞ ((((0000||||tttt)))) dtdtdtdt−−−−

�4.24�

with

f�,0 =
n

2
�

p

�d−1�

ln p2. �4.25�

Our results �3.14� and �3.20� for g�
−1 and �� imply that

�̊ − r̊L − �� =
n + 2

6

ů

L
G�

�d−1��0�r̊L� + O�ů2�

=
n + 2

6

Ad−1ů

L
r̊L

�d−3�/2 + O�ů2� . �4.26�

Using this in conjunction with the fact that the effective
four-point vertex, to first order in u*, is a local �4 coupling
with interaction constant u* /L, one finds that the contribu-
tions from the other two graphs can be written as

==== −−−− ˚̊̊̊uuuu

LLLL

nnnn((((nnnn + 2)+ 2)+ 2)+ 2)

4!4!4!4!

����
GGGG((((dddd−−−−1)1)1)1)

∞∞∞∞ ((((0000||||̊̊̊̊rrrrLLLL))))
����2222

++++ OOOO(̊(̊(̊(̊uuuu2222))))

==== −−−− 1111

2222
++++ OOOO(̊(̊(̊(̊uuuu2222)))) ....

�4.27�

Upon inserting the y→0 limit of the free Gaussian propa-
gator �4.20� into Eqs. �4.24� and �4.27�, the required integrals
can be performed to obtain

f�
��� = f�,0 − n

Ad−1

d − 1
r̊L

�d−1�/2 −
ů

L

n�n + 2�
4!

Ad−1
2 r̊L

d−3 + ¯ .

�4.28�

Just as the constants f�,0
��� introduced in Appendix B, f�,0

involves uv divergent contributions which are eliminated in
the renormalized theory by the additive renormalization of
the free energy. Furthermore, it should be remembered that
r̊L= r̊L

��� depends on the boundary condition �. We have

r̊L
�per� = �̊ −

n + 2

6
ů�Ad�̊

�d−2�/2 −
2Qd,2�L2�̊�

�̊Ld � + O�ů2�

�4.29�

and

r̊L
�sp,sp� = �̊ −

n + 2

6
ů�Ad�̊

�d−2�/2 −
2Qd,2�4L2�̊�
�̊�2L�d +

Ad−1

2L
�̊�d−3�/2�

+ O�ů2� , �4.30�

respectively.
The O�u� contributions "Ad=Nd /� of r̊L

��� have uv poles
at �=0. These are cured by the bulk counterterm �Z�Z�

−1��2��V�R
2 /2. For the resulting renormalized dimension-

less inverse susceptibilities rL
���=Z�r̊L

��� /�2, one obtains

rL
�per� = � + �

n + 2

6

u

��/2� ��/2 − 1

�/2
+

2Qd,2��2�L2�
��2L2��d/2Nd

� + O�u2�

�4.31�

and

rL
�sp,sp� = � + �

n + 2

6

u

��/2� ��/2 − 1

�/2
−

Ad−1

2�L�1/2Nd

+
2Qd,2�4�2�L2�
�4�2L2��d/2Nd

� + O�u2� . �4.32�

In Sec. IV D, we will verify that these results comply with
the scaling form

rL
��� = r�R����L/��� , �4.33�

where

r� = #b+
−1� �4.34�

is the inverse bulk susceptibility, and try to employ them to
determine the scaling functions R��� by means of the � ex-
pansion.

Returning to the calculation of free energies, we now sub-
tract from f�

��� in Eq. �4.28� the surface contribution
�f�

����L=�,rL=r�
to obtain the associated contributions f�,res

��� to
the residual free energies. Expressing the result in terms of
renormalized quantities then yields

f�,res,R
���

�d−1n
= −

Ad−1

d − 1
�rL

�d−1�/2 − r�
�d−1�/2� −

u

�L

n + 2

4!

Ad−1
2

Nd
rL

d−3

+ O�u2� �4.35�

for their renormalized analogs.
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C. General properties of the scaling functions

Before we embark on the calculation of the scaling func-
tions R����L� and 	����L� of the inverse finite-size suscepti-
bility and the residual free energy, it will be helpful to dis-
cuss some general properties they should have.

In the limits L→� and L→0, Eq. �4.33� must yield the
correct bulk behavior and finite positive finite-size suscepti-
bility, respectively. This implies

R����L� � �1 for L → �

$0+
���L�−2 with $0+

��� � 0, for L → 0.
�
�4.36�

Turning to the free-energy scaling functions 	����L�, let
us first consider their limiting behavior as L→0. This must
comply with the requirement that the finite-size free energy
be analytic in T at the bulk critical temperature when L��.
As explained by KD, this translates into the limiting form

	����L� �
L→0

ab+Ld

��1 − ���2 − ��
+

as+
���Ld−1

�s�1 − �s��2 − �s�
+ �C

���

+ 
k=1

�

�k+
���Lk/�, �4.37�

where �s=�+� is a familiar surface critical index �of the
surface excess specific heat12,44�. Further, ab+ is a universal
number whose � expansion

ab+ =
n

32�2�1 +
�

2
�ln�4�� − CE + 3

n + 2

n + 8
� + O��2��

�4.38�

may be gleaned from Eq. �8.12� of Ref. 8. The plus signs at
ab+, as+, and �k+

���, as usual, indicate that these numbers per-
tain to the limit �→0+.

The first two terms on the right-hand side of Eq. �4.37�
remove the singularities of the subtracted bulk and surface
contributions to f res,R

��� ; the remaining power series involves
integer powers of �" �T−Tc,�� /Tc,�. Note that neither non-
linear contributions to the temperature scaling field have
been taken into account nor those of irrelevant bulk and sur-
face scaling fields. Both sources would entail corrections to
the leading thermal singularities of the bulk and surface free
energies. The implied additional terms nonanalytic in tem-
perature would have to be removed as well in the finite-size
free energy and, hence, entail further nonanalytic contribu-
tions to the limiting small-L form �4.37�.

The absence of boundaries in the case of periodic bound-
ary conditions implies that the surface amplitudes as+

�per� are
exactly zero. For the other case of interest, �= �sp,sp�, one
has

as+
�sp,sp� =

n

128�
�1 + ��2 + ln � − CE +

n + 2

n + 8
� + O��2��

�4.39�

according to KD’s equations �E6� and �E9�.

We next turn to a discussion of the limiting forms of the
functions 	����L� as L→�. Since we have chosen periodic
boundary conditions along all �d−1�-parallel directions yj,
no edge contributions �Ld−2 to the total free energy are ex-
pected. Accordingly, the residual free energy should decay
exponentially as L�L /��→�. The asymptotic behavior
should simply follow from perturbation theory.

To become more precise, it is useful to recall the repre-
sentations �see, e.g., Eqs. �4.2� and �4.12� of Ref. 12�

GL
�per��x12��̊� = 

j=−�

�

G�
�d��x12 + jLez��̊� �4.40�

and

GL
�sp,sp��x1,x2��̊� = 

j=−�

�

�G�
�d��x12 + 2jLez��̊�

+ G�
�d��x12 + 2�jL + z2�ez��̊�� �4.41�

of the free propagators in terms of the bulk propagator G�
�d�,

where x12=x1−x2= �y1 ,z1�− �y2 ,z2�.
The j=0 terms G�

�d��x12 � �̊� yield the bulk contributions of
GL

���. The j=0 term G�
�d��x12+2z2 � �̊� and the j=−1 term

G�
�d��x12+2�z2−L� � �̊� in Eq. �4.41� represent surface contri-

butions. Since G�
�d��x � �̊� decays exponentially as �x�→�, it is

clear that of the remaining terms, those involving spatial dif-
ferences that are constrained by the smallest lower bounds
will govern the limiting large-L behavior of the functions
	���. In the case of periodic boundary conditions, this applies
to the j=%1 terms, which involve position vectors of
lengths �L. Hence, 	�per��L� must vary as �e−L in the limit
L→�, up to powers of L.

On the other hand, for �= �sp,sp�, there are four contri-
butions involving position vectors constrained by the lower-
distance bound 2L which govern the large-L behavior. Thus,
	�sp,sp��L� must decay �e−2L up to powers of L.

To elaborate on these arguments, one can employ the
above expressions �4.40� and �4.41� for the free propagators
in perturbation theory, dropping all of their summands that
do not contribute to the leading large-L behavior. In the case
of the one-loop integrals, it is again convenient to first deter-
mine the large-L forms of their �̊ derivatives and then inte-
grate with respect to �̊. However, from our perturbative re-
sults gathered in Eqs. �4.9�–�4.12�, �4.24�, �4.27�, and �4.35�,
the one- and two-loop Feynman integrals with all contribu-
tions to the free propagators included can be inferred. Thus,
no renewed calculation is necessary. To determine the large-
L behavior of the 	���, we must merely replace the functions
Qd,2 and Qd+2,2 by their asymptotic forms �D4� given in Ap-
pendix D. This yields

	�per��L� �
L→�

−
n

�2���d−1�/2L�d−1�/2e−L�1 + O�u*��

�4.42�

and
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	�sp,sp��L� �
L→�

−
n

2d��d−1�/2L�d−1�/2e−2L�1 + O�u*�� .

�4.43�

Finally, let us briefly recall what can be said about the
behavior of the ��0 analogs of the scaling functions 	���,
which we denote as 	−

����L�, at the transition temperature
Tc,L of the film in those cases where a sharp transition to a
long-range ordered phase is possible for finite L, such as in
the Ising case n=1 for bulk dimension d=3. As a function of
the temperature deviation tL= �T−Tc,L� /Tc,L, the excess free
energy per cross-sectional area A must have a contribution
that behaves as �tL

2−�d−1 as tL→0, where �d−1 is the specific
heat exponent for bulk dimension d−1. The transition point
translates into a nonzero value L0 at which the functions
	−

����L� behave in a nonanalytic fashion. Standard matching
of the temperature singularities then yields the behavior

	−
����L� � �L1/� − L0

1/��2−�d−1, �4.44�

where ���d, as before, is the correlation-length exponent of
the d-dimensional bulk system.

A well-known consequence is that the critical-temperature
shift varies as42,43

�Tc,� − Tc,L�/Tc,� � L−1/�. �4.45�

This conclusion that the shift exponent is given by 1 /� is
more or less automatic when the finite-size scaling form
�1.5� of the residual free energy applies and, hence, is in
complete accordance with our theory.

D. Scaling functions of inverse finite-size susceptibilities

We proceed by combining our perturbative results of
Secs. IV A and IV B with the RG to compute the desired
scaling functions, beginning with those of the inverse finite-
size susceptibilities rL

���. To this end, we use the RG flow to
map the original renormalized theory to one corresponding
to the choice �= �����−1 of the scale parameter. The running
coupling constant ū��� can be replaced by the fixed-point
value u*=3� / �n+8�+O��2� at the expense of neglecting cor-
rections to scaling �ū���−u*. The running temperature vari-
able �̄�1 /���� is exactly unity �at the required first order in
u*, when ��0�.

As straightforward consequences of Eqs. �4.31� and
�4.32�, we thus obtain

R�per��L� = 1 + �
n + 2

n + 8

16�2Q4,2�L2�
L4 + o��� �4.46�

and

R�sp,sp��L� = 1 + �
n + 2

n + 8

�2Q4,2�4L2� − �L3

L4 + o��� .

�4.47�

Using the asymptotic forms �D1� and �D5� of Q4,2�4L2�
for small and large L, one sees that these results are in con-
formity with the limiting behavior �4.36�. The amplitudes
$0+

��� are found to be

$0+
�per� = 4$0+

�sp,sp� + o��� = �
n + 2

n + 8

2�2

3
+ o��� . �4.48�

The approach to the large-L limit R������=1 is qualita-
tively different for periodic and sp-sp boundary conditions: it
is of an exponential and algebraic form in the first and latter
cases, respectively.

In Fig. 4, we have plotted the extrapolations to d=3 of the
O��� results �4.46� and �4.47�, obtained by setting �=1, for
the one-component case n=1. It reveals another important
difference: The extrapolation �R�per��L���=n=1 remains posi-
tive for all L�0, reassuring us, thus, that the theory is con-
sistent in that the disordered state about which we expanded
satisfies this necessary stability condition. By contrast, the
extrapolation �R�sp,sp��L���=n=1 becomes negative for 0.42
&L&0.93. When extrapolated to d=3 in this naïve manner,
the theory, thus, yields a violation of stability of the disor-
dered state in this range of parameters.

It is to be emphasized that this is a problem already for
KD’s original extrapolations of their �-expansion results for
the Casimir effect. As we shall see below, in our reformu-
lated field theory, it will show up in an even more exposed
fashion. Note, however, that negative values of the O��� re-
sult for R�sp,sp��L� are encountered only for values of �
�0.8265. This is illustrated in Fig. 5, where �R�sp,sp��L��n=1

is plotted for several different values of �. It is conceivable,
although not at all guaranteed, that extrapolations based on
perturbative calculations to higher orders will yield positive
definite functions R�sp,sp��L�. As already remarked above, we
believe that in systematic studies of the stability of the dis-
ordered phase, besides temperature, the surface enhancement
variables c1 and c2 should be allowed to vary—a difficult
task which is beyond the scope of our present analysis.

E. Scaling functions of the residual free energies

To determine the free-energy scaling functions 	����L�,
we start with the decompositions

f res,R
��� �L;�,u,�� = f�,res,R

��� + f�,res,R
��� �4.49�

and

0 1 2 3 4 5

0

1

2

3

4

5
℘ = per
℘ = sp,sp

L/ξ∞ ≡ L

R
(℘

)
(L

)

� = 1, n = 1

FIG. 4. Plots of the scaling functions R�per��L� and R�sp,sp��L� for
n=1 and d=3, as obtained from Eqs. �4.46� and �4.47� by setting
�=n=1.

DANIEL GRÜNEBERG AND H. W. DIEHL PHYSICAL REVIEW B 77, 115409 �2008�

115409-12



	����L� = 	�
����L� + 	�

����L� , �4.50�

analogous to Eq. �4.2�. We now substitute the perturbative
expressions �4.18�, �4.19�, and �4.35� for f�,res,R

��� and f�,res,R
��� ,

and insert Eqs. �4.31� and �4.32� for rL
�per� and rL

�sp,sp�, together
with their common large-L limit

r� = � + �
n + 2

6

u

��/2
��/2 − 1

�/2
+ O�u2� �4.51�

for the inverse bulk susceptibility r�. This yields the �trun-
cated� series-expansion results for f res,R

��� �L ;� ,u ,�� on which
our subsequent analysis is based. We now combine them
with the RG, proceeding along the lines explained and fol-
lowed above.

The functions 	�
��� have conventional expansions in inte-

ger powers of �, which to first order in � follow directly from
Eqs. �4.18� and �4.19�. Our results are

	�
�per��L� = − n

4��Q6,2�L2� − � R6,2�L2��
L2

+ n�
n + 2

n + 8

�L3 + 8� Q4,2�L2��2

8L4 + O��2�

�4.52�

and

	�
�sp,sp��L� = − n�

�1 + � ln 2�Q6,2�4L2� − � R6,2�4L2�
16L2

+ n�
n + 2

n + 8

� Q4,2�4L2��2L3 + � Q4,2�4L2��
32L4

+ O��2� , �4.53�

where R6,2 is defined by

Rd,��r� �
�Qd,��r�

�d
. �4.54�

Inspection of KD’s work reveals that the nonzero-mode
part of their O��� expression for 	�sp,sp� coincides with their
result for 	�D,D�. By consistency, the latter should agree with

our result �4.53� for 	�
�sp,sp�. This is, indeed, the case, as can

easily be verified by comparison, using the relation

R6,2�r� =
r3

32�3�	CE −
8

3
+ ln

r

�

g3/2,0	�r

2

 + g3/2,1	�r

2

�

�4.55�

implied by Eq. �3.26�.
A consistency check can also be made for 	�

�per� by noting
that the contribution produced by the L3 term in �. . .�2 of Eq.
�4.52� corresponds to the subtracted k0=0 part. Thus, by
dropping it, we should recover KD’s result for 	�per� given in
the third line of their equations �6.13�. Confirming this is,
again, straightforward by virtue of Eq. �4.55�.

We stress that unlike the full scaling functions 	����L�,
their nonzero-mode parts 	�

����L� do not, in general, decay
exponentially as L→� and should not be expected to have
this property. This is because the zero-mode pieces projected
out involve contributions to the residual free-energy density
f res,R that decay as 1 /L. These imply contributions to
	�

����L� that vary as Ld−2 in the large-L limit. Inspection of
our result �4.52� shows that the O��� term of 	�

�per�, indeed,
grows as L2. By contrast, our O��� result �4.53� for 	�

�sp,sp� is
seen to decay exponentially for large L because both the
functions Qd,2 and Rd,2 do so �cf. Eq. �D4��. The absence of
an analogous O��� contribution �L2 to 	�

�sp,sp� is due to the
cancellation of the two terms of f�,�2� in Eq. �4.12� propor-
tional to Ad−1

2 /L and Bd /L, respectively. Of course, if such
cancellation did not occur, then the above-mentioned equal-
ity of 	�

�sp,sp� with 	�
�D,D� to first order in � would be impos-

sible.
We next turn to the computation of the functions 	�

���.
This is a considerably more subtle problem, which requires
care. It should be clear that we must not simply expand in
powers of �. The small-L behavior of the scaling functions
	��� should be compatible with the behavior found for �=0
in Ref. 19 and, hence, yield the contributions ��3/2 to the
Casimir amplitudes. The mechanism by which this happens
is that the inverse susceptibilities rL

����� ,u*� approach non-
zero limits r

L
*�0,u*�=O�u*� as �→0 when L��. The

O��3/2� terms then result from the contributions �rL
�d−1�/2

=rL
3/2+O��� to f�,res,R

��� in Eq. �4.35�.
On the other hand, if we expand in powers of �, taking L

�i.e., �� to be positive, then KD’s series-expansion results to
order � still ought to be recovered.

Substitution of the respective one-loop results �4.31� and
�4.32� for rL

��� in the zero-mode free-energy contribution
�4.35�, in conjunction with Eq. �2.24�, yields

	�
����L� =

nL3

12�
�1 −

3�

2L

n + 2

n + 8
� − �R����L��3/2� , �4.56�

where R����L� represents the respective O��� expression for
these scaling functions given in Eqs. �4.46� and �4.47�.

In the case of periodic boundary conditions, which we
consider first, the combination of Eqs. �4.46�, �4.50�, �4.52�,
and �4.56� leads to

0 0.5 1 1.5 2
-0.5

0

0.5

1

1.5

2
= 0.1
= 0.5
= 0.8265
= 1

L/ξ∞ ≡ L

R
(s

p
,s

p
)
(L

)

n = 1

ε
ε
ε
ε

FIG. 5. Plots of O��� result for the scaling function R�sp,sp��L�
for n=1 and the indicated values �=0.1, 0.5, 0.8265, and 1.
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	�per��L� = − n
4��Q6,2�L2� − � R6,2�L2��

L2 + n�
n + 2

n + 8

�
�L3 + 8� Q4,2�L2��2 − L6

8L4 +
nL3

12�

��1 − 	1 + �
n + 2

n + 8

16�2Q4,2�L2�
L4 
3/2� + o��3/2� .

�4.57�

This result has the following properties:
�i� Upon expanding it to first order in � �i.e., the term

�. . .�3/2 in Eq. �4.57�� when L=0, one recovers KD’s result.
�ii� The limiting value 	�per��0� agrees with our O��3/2�

result for

�C
�per� = −

n�2

90
+

n�2�

180
�1 − CE − ln � +

2��4�
�4�

+
5

2

n + 2

n + 8
�

−
n�2

9�6
	n + 2

n + 8

3/2

�3/2 + O��2� �4.58�

in Ref. 19.
�iii� The small-L behavior of 	�per��L� differs from the

requested one specified in Eq. �4.37� by terms "�3/2L; we
have

	�per��L� �
L→0

�C
�per� +

n�

2�6
	n + 2

n + 8

3/2

�3/2L + O�L2� .

�4.59�

In KD’s result, the term linear in L that is at variance with
the limiting form �4.37� is of first order in �. Here, it is of the
same order �3/2 to which we determined �C

�per�.
�iv� The large-L asymptotic behavior of 	�per��L� is in

conformity with Eq. �4.42�, just as KD’s result is.
It is gratifying that our result has the properties �i�, �ii�,

and �iv�. On the other hand, it still does not fully comply
with the small-L form �4.37� dictated by the analyticity of the
total finite-size free energy at Tc,�, though the violations now
occur at the corresponding higher order �3/2.

In Fig. 6, our result for the scaling function 	�per��L� with
n=1 and d=3, obtained by setting �=1 in Eq. �4.57�, is
plotted and compared with its analog for KD’s �-expansion
result. The minimum in KD’s extrapolation result appears to
be due to the inadequate handling of the zero-mode contri-
butions. Our extrapolation gives a monotonic behavior at
small L, which agrees better both with the Monte Carlo data
of Ref. 23 as well as with improved, more recent ones.25,26

In Fig. 7, analogous extrapolations to d=3 of the scaling
functions for n=2, n=3, and n=� are displayed, along with
the exact spherical-model result for d=3. The comparison
with the extrapolations based on KD’s O��� results displayed
in Fig. 1 indicates, on the one hand, that the extrapolations
for given n oscillate as the order of the series expansion is
increased and, on the other hand, that the variations with
order are bigger the larger n is.

Next, we consider the case of sp-sp boundary conditions.
In discussing extrapolations to d=3 dimensions, we shall re-
strict ourselves to the n=1 component case. The reason

should be clear: Only when n=1 is a multicritical point ex-
pected to occur at Tc,� and a finite enhancement of the sur-
face interaction constants.45–47

A first problem was encountered in our investigation of
the inverse finite-size susceptibility rL

�sp,sp�: Our one-loop re-
sult for the scaling function R�sp,sp��L ,n=1,�=1� becomes
negative for 0.42&L&0.93. Clearly, convincing predictions
for the scaling functions 	�sp,sp��L� in d=3 dimensions must
also fulfill necessary stability conditions such as the positive
definiteness of rL. Thus, the violation of this stability crite-
rion of the disordered state is a problem even for extrapola-
tions to d=3 of KD’s original O��� results. In our result
given by the combination of Eqs. �4.47�, �4.50�, �4.53�, and
�4.56�, it manifests itself in an obvious, striking manner: For
values of the scaling variable L in the mentioned interval, the
extrapolation to d=3 would yield complex numbers for
	�sp,sp��L�.

A further problem occurs for large L: The contribution to
	�sp,sp��L� originating from the term "1 /L in curly brackets
in Eq. �4.56� in conjunction with the part "1 /L of R�sp,sp�

produces a large-L behavior of the form O��2�L+O��3�L0.
Thus, unless we subtract these asymptotic terms "�2L and
"�3L0, our approximation for 	�sp,sp��L� will not have a finite
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FIG. 6. Extrapolations to d=3 of the scaling function 	�per��L�
for n=1, obtained by setting �=1 in Eq. �4.57� and KD’s original
O��� result, respectively.
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FIG. 7. Extrapolations to d=3 of the scaling function 	�per��L�
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comparison, the spherical-model result for d=3 �Refs. 5 and 20�,
which is exact for n=�, is also shown.
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limit as L→�, and, hence, yield unacceptable results at d
=3 even in the regime L�0.92, where the positivity condi-
tion R�sp,sp��0 is satisfied.

The combination of these two problems puts us in a bad
position to suggest convincing extrapolations to d=3. Let
us, however, note some appealing properties the result given
by Eqs. �4.47�, �4.50�, �4.53�, and �4.56� has. All above prop-
erties �i�–�iii� of the small-L behavior hold just as in the
case of periodic boundary conditions. That is, KD’s O���
results are recovered when the term �R�sp,sp��L��3/2 in Eq.
�4.56� is expanded in powers of �. Second, the limiting value
	�sp,sp��0� reproduces the expansion of the Casimir amplitude
to order �3/2,

�C
�sp,sp� = −

n�2

1440
+

n�2�

2880
�1 − CE − ln�4�� +

2��4�
�4�

+
5

2

n + 2

n + 8
� −

n�2

72�6
	n + 2

n + 8

3/2

�3/2 + O��2� .

�4.60�

Third, the term linear in L that violates the limiting form
�4.37� is of order �3/2 rather than linear in �. We have

	�sp,sp��L� �
L→0

�C
�sp,sp� +

n�

4�6
	n + 2

n + 8

3/2

�3/2L + O�L2� .

�4.61�

Furthermore, the large-L behavior still is in accordance with
Eq. �4.43� in the sense that the differences are of higher than
first order in �. However, as already mentioned, it would lead
to extrapolations to d=3 that grow �L in the limit L→�
unless contributions of the form �O��2�L+O��3�L0 are sub-
tracted.

In Fig. 8, we have plotted the extrapolated scaling func-
tion 	�sp,sp��L� one obtains from Eqs. �4.47�, �4.50�, �4.53�,
and �4.56� upon setting �=1, together with its analog �la-
beled KD� implied by the �-expansion result. The former
function is depicted only for values L below the lower

threshold �0.42 beyond which the extrapolated scaling func-
tion R�sp,sp� of the inverse susceptibility becomes negative.
We have refrained from displaying it �or appropriate modifi-
cations of it� for values larger than the upper positivity
threshold �0.93. In view of the O��2� corrections the result
would require for large L to ensure its decay for L→�, we
have no convincing reasons to expect such ad hoc modifica-
tions to yield much better results in this regime of L than the
extrapolated � expansion.

One might wonder whether the above problems could be
avoided by a different choice of the free propagator G� in
Eq. �4.22�. For example, one might want to use one whose
mass parameter is simply the sum of the free contribution �̊
and the first-order perturbative correction �3.20�. We have, in
fact, explored this possibility. It yields a modified scaling

function 	̃�sp,sp��L�, whose large-L behavior must be cor-
rected by O��2� contributions to avoid unacceptable diver-
gences. Once this is done, its extrapolation to �=1 gives real
values for all L. We refrain from displaying the results be-
cause we consider them unsatisfactory for two reasons. First
of all, as explained before Eq. �4.22�, we believe that the use
of the inverse finite-size susceptibility rL

−1 as mass parameter
is the more natural choice. Second, the fact that one is able
to produce a well-defined extrapolated scaling function

	̃�sp,sp��L� does not cure the problem that the O��� result for
the scaling function R�sp,sp��L� of rL becomes negative when
extrapolated to �=1. Convincing improvements should yield
meaningful extrapolation results for both the scaling function
	�sp,sp��L� and rL within one and the same consistent ap-
proximation scheme. Evidently, further work is necessary to
improve on the present unsatisfactory state of these results
for sp-sp boundary conditions.

On the other hand, the behavior of our results at small L
may be expected to be superior to those based on the � ex-
pansion. One indication is that, in the case of periodic
boundary conditions, our results are in conformity with the
exact solution in the large-n limit �see Sec. V�.

V. COMPARISON WITH SPHERICAL-MODEL RESULTS
FOR PERIODIC BOUNDARY CONDITIONS

As is well known, for translation invariant systems, re-
sults that are exact in the limit n→� can be obtained from
the exact solution of spherical models.48 The self-consistent
equations from which the scaling function 	SM

�per��L� for the
spherical model with periodic boundary conditions must be
determined can be found in the literature.5,20–22 Our aim here
is to verify the consistency of our results for periodic bound-
ary conditions with the exact solution of the spherical model
for 2�d=4−��4. Making an analogous check for �
= �sp,sp� is a much harder challenge and will not be at-
tempted here. The reason is that the presence of surfaces, in
general, destroys translation invariance perpendicular to the
boundary planes. The large-n limit of n-vector models on
slabs with two parallel boundary planes B1 and B2 is known
to correspond to a modified spherical model involving sepa-
rate constraints on the sums  j�layer zSj

2 of the squares of the
spin variables for each layer z.49 The resulting self-consistent
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FIG. 8. Extrapolations to d=3 of the scaling function 	�sp,sp� for
n=1. The curve labeled “KD” corresponds to the O��� results of
Ref. 8 evaluated at �=1; the other one is our result, given by Eqs.
�4.47�, �4.50�, �4.53�, and �4.56�, with � set to 1. For further expla-
nations, see main text.
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equations, while not difficult to determine, involve a
z-dependent self-consistent pair interaction and so far have
not been solved analytically.

The exact solution for the spherical-model scaling func-
tion 	SM

�per��L�=limn→�	
�per��L� /n may be gleaned from Ref.

21, where this function was denoted as Y0. It is given by

	SM
�per��L� =

Ad

2
Ld−2�R0 − L2�−

Ad

d
�R0

d/2 − Ld�−
4� Qd+2,2�R0�

R0
,

�5.1�

where R0=L2 RSM
�per��L� is a solution to

2Qd,2�R0�
R0

= Ad�R0
�d−2�/2 − Ld−2� . �5.2�

The latter equation is easily solved for small �. Since Ad
has a pole "�−1, the left-hand side starts to contribute at
O���. One obtains

R0�L� = L2 + �
16�2Q4,2�L2�

L2 + o��� , �5.3�

which becomes

R0�0� = �
2

3
�2 + o��� �5.4�

at the bulk critical point. Comparison of these results with
ours for L2 RSM

�per��L� contained in Eqs. �4.46� and �4.48�
shows that the latter reduce to them in the limit n→�.

Turning to 	SM
�per��L�, we note that according to the repre-

sentation �C9� of Qd+2,2, two contributions in Eq. �5.1� can
be combined as

− Ad

d
R0

d/2 −
4� Qd+2,2�R0�

R0

=
− Ad−1

d − 1
R0

�d−1�/2 − 
k=0

�
ak�d�

k!
�− R0�k, �5.5�

where

ak�d� =
��d−1�/2

�2��2k ��k +
1 − d

2
��1 − d + 2k� . �5.6�

Except for a2�d�, which has a simple pole at d=4, the coef-
ficients ak�d� are regular at d=4. We, therefore, separate the
contribution from the first term in the second line of Eq. �5.5�

− Ad−1

d − 1
R0

�d−1�/2 =
− 1

12�
�L2 + �

16�2Q4,2�L2�
L2 �3/2

+ o��3/2� ,

�5.7�

where we substituted R0 by its expansion �5.3�, and then
expand the remaining contributions to 	SM

�per��L� in powers of
�. This gives

	SM
�per��L� =

− 1

12�
�L2 + �

16�2Q4,2�L2�
L2 �3/2

+
L3

12�

−
4��Q6,2�L2� − � R6,2�L2��

L2 + �
8�2Q4,2�L2�

L2

�� L

4�
+

Q4,2�L2�
L2 � + o��3/2� . �5.8�

The result agrees with the one for 	�per��L� /n given in Eq.
�4.57� if the factor �n+2� / �n+8� is replaced by its large-n
limit �=1�. In particular, its value at L=0,

	SM
�per��0� = −

�2

90
+
�2

180
�7

2
− CE − ln � +

2��4�
�4� �� −

�2

9�6
�3/2

+ O��2� , �5.9�

coincides with the limit limn→��C
�per� /n of the expansion

�4.58�. The same holds for the coefficient of the term linear
in L, for which we find

�d	SM
�per��L�
dL

�
L=0

=
�

2�6
�3/2 + o��3/2� , �5.10�

which is consistent with Eq. �4.59�.

VI. SUMMARY AND CONCLUDING REMARKS

In this paper, we have reconsidered the use of renormal-
ized field theory near the upper critical bulk dimension d*

=4 to the study of finite-size scaling in slabs of finite thick-
ness and the thermodynamic Casimir effect. In a previous
work,19 it had become clear that in those cases where the
boundary conditions involve zero modes in Landau theory at
the bulk critical point, the conventional RG-improved pertur-
bation theory based on the � expansion becomes ill-defined
at Tc,� due to infrared singularities. This could be remedied
by means of a reorganization of field theory, which revealed
that noninteger powers such as �3/2 appear in the small-�
expansion.

Our main aim here was to examine how the calculation of
scaling functions describing the large length-scale behavior
of the residual free energy and the Casimir force near the
bulk critical point can be reconciled with these findings, so
that the results of Ref. 19 for T=Tc,� are recovered in the
appropriate limit.

We were able to show that consistent scaling functions
can, indeed, be obtained both for the case of periodic and
sp-sp boundary conditions. It became clear that the ill-
definedness of the conventional �-expansion theory due to
zero modes manifests itself already at two-loop order inas-
much as contributions found at this order were found to have
no power-series expansion in � at Tc,� since they vary ��3/2.

In calculations of crossover scaling functions by means
of RG-improved perturbation theory near an upper critical
dimension, one usually is faced with the following problem.
The RG commonly achieves the proper exponentiation of
the infrared singularities only at the unstable fixed point.
However, it does not normally do this—at least, not
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automatically—for the modified singularities that occur as
the scaled crossover variable becomes large. Knowledge
about the corresponding asymptotic behavior frequently is
obtained from other sources, such as RG analyses of a dif-
ferent model or fixed point, or short-distance expansion.
Representative examples are the calculation of the two-point
correlation function,50 the crossover at a bicritical point,51,52

and the crossover from critical to Goldstone-mode behavior
in isotropic ferromagnets.53,54 To obtain and verify the cor-
rect singularities of the behavior to which the crossover oc-
curs by means of the � expansion, it must be supplemented
by appropriate assumptions, or preferably knowledge, about
the respective asymptotic forms. In some cases, it has even
been possible to design RG procedures that yield the correct
asymptotic behaviors at both the unstable fixed point as well
as the stable one to which the crossover occurs,52,54 albeit
with somewhat limited range of applicability and success.

Similar problems evidently had to be expected in the
study of the problems considered here—finite-size effects
and thermodynamic Casimir forces. However, the challenges
are actually greater and the difficulties more severe. Ideally,
one would like to have a theory that has the power to cor-
rectly treat the infrared singularities at both the bulk critical
point as well as the film critical point and, moreover, is ca-
pable of handling the corresponding dimensional crossover.
For reasons discussed at the end of Sec. III, such ambitious
goals would be unrealistic for a theory based on an expan-
sion about the upper critical dimension. We, therefore, set
out to reach more modest goals, namely, to modify and cor-
rect the previous theory by an appropriate treatment of the
zero mode in such a way that �i� RG-improved perturbation
theory becomes well defined for temperatures T�Tc,�, �ii�
reasonable scaling functions result, whose limiting behavior
complies with the theory’s predictions directly at Tc,� and
can be extrapolated to d=3 dimensions, and �iii� hence, bring
it into a state comparable to the one it has for the nonzero-
mode boundary conditions �=ap, �D ,D�, and �D , sp�.

We feel that, on the whole, our results are encouraging, in
particular, for the case of periodic boundary conditions,
where besides achieving �i�–�iii�, we were able to demon-
strate consistency with the exact large-n solution. Moreover,
the scaling function obtained by extrapolation to d=3, at
least in the one-component case, appears to agree reasonably
well with Monte Carlo results.25,26

The case of sp-sp boundary conditions turned out to be
more delicate. First of all, we found that the one-loop expres-
sion for the scaling function R�sp,sp��L� of the inverse finite-
size susceptibility becomes negative in a small regime of L
=L /�� when � exceeds the value �0.8265 �see Figs. 4 and
5�. This tells us that all extrapolations of free-energy scaling
functions and Casimir forces to d=3 based on appro-
ximations which yield the same one-loop scaling function
R�sp,sp��L� are questionable, at least in the regime where the
positivity condition R�sp,sp��L��0 is violated. This applies
both to KD’s original extrapolation and ours �see Fig. 8�.

Our investigation of this case also revealed another prob-
lem: Perturbative RG calculations do not necessarily yield
the correct asymptotic large-L behavior, at least not auto-
matically. This applies even for the conventional � expansion
in cases where no zero mode is present inasmuch as the

algebraic prefactors �L�d−1�/2 appearing in the asymptotic
exponential behaviors of 	�per��L� and 	�sp,sp��L� given in
Eqs. �4.42� and �4.43�, respectively, are obtained only in
�-expanded form. However, it is more troublesome in the
cases studied here, especially, for �= �sp,sp�. The reason
may be understood as follows. On the one hand, we encoun-
tered powers of inverse finite-size susceptibilities we had
to retain to ensure consistency with the behavior at Tc,�. On
the other hand, by expanding other contributions in �,
L-dependent terms of order �2 and higher are dropped, which
may be needed to cancel similar L-dependent contributions
originating from the unexpanded powers of R in order to
avoid incorrect or even divergent large-L behavior of the
scaling functions.

A qualitative difference between periodic and sp-sp
boundary conditions is that the latter involve, even in the
semi-infinite case L=�, both d- and �d−1�-dimensional criti-
cal behaviors, rather than just a dimensional crossover. With
hindsight, it is, therefore, perhaps not too surprising that the
latter turned out to be the more difficult case.

As remarked earlier, special surface transitions are ex-
pected to occur in three bulk dimensions only in the n=1
case. When n�1, anisotropic special transitions should be
possible if the continuous O�n� symmetry is broken by an
appropriate easy-axis spin anisotropy at the surface.45–47 This
is because surface phases with long-range order should not
be thermodynamically stable at temperatures T�Tc,�, by
analogy with the Mermin-Wagner theorem.55 However, the
O�2� case is exceptional in that a surface phase with quasi-
long-range order should be possible. In fact, recent Monte
Carlo work56,57 indicated that the surface phase transition is
of Kosterlitz-Thouless type. Thus, a multicritical surface-
bulk point at which the line of these surface transitions
reaches Tc,� should exist as well,12 and was reported to be
found in the cited Monte Carlo analyses.

Since the lambda transition of helium involves a �real-
valued� two-component order parameter, this O�2� case is of
potential relevance for Casimir forces in confined liquid He.
In the case of 3He-4He mixtures in contact with a substrate
�see, e.g., Refs. 58 and 59�, 4He usually gets enriched near
the wall and a superfluid surface film may form there. Since
order-parameter correlations decay algebraically in it, the
bulk transition in the presence of such a critical surface phase
is reminiscent of the special transition. Whether the central
issue we were concerned with in this work—the presence of
zero modes in Landau theory—arises also in the study of the
thermodynamic Casimir effect in such systems and what its
consequences are remain to be seen. A proper analysis of this
question requires generalizations of our model. To describe
mixtures, a second density besides the order parameter is
needed. In addition, care must be taken to ensure a proper
description of the Kosterlitz-Thouless-type surface transi-
tion.

The present work suggests extensions and complementary
work along several lines. The situation in the case of sp-sp
boundary conditions is rather unsatisfactory. To improve it, it
would be desirable to extend our analysis by allowing the
surface enhancement variables cj to vary. In fact, in order to
clarify the effects of finite size on the phase diagram, and, in
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turn, resolve the issue in which range of parameters the dis-
ordered state is thermodynamically stable, such a generaliza-
tion appears to be unavoidable. Another appealing aspect of
it would be that by varying the cj, one could smoothly inter-
polate between the boundary conditions �= �D ,D�, �D , sp�,
and �sp,sp�.

In view of the great technical and conceptual difficulties
one is faced with in such analytical approaches, we believe
that careful checks of their predictions by alternative means
such as Monte Carlo simulations are absolutely necessary.
For a long time, detailed studies of the thermodynamic
Casimir effect by this method existed only for the case of
periodic boundary conditions.3,23,60 However, recently, new
simulation strategies for investigating this effect in lattice
spin systems with free boundary conditions have been
developed.24–26 As a result, systematic numerical studies of
the thermodynamic Casimir effect under all sorts of interest-
ing boundary conditions have become possible.

On the side of analytical theories, it would be interesting
to explore whether the present approach can be combined
with existing RG approaches at fixed dimension d for the
study of bulk and surface critical phenomena.28–30,61 Another
important challenge is to develop reliable analytical ap-
proaches by which the Casimir effect can be investigated
below the bulk and film critical temperatures. Recent inves-
tigations of the ordered phase based on Landau theory or
RG-improved Landau theory62,63 certainly should not remain
the final word since they fail to give correct descriptions of
the critical behavior at both the bulk critical point as well as
at eventual film critical points. In addition, they are known to
be sometimes even qualitatively wrong inasmuch as they
may predict phases with long-range order that can be shown
to be destroyed by thermal fluctuations.
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APPENDIX A: COMPUTATION OF REQUIRED
INTEGRALS

The one- and two-loop Feynman integrals for f�
��� involve

the free � propagator �3.13� at coincident points x=x�. Sub-
stitution of the eigenfunctions �3.3� and �3.4� into Eq. �3.13�
yields

GL,�
�per��x;x��̊� =

2

L
�

p

�d−1�


m=1

�
1

p2 + �2�m/L�2 + �̊
�A1�

and

GL,�
�sp,sp��x;x��̊� =

2

L
�

p

�d−1�


m=1

�
cos2��mz/L�

p2 + ��m/L�2 + �̊
. �A2�

In order to compute the integrals I1
����L ; �̊� introduced in

Eq. �3.19�, we add and subtract a summand with m=0 and
then use Poisson’s summation formula �see, e.g., Eq. �4.8.28�
in Ref. 64�


m=−�

�

f�am� = 
j=−�

� �
−�

� dt

a
f�t� e2�ijt/a. �A3�

Recalling the definition �3.24� of the functions Qd,� and per-
forming the required momentum integrals, one arrives at the
results for I1

�per��L ; �̊� and I1
�sp,sp��L ; �̊� given in Eqs. �3.21� and

�3.22�.
Turning to the calculation of I2

����L ; �̊�, we note that for
�=per we have

I2
�per��L; �̊� = �I1

�per��L; �̊��2 �A4�

as a consequence of translation invariance along the z direc-
tion.

To compute I2
�sp,sp�, we use the representation

I2
�sp,sp��L; �̊� = �

0

L dz

L
�GL,�

�sp,sp��x;x��̊��2

= 
m,m�=1

� �
p1

�d−1� �
p2

�d−1� 4

L2�
0

L dz

L

�
cos2�kmz�cos2�km�z�

�p1
2 + km

2 + �̊��p2
2 + km�

2 + �̊�
�A5�

and the fact that

4�
0

L dz

L
cos2�kmz�cos2�km�z� = 1 +

1

2
�mm� �A6�

for km=m� /L and m ,m��0. Upon inserting the latter result
into Eq. �A5�, one arrives at

I2
�sp,sp��L; �̊� = �I1

�sp,sp��L; �̊��2 +
1

2L2Ad−1
2 

m=1

�

�km
2 + �̊�d−3,

�A7�

where Ad was defined in Eq. �3.23�.
In order to evaluate the second term on the right-hand side

of this equation, we employ the analytical continuation of the
Epstein-Hurwitz zeta function discussed in Appendix A of
Ref. 65, namely,
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j=1

�

�j2 + �2�−s = −
1

2�2s +
��

2�2s−1��s����s − 1/2�

+
4

�����1−2s�/2 
m=1

�

ms−1/2K�1−2s�/2�2�m���,

s �
1

2
. �A8�

A straightforward calculation then yields

I2
�sp,sp��L; �̊� = �I1

�sp,sp��L; �̊��2 +
Bd

L
�A2d−4

2L
�̊d−3 − A2d−3�̊

d−5/2

+
Q2d−3,2�4�̊L2�
22d−4�̊L2d−3 � , �A9�

with

Bd =
�

8��3 − d��2��d − 1�/2�cos2�d�/2�
. �A10�

Aside from Ij
����L ; �̊� �j=1 and 2�, we also need to calcu-

late the integrals J����L ; �̊� introduced in Eq. �4.6� for �
=per and �= �sp,sp�. To this end, we insert our above results
for I1

��� into Eq. �4.6� and use the property �4.17�, obtaining

J�per��L; �̊� =
2

L

Ad−1

d − 1
�̊�d−1�/2 −

2Ad

d
�̊d/2

− �1 − lim
�̊→0

�
8�Qd+2,2��̊L2�

�̊Ld+2 �A11�

and

J�sp,sp��L; �̊� = J�per��2L; �̊� . �A12�

The �̊→0 limit on the right-hand side can be evaluated in
a straightforward fashion with the aid of the representation

Qd,2�r� =
r�d+2�/4

�2��d/2
j=1

� K�d−2�/2�j�r�

j�d−2�/2 , �A13�

for d→d+2, where K��x� is a modified Bessel function of
the second kind, and their well-known asymptotic behavior

K��x� =
x→0

2�−1����x−� + O�x2−�� �A14�

for ��0 �see, e.g., Eq. �8.446� of Ref. 66�.
The result

lim
r→0

8� Qd+2,2�r�
r

= 2�−d/2�	d

2

�d� �A15�

can be expressed in terms of either one of the one-loop Ca-
simir amplitude �C,�1�

��� given in Eq. �4.7�. Inserting it into

Eqs. �A11� and �A12� finally gives

J�per��L; �̊� = −
2�C,�1�

�per�

nLd +
2

L

Ad−1

d − 1
�̊�d−1�/2 −

2Ad

d
�̊d/2

−
8� Qd+2,2��̊L2�

�̊Ld+2 �A16�

and

J�sp,sp��L; �̊� = −
2�C,�1�

�sp,sp�

nLd +
1

L

Ad−1

d − 1
�̊�d−1�/2 −

2Ad

d
�̊d/2

−
� Qd+2,2�4�̊L2�

2d−1�̊Ld+2 , �A17�

respectively.

APPENDIX B: EVALUATION OF f�,†1‡
„�…

„L ;0…

In this appendix, we present the calculation of the one-
loop free-energy contributions f�,�1�

��� �L ; �̊� defined in Eq. �4.4�
for �̊=0.

Upon applying Poisson’s summation formula �A3�, we
obtain

f�,�1�
�per� �L;0� = f�,0

�per� + nL
j=1

� �
q=�p,k�

�d�

cos�kjL� ln q2 �B1�

and

f�,�1�
�sp,sp��L;0� = f�,0

�sp,sp� + nL
j=1

� �
q=�p,k�

�d�

cos�2kjL� ln q2,

�B2�

where

f�,0
��� = Lfb,0 + f�,s,0

��� �B3�

with

fb,0 =
n

2
�

q

�d�

ln q2 �B4�

and

f�,s,0
�per� = 2f�,s,0

�sp,sp� = −
n

2
�

p

�d−1�

ln p2. �B5�

The expressions �B1� and �B2� can be evaluated along
lines similar to those followed in Sec. V of Ref. 8. This gives

nL
j=1

� �
q=�p,k�

�d�

cos�kjL� ln q2 = L−�d−1��C,�1�
�per� �B6�

and

nL
j=1

� �
q=�p,k�

�d�

cos�2kjL� ln q2 = L−�d−1��C,�1�
�sp,sp�, �B7�

where �C,�1�
��� are the one-loop Casimir amplitudes of Eq.

�4.7�.

THERMODYNAMIC CASIMIR EFFECTS INVOLVING… PHYSICAL REVIEW B 77, 115409 �2008�

115409-19



APPENDIX C: SERIES REPRESENTATIONS
OF THE FUNCTIONS Qd,�„r…

In this appendix, we wish to derive representations of the
functions Qd,��r� as generalized power series and to establish
their relation �3.26� with the functions ga,b�z� utilized by KD.

Let us define the integral

Id,��k,y� = Kd−1�
0

�

dppd−2 �k2 + p2���−2�/2

y + k2 + p2 , �C1�

where Kd denotes the usual factor

Kd � �
q

�d�

���q� − 1� =
21−d�−d/2

��d/2�
. �C2�

Then the right-hand side of Eq. �3.24� can be written as

Qd,��r� =
r

2��Id,��0,1� − Id+1,��0,1��r �r�d+�−5�/2

+ 
k�0

Id,��k,r�� , �C3�

where here and below the summation k�0 extends over all
nonzero k�2�Z.

When k=0, the evaluation of the integral Id,��k ,r� is
straightforward, giving

Id,��0,r� =
21−d��3−d�/2r�d+�−5�/2

���d − 1�/2� cos���d + ��/2�
. �C4�

In the case of nonzero values of k, we Taylor expand in r
about r=0 to obtain

Id,��k,r� = 
j=0

�

Id,�
�0,j��k,0�

rj

j!
, �C5�

where the required partial derivatives Id,�
�0,j��k ,r�

=� jId,��k ,r� /�rj at r=0 are given by

Id,�
�0,j��k,0� =

�− 1� j��j + 1���j + �5 − d − ��/2�
�4���d−1�/2�k�2j+5−d−���j + 2 − �/2�

. �C6�

We now substitute the Taylor series �C5� into Eq. �C3�
and interchange the summations over j and k in the last term.
Recalling the series expansion

�s� = 
n=1

�
1

ns �C7�

of Riemann’s zeta function, one can perform the k summa-
tions analytically to obtain


k�0

Id,�
�0,j��k,0� = 2Id,�

�0,j��2�,0��2j + 5 − d − �� . �C8�

Using this result together with Eq. �C4�, one arrives at the
representation

Qd,��r� =
2−d��3−d�/2

���d − 1�/2� cos���d + ��/2�
r�d+�−3�/2

+
2−d−1�1−d/2

��d/2�sin���d + ��/2�
r�d+�−2�/2 − ��d−1�/2

�
j=1

� ���j + �3 − d − ��/2�
��j + 1 − �/2�

�2j + 3 − d − ��
�2��2j−�+2 �− r� j� .

�C9�

For general values of d and �, the first two terms on the
right-hand side of Eq. �C9� have branch-cut singularities.
Cauchy’s ratio test shows that the remaining power series
�third term� is absolutely convergent for complex y inside a
circle of radius �2��2.

As is known from Ref. 21, functions Qd,� with noninteger
values of � are encountered in the study of finite-size effects
of systems with long-range interactions. From the series ex-
pansion �C9�, the asymptotic behavior of the functions
Qd,��r� as r→0 can be read off easily even for such general
values of �. This representation may, of course, also be em-
ployed to compute the functions Qd,��r� by numerical means
for values of r inside the radius of convergence of the series.

To establish the relation �3.26� between Qd,� and the func-
tions ga,0�z� �cf. Eq. �3.25�� employed by KD, it is conve-
nient to use the expansion �A13�. Substituting the Bessel
functions in it by their integral representation

K��z� =
�z/2����
��� + 1

2��1

�

dt �t2 − 1��−1/2e−zt �C10�

and interchanging the integration with the summation over j
immediately gives Eq. �3.26�.

APPENDIX D: NUMERICAL RESULTS FOR AND
PROPERTIES OF THE REQUIRED FUNCTIONS Qd,�„r…

In the present work, only functions Qd,��r� with the spe-
cial value �=2 are needed. The purpose of the present ap-
pendix is to present numerical results for these functions.

The expansion �A13� of these functions in terms of modi-
fied Bessel functions lends itself well to numerical evalua-
tion. Figure 9 shows plots of the functions Q4,2�r� and
Q6,2�r�, which were numerically determined via this repre-
sentation.

The function Rd,2�r� has an expansion in modified Bessel
functions analogous to Eq. �A13�, which follows from it by
differentiation with respect to d. Using it we have deter-
mined R6,2�r� by numerical evaluation. The result is depicted
in Fig. 10.

The asymptotic small-r forms of these functions can be
determined in a straightforward fashion from the representa-
tion �C9�. One obtains

Q4,2�r�
r

=
r→0

1

24
−

�r

8�
−

r ln r

32�2 +
1 − 2CE + 2 ln�4��

32�2 r

+
�3�

256�4r2 −
�5�

2048�6r3 + O�r4� , �D1�
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Q6,2�r�
r

=
r→0

�

360
−

r

96�
+

r3/2

48�2 +
r2 ln r

256�3

−
3/2 − 2CE + 2 ln�4��

256�3 r2 + O�r3� , �D2�

and

R6,2�r�
r

=
r→0

CE + ln�4�� − 240��− 3� − 8/3
720

�

−
CE − 2 + 24��− 1� + ln�4��

192�
r

+
ln�r/�� + CE − 8/3

96�2 r3/2 + O�r2 ln2 r� . �D3�

Their asymptotic forms for large values of r follow from
�cf. Eq. �B33� of Ref. 21�

Qd,2�r� =
r→�

r�d+1�/4

2�2���d−1�/2e−�r �1 + O�r−1/2�� , �D4�

giving

Q4,2�r�
r

=
r→�

r1/4

2�2��3/2e−�r �1 + O�r−1/2�� , �D5�

Q6,2�r�
r

=
r→�

r3/4

2�2��5/2e−�r �1 + O�r−1/2�� , �D6�

and

R6,2�r�
r

=
r→�

r3/4

8�2��5/2e−�r ln
r

4�2 �1 + O�r−1/2�� , �D7�

respectively.
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