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The electronic structure and the current profiles of n- and p-doped graphene ribbons are investigated within
the Keldysh–Green’s function method in the tight-binding framework. The low energy spectrum, at the heart of
the relativisticlike quantum transport, is studied numerically and relevant features are understood analytically
by means of the continued fraction tool. Simulations of charge transport and spatial distribution of spectral
currents in field-effect controlled graphene ribbons are then carried out in the absence and in the presence of
uniform magnetic fields. The role of gated regions and threading magnetic fields for manipulating the flow of
Dirac particles is investigated.

DOI: 10.1103/PhysRevB.77.115408 PACS number�s�: 73.63.Bd, 73.23.�b

I. INTRODUCTION

Graphite and layered compounds have always attracted a
wide interest because of the peculiar effects of structural an-
isotropy on their electronic, magnetic, vibrational, and opti-
cal properties. Early and recent investigations1–8 concerning
the electronic states and physical properties of graphite and
other isoelectronic or isostructural anisotropic materials have
highlighted the key role of the geometrical bipartite honey-
comb lattice, and the Dirac-like structure of the low energy
quasi particles in the strictly two-dimensional hexagonal car-
bon lattice.9

Only recently, monolayers of carbon atoms �graphene�
have been obtained under controlled protocols,10–12 and an
explosion of interest has accompanied this experimental
breakthrough. Soon after, graphene monolayers and bilayers
have entered the arena of new materials with the highest
interest from a fundamental and technological point of
view.10–13 Carrier density in graphene can be controlled elec-
trostatically and varied from unipolar to bipolar character
with external local gates; p-type and n-type materials, planar
n-p junctions, and other multiple junction devices have been
fabricated14–17 with appropriate field-effect geometries, thus
opening novel architectures along the applicative road of
carbon-based materials.

Among the unconventional transport properties of
graphene due to the peculiar conical shape of the energy
bands at the corners of the Brillouin zone, we mention the
half-integer relativistic Hall effect,11–13 the minimum con-
ductivity of graphene ribbons,18–23 the role of localized and
extended impurities,20,21 the diffusivelike shot noise22,23 in
gated samples, the easy tunneling of relativistic carriers
through high and long barriers24,25 �Klein tunneling�, and the
realization of superlenses by focusing of electron beams.26,27

In this paper, we also show that the spatial distribution of
spectral currents exhibits peculiar aspects, which are related
to the charge conjugation symmetry of the Dirac equation.
The theoretical and numerical procedures for imaging micro-
scopic currents, based on the nonequilibrium Keldysh
formalism28–30 and the tight-binding framework along the
guidelines of previous works,31,32 emerge as an invaluable

tool also for understanding or designing carbon-based de-
vices.

In Sec. II, we give a brief description of the electronic
structure of graphene, within the tight-binding model and a
minimal basis set of dangling orbitals. In Sec. III, we study
the electron and hole states of graphene ribbons both numeri-
cally and analytically. Different from other treatments in the
literature,1–7 we consider an atomistic description of the elec-
tronic states based on tridiagonal matrices and continued
fractions expansion. In particular, we obtain the energy levels
at the Dirac points and the zero energy modes of graphene
ribbons with zigzag edges analytically. In Sec. IV, the non-
equilibrium Keldysh formalism, widely applied in the study
of charge transport in conventional two-dimensional electron
gases in square lattices,31–36 is adapted to the honeycomb
topology23,37 to obtain maps of currents in graphene ribbons
under applied external fields. The maps allow a pictorial de-
scription of electronic transport and magnetotransport. Fur-
thermore, in the case of superimposed gates, they provide a
real space view of the Klein tunneling currents and suggest
the way to realize manipulation of currents. Section V con-
tains the conclusions.

II. ELECTRONIC STATES AND LANDAU
LEVELS IN GRAPHENE

In this section, we briefly consider a few aspects of the
electronic structure of graphene useful for a better self-
contained presentation of the transport properties. The mono-
layer crystal structure of graphene is described by the typical
honeycomb lattice with two carbon atoms in the primitive
cell. The primitive translation vectors �t1 , t2� of the two-
dimensional hexagonal lattice and the positions �d1 ,d2� of
the two atoms in the primitive cell are indicated in Fig. 1�a�;
the lattice constant is a=2.46 Å. The corresponding hexago-
nal Brillouin zone is indicated in Fig. 1�b�.

The valence bands and the lowest energy conduction
bands of graphene are mainly originated by the 2s and 2p
orbitals of the carbon atoms. In the honeycomb lattice, there
are two carbon atoms per primitive cell; this entails a mini-
mal basis of eight Bloch sums. The six Bloch sums, formed
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with the s, px, and py orbitals, give rise to the � bands; the
sp2 orbital hybridization guarantees the mechanical stability
of the sheet and generate the valence bands. The three anti-
bonding combinations of s, p, and py generate unoccupied
conduction bands. Similarly, the two Bloch sums, based on
the pz orbitals of the two carbon atoms in the primitive cell,
give rise to the � �valence� and �* �conduction� bands. The
group theory analysis of the honeycomb topology1–4 shows
that the � bands are degenerate at the corner points of the
hexagonal Brillouin zone and have linear energy-wave-
vector dispersion nearby �Dirac points�. In undoped
graphene, the Fermi energy occurs at the Dirac degenerate
points.

Within the minimal basis set of two Bloch sums, formed
by the pz carbon orbitals of each sublattice, the crystal
Hamiltonian is represented at each two-dimensional k vector,
by the 2�2 semiempirical matrix,

H�k� = � 0 tF�k�
tF�k�* 0

� , �1a�

where

F�k� = 1 + 2 cos
kxa

2
exp�− i

kyb

2
� and b = a�3 = 4.26 Å.

�1b�

In the above equations, F�k� denotes the geometrical struc-
ture factor of the honeycomb topology. The hopping param-
eter of the crystalline Hamiltonian between two nearest
neighbor pz orbitals is set to t=−3 eV, which provides a
satisfactory description of the energy bands near the Dirac
points in an orthogonal nearest neighbor tight-binding
model.5 The energy of the pz orbitals is chosen as reference
energy and set equal to zero. From Eqs. �1a� and �1b�, the �
and �* energy bands are expressed as

E�k� = � t�F�k�� . �2�

The � valence band and the �* conduction band are degen-
erate at the Dirac points K= �2� /a��2 /3,0� and K�
= �2� /a��−2 /3,0�, and at the other equivalent corner points
of the Brillouin zone, where the structure factor vanishes.

Around the Dirac points the geometrical structure factor
�Eq. �1b�� can be linearized in the wavevector components,
and the Hamiltonian �1a� near K takes the simplified form,

H�k 	 K� =
�3

2

1

�
a�t�� 0 �kx − i�ky

�kx + i�ky 0
� , �3�

where the wave vector k is defined with respect to the value
of the wave vector at the degeneracy point. Similarly, H�k
	K�� is obtained replacing kx with −kx in Eq. �3�. The dis-
persion curves assume the typical conical shape,

E�k� = �
�3

2
�t�ka with k = �kx

2 + ky
2, �4�

and the carriers near the degeneracy points behave as rela-
tivistic massless Dirac particles.

We consider now the effect of a uniform magnetic field,
along the z direction, on the graphene energy spectrum
around the Dirac points. Within the tight-binding model, we
describe the magnetic field by means of the minimal substi-
tution, which consists in replacing the components of the
wave vector in the matrix elements of the Hamiltonian, with
the generalized momentum operators,

�k → p +
e

c
A�r� . �5�

In the first Landau gauge A�r�= �−By ,0�, one obtains

�kx → px −
eB

c
y 
 �x, �ky → py 
 �y, ��x,�y� = i

�2

l0
2 .

The magnetic length is l0=�c� /eB	257 Å for B=1 T and
l0	80 Å for B=10 T. The matrix Hamiltonian �3� becomes

H =
�3

2

1

�
a�t�� 0 �x − i�y

�x + i�y 0
� = ��0 �†

� 0
�

with � =
�3
�2

a

l0
�t� , �6�

where the annihilation operator � and the creation operator
�† are defined as

FIG. 1. �a� Lattice structure of graphene with zigzag modulation along the x direction and armchair modulation along the y direction.
�b� Corresponding two-dimensional Brillouin zone.
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� =
l0

�

1
�2

��x + i�y�, �† =
l0

�

1
�2

��x − i�y� ,

with �� ,�†�=1. For B=1 T, for instance, we have �
	35 meV, while �	113 meV for B=10 T. The diagonal-
ization of the Hamiltonian �6� is trivial noticing that the
squared matrix has diagonal form.38 In fact,

H2 = �2�0 �†

� 0
��0 �†

� 0
� = �2��†� 0

0 �†� + 1
� . �7�

The eigenvalues of the upper block and lower block of H2

are thus n�2 with n=0,1 ,2 , . . .. and �m+1��2 with m
=0,1 ,2 , . . .. Thus, the eigenvalues of the Hamiltonian �6� are

En = 	 ��n, n = 0,1,2,3, . . . , �8�

where all the eigenvalues are nondegenerate. A similar rea-
soning can be performed on the partner valley, and thus all
magnetic bands are doubly degenerate. Such a spectrum is at
the origin of the relativistic quantum Hall effect observed11,12

in the conductance of graphene ribbons.

III. ELECTRONIC STRUCTURE OF GRAPHENE WIRES
WITH ZIGZAG LONGITUDINAL MODULATION

In this section, we study the electronic structure of zigzag
graphene ribbons of finite width W and arbitrary large length
in the longitudinal x direction with analytic and numerical
procedures. The lattice structure of graphene wires is de-
picted in Fig. 2. Nz is the number of zigzag longitudinal
chains that compose the ribbon structure; 2Nz is the total
number of independent sites in the positions d j �j
=1, . . . ,2Nz� within the primitive cell of length a in the x
direction and width W in the transverse direction. The aver-
age width of a ribbon with Nz zigzag carbon chains is

W =
b

2
�Nz − 1�, b = a�3 = 4.26 Å. �9�

A typical width W=100 nm corresponds to Nz=470; this is
also the rank of the matrices entering recursive step of the

decimation-renormalization procedures we handle for the de-
scription of the transport properties of graphene ribbons.23,32

The energy bands of graphene ribbons of arbitrary length
L=Nxa are obtained by considering the 2Nz Bloch sums,


i�kx,r� =
1

�Nx
�
tm

eik·�tm+di��pz
�r − di − tm� ,

i = 1,2, . . . ,2Nz, �10�

where k= �kx ,0�, tm= �ma ,0�, and the Brillouin zone extends
in the range −� /a�kx
 +� /a. We first study the energy
bands in the absence of external magnetic fields and then
generalize the treatment to the presence of magnetic fields.

The diagonal elements of the Hamiltonian on the basis
�10� are all zero in the nearest neighbor interaction approxi-
mation. Off-diagonal matrix elements are different from zero
only between adjacent Bloch functions. In summary, on the
basis functions �
i�kx ,r�
, the Hamiltonian of a zigzag rib-
bon, in the case B=0, assumes the tridiagonal form,

H�kx� =�
0 2tc 0 0 0 . . .

2tc 0 t 0 0 . . .

0 t 0 2tc 0 . . .

0 0 2tc 0 t . . .

0 0 0 t 0 . . .

. . . . . . . . . . . . . . . . . .

�
2Nz

c�kx� = cos
kxa

2
.

�11�

For fixed kx value, the system described by the Hamiltonian
�11� is equivalent to the model chain Hamiltonian of Fig.
3�a�. The numerical calculations of the band structure of
graphene ribbons with Nz=470 are reported in Fig. 3�b�. The

FIG. 2. Schematic representation of the lattice structure of a
graphene ribbon with Nz longitudinal zigzag chains; the primitive
cell and the 2Nz carbon atoms within the primitive cell are indi-
cated. In the presence of a magnetic field, the hopping energies
between nearest neighbor orbitals are modified by the Peierls phase
factor as indicated in the right part of the figure.

FIG. 3. �a� One-chain model Hamiltonian for the calculation of
the energy bands of the graphene wire in the absence of magnetic
fields; 
i�kx ,r� �i=1,2 ,3 , . . . ,2Nz� denote the Bloch sums and
c�kx�=cos�kxa /2� with −� /a�kx
 +� /a. �b� Quasicontinuum al-
lowed energy bands of a graphene ribbon of width W=100 nm and
Nz=470, delimited by the four curves E�kx�= � t�2t cos�kxa /2�.
The dispersionless edge states are also indicated. �c� Magnification
of the band structure around E=0 at the K Dirac point.
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typical conical structure at the Dirac points near the refer-
ence energy E=0 is reported in Fig. 3�c�.

A close inspection of Fig. 3�b� shows the following fea-
tures: �i� symmetry of the electronic structure for positive
and negative energy values, �ii� strong degeneracy of the
energy bands of the ribbon at the points kx= 	� /a, and �iii�
occurrence of two partially dispersionless energy bands at
E=0 �over one-third of the Brillouin zone�. For what con-
cerns Fig. 3�c�, it is apparent that the energy bands are remi-
niscent of the Dirac conical shape, broken into discretized
electron and hole minibands due to the finite width of the
wire. We now analyze the above features of the electronic
structure of graphene ribbons analytically.

At the border of the Brillouin zone, for kx= 	� /a, the
quantity cos�kxa /2� vanishes. From the Hamiltonian �11� or
its graphical representation of Fig. 3�a� we have for the en-
ergy spectrum

E = 0 �twofold degenerate� ,

E = + �t�;− �t� �Nz − 1-fold degenerate each� .

This justifies the behavior and the collapse of the energy
bands of the zigzag wires at the borders of the Brillouin
zone. Other general features of the zigzag ribbon energy
bands reported in Figs. 3�b� and 3�c� can be understood with
the explicit analytic calculation of the Green’s functions cor-
responding to the tridiagonal Hamiltonian �11�.

Consider first the Green’s function corresponding to the
tridiagonal Hamiltonian operator of Fig. 3�a�, assumed to be
semi-infinite, i.e., in the limit 2Nz→� �later we will consider
the case of ribbons of finite width�. On the surface site of
Fig. 3�a�, the retarded Green’s function G11

R �E ,kx ;Nz→��,
denoted simply as G�E ,kx� or G�E�, is given by the contin-
ued fraction,

G�E� =
1

E − 4t2c2 1

E − t2 1

E − 4t2c2 1

E − ¯



1

E − 4t2c2 1

E − t2G�E�

. �12�

It follows

G =
E − t2G

E2 − t2EG − 4t2c2 ,

from which

− t2EG2 + �E2 − 4t2c2 + t2�G − E = 0.

The ribbon Green’s function projected onto the orbital at the
origin of the semi-infinite chain takes the expression

G�E,kx� =
E2 − 4t2c2 + t2 � ��E2 − 4t2c2 + t2�2 − 4t2E2

2t2E
.

�13�

The sign in front of the square root must be chosen in such a
way that it conserves the Herglotz property of the retarded
Green’s function: �i� In the energy regions where the dis-
criminant D�E ,kx�
0, the Green’s function is complex, and
the sign of the square root must be chosen so that the imagi-
nary part of the retarded Green’s function is negative. �ii� In
the energy regions where D�E ,kx��0, the Green’s function
is real, and the sign in front of the square root must be
chosen so that the energy derivative of the Green’s function
is negative.

The discriminant of the quadratic equation is

D�E,kx� = �E2 − 4t2c2 + t2�2 − 4t2E2

= �E − t − 2tc��E − t + 2tc�

��E + t − 2tc��E + t + 2tc� . �14�

In the last line, the discriminant has been conveniently writ-
ten as the product of four factors. The zero values of D�E ,kx�
in the �E ,kx� space define four curves, which separate the
energy region where the Green’s function has an imaginary
part, from those where it is real and no state is possible. The
delimiting curves have the expressions

E�kx� = � t � 2t cos
kxa

2
, �15�

and are reported in Fig. 3�b�; the allowed energy regions,
delimited by the four curves, are shadowed.

The continued fraction elaboration in the context of Bloch
functions of kx wave number, here adopted, constitutes an
elegant complement to the efficient real space treatments of
electronic states5,39–41 and Green’s functions42,43 in graphitic
ribbons. In fact, inspection of the continued fraction �Eq.
�12��, and its exact resummation �Eq. �13��, permits to de-
scribe and to discern naturally also the edge states at zero
energy, characterizing the bipartite zigzag wires. From Eq.
�13�, we can easily identify the presence of surface �edge�
states at energy E=0. The Green’s function in the energy
shell around E=0 following prescription �ii� becomes

G�E,kx� =
E2 − 4t2c2 + t2 + ��E2 − 4t2c2 + t2�2 − 4t2E2

2t2E
.

For E→0+ i� �� positive infinitesimal quantity�, the Green’s
function takes the form

G�E,kx� = �
1 − 4c2

E
if 0 � c�kx� 


1

2

E

�1 − 4c2�t2 if
1

2

 c�kx� � 1.�

From the above equation, it is seen that zero energy edge
states occur in the Brillouin zone if 0�cos�kxa /2�
1 /2,
i.e., for −� /1�kx
−�2 /3�� /a and +�2 /3�� /a
kx�� /a,
and the weight of each pole is 1−4c2.
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We pass now to consider the analytic determination of the
energy levels at the Dirac points in zigzag graphene ribbons.
The matrix Hamiltonian �11� for kx= �2 /3��2� /a� describes a
chain with 2Nz sites and constant interaction t between near-
est neighbors. The 2Nz eigenvalues of the finite chain are
given by the expression44

En = 2t cos
n

2Nz + 1
, �n = 1,2, . . . ,2Nz. �16a�

We are interested in the energy values around the zero refer-
ence energy of the Dirac points. To explore this region for
sufficiently large Nz, we set n=Nz−m, where m is an integer
number, and exploit the identity

Nz − m

2Nz + 1
� =

�

2
− �m +

1

2
� 1

2Nz + 1
� .

Equation �16a� can thus be written as

Em = 2t sin��m +
1

2
� �

2Nz + 1
�, − Nz � m 
 + Nz.

�16b�

The eigenvalues of the finite chain, near the reference energy,
are given �with very good approximation for large Nz and
�m��Nz� by the expression

Em 	 �m +
1

2
��t�

�

Nz + 1/2
,

m = 0, � 1, � 2, . . . ��m� � Nz� . �17�

Notice that the results of Eqs. �16a�, �16b�, and �17� depend
only on �t� and Nz and are independent of the lattice param-
eter.

The energy levels �Eq. �17�� constitute a ladder with rungs
separated by

� = �t�
�

Nz + 1/2
. �18�

The rungs nearest the reference energy E=0 are at energies
	� /2 �corresponding to m=0 and m=−1�. From this result
and Fig. 3�c�, it is seen that a single electron conductive
channel is active for positive Fermi energies of the injected
electrons up to 3� /2, and then two more conductive chan-
nels �one per valley� become active at each increase � of the
Fermi energy. By virtue of the electron-hole symmetry of the
energy spectrum, similar properties hold for holelike carriers
at negative energies.

We can recast Eq. �17� in the equivalent form

Em =
�3

2
�t�a�m +

1

2
� �

Wcont
with Wcont =

b

2
�Nz +

1

2
� ,

where Wcont �	W� can be considered as the width of the
ribbons with Nz chains in the continuum approximation. In
fact, in the spirit of the continuum limit and quantization of
transverse wave vectors, we write the above expression in
the form

Em = �
�3

2
�t�kya with ky = �m +

1

2
� �

Wcont
,

m = 0,1,2, . . . .

The fact that semi-integer values replace integer values in the
quantization rule can be justified by appropriate elaborations
of the boundary conditions in the continuum approximation
of the honeycomb topology and zigzag longitudinal
modulation,22 while it is automatically handled in the present
atomistic description.

We consider now the effect of magnetic fields on the elec-
tronic structure of zigzag graphene ribbons. In the tight-
binding framework, the magnetic field is described by appro-
priate Peierls phase factors in the hopping interactions. In the
hexagonal lattice of graphene, the magnetic flux through a
hexagonal plaquette is


p�B� = Ba
b

2
=

�3

2
a2B .

The corresponding Peierls phase is

� = 2�

p�B�


0
= 2�

�3

2

a2B


0
=

�3

2

a2

l0
2 ,

where 
0= hc
e and �	0.79�10−3 for B=10 T. The modifi-

cation of the hopping parameters of the Hamiltonian of
graphene, in the presence of magnetic fields, is shown sche-
matically in Fig. 2. In the zigzag graphene ribbon, it is con-
venient to share the Peierls phase between two adjacent
bonds by assigning the phase � /2 to each of them.

The Hamiltonian of the system in Fig. 2 is translationally
invariant along the longitudinal x direction. Using the basis
of the Bloch sums �Eq. �10�� and the matrix elements of the
Hamiltonian with the appropriate phase factors in the hop-
ping parameters, we obtain for a ribbon with Nz zigzag
chains,

H�kx,B� =�
0 2tc1 0 0 0 0 . . .

2tc1 0 t 0 0 0 . . .

0 t 0 2tc2 0 0 . . .

0 0 2tc2 0 t 0 . . .

0 0 0 t 0 2tc3 . . .

0 0 0 0 2tc3 0 . . .

. . . . . . . . . . . . . . . . . . . . .

�
2Nz

.

�19�

with cn=cos� kxa
2 − n�

2
�, n=1,2 , . . .Nz. Equation �19� is the

generalization of Eq. �11� in the presence of magnetic fields.
We wish to point out an important feature of the tridiago-

nal Hamiltonian �19�. The magnetic band structure given by
Eq. �19� is clearly invariant if the arguments of all cn are
modified by a same arbitrary phase. We can use this arbitrari-
ness to require that En�kx ,B�=En�−kx ,B�. For this purpose,
we must choose
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cn = cos� kxa

2
− n

�

2
+ Q

�

2
� with Q =

Nz + 1

2

and n = 1,2, . . . ,Nz. �20�

Notice that Q is an integer number if Nz is odd, while it is
semi-integer if Nz is even. It follows that

cn�+ kx,�,Q� 
 cNz+1−n�− kx,�,Q� for any n = 1,2, . . . ,Nz,

and thus the values of the energy spectrum at +kx and −kx
coincide. The magnetic energy bands reported in Fig. 4 are
obtained by diagonalization of the matrix �Eq. �19�� with
Nz=470 for a magnetic field B=10 T and the choice �Eq.
�20�� for the off-diagonal matrix elements. In this figure, the
values of the energies at the Dirac points are well represented
by the analytic expression En= 	��n of Eq. �8�.

IV. SPATIAL DISTRIBUTION OF SPECTRAL CURRENTS
IN ZIGZAG GRAPHENE RIBBONS

The Keldysh nonequilibrium Green’s function method, in
combination with the tight-binding representation of the
electronic system, provides a powerful tool for the investiga-
tion of quantum transport in mesoscopic devices.28–36 This is
due from one side to the general theoretical foundations of
the method, directly based on the many-body formalism, and
from the other side to its flexibility in obtaining accurate
numerical solutions of the kinetic transport equations at the
atomistic level also exploiting the renormalization-
decimation method or other recursive techniques. The formal
expressions of current profiles and the numerical recipes for
their actual evaluation have been thoroughly discussed in
papers31,32 for the standard case of electron carriers on square
lattices. Along similar guidelines, an appropriate procedure
has been implemented for the calculation of current profiles
in the honeycomb topology, where carriers can have either
electronlike or holelike nature.

In the simulation of quantum transport in the presence of
magnetic fields �unitary class systems� or also in the pres-
ence of spin-orbit interactions �simplectic class systems�, it is
essential to discern background �or persistent� local currents,
whose total net value through any section of the device is
vanishing, from transport local currents, whose total net
value through any section of the device is constant and rep-
resents the measured current flowing from lead to lead. This

problem has been discussed quantitatively in Ref. 32 in order
to achieve optimized quantum simulations, and we refer to it
for procedures and technical details. Throughout this paper,
we only focus on transport currents and their spatial distri-
bution.

The purpose of this section is the computation of transport
current profiles through zigzag nanoribbons of graphene in
the absence or in the presence of uniform magnetic fields and
gate potentials. Ideal left and right leads connect the system
to two particle reservoirs at the chemical potentials �L and
�R, respectively. In the simulations, we assume �L
�R, so
that carriers are injected from the right lead to the left one. In
the linear response regime, we also assume �L	�R, with
�L=EF−� and �R=EF+�, where �→0+. For brevity, we de-
note with E �or EF� the energy of the injected carriers.

We start describing current distributions through n-type or
p-type zigzag graphene ribbons in the absence of magnetic
fields. In the simulations, we have chosen nanoribbons of
width W=100 nm and Fermi energy EF= +150 meV; the en-
ergy band structure of the system has been discussed previ-
ously and shown in Fig. 3�c�. The structure is translationally
invariant in the longitudinal x direction and the current flow
is determined by the N active channels intersected by the
Fermi energy �N=15 in the chosen specific example; a mul-
tichannel simulation has been chosen because it is less sen-
sitive to geometrical parameters than a single channel situa-
tion with possible filter effects�. The microscopic current
profile is reported in Fig. 5�a�. The current flows mainly in
the bulk of the device, and its transverse profile is related to
the nodal structure of the wave functions in the conductive
channels intersected by the Fermi energy. The current profile
does not change if the Fermi energy is shifted from
+150 meV to the symmetric value of −150 meV. We have
also verified that the conductance is exactly given by G
=15� �2e2 /h�. The conductance quantization is related to
the translational symmetry of the ribbon in the longitudinal
direction. In orthogonal class systems �e.g., in the absence of
magnetic fields�, this quantization is fragile with respect to
any source of disruption of the translational symmetry.

We consider now the same unipolar ribbon subjected to a
uniform magnetic field B=10 T, perpendicular to the carbon
sheet. The magnetic energy bands of the nanoribbon are re-
ported in Fig. 4. Three conductive channels are active at
EF=150 meV. The current distribution, reported in Fig. 5�b�,
is confined to the lower edge of the ribbon and involves a
region of width of the order of the magnetic length �l0
	80 Å for B=10 T�. Intuitively, this occurs by virtue of the
Lorentz force acting on the electron carriers injected from
the right lead and moving toward the left lead. The Hall
conductance of the device is quantized with value G=3
� �2e2 /h�. Notice that in the unitary class systems �e.g., in
the presence of magnetic fields�, when the magnetic length is
much lower than the width of the sample, the quantization of
the Hall conductance is robust with respect to possible
sources of disruption of the longitudinal translational sym-
metry because of the quenching of backscattering processes.

In Fig. 5�c�, we report the current distribution in the same
structure, when the Fermi energy is displaced from the value
EF= +150 meV to the symmetric value of −150 meV and
B=10 T. The current distribution is now confined to the up-

FIG. 4. Allowed magnetic energy bands around the E=0 refer-
ence energy of graphene ribbons of width 100 nm in a magnetic
field of 10 T at the K Dirac point.
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per edge of the ribbon by virtue of the Lorentz force acting
on the holelike carriers of the structure.

The message from Fig. 5 can be summarized as follows:
In the absence of magnetic fields, the current flows mainly in
the bulk of the ribbon, and there is no difference in the spec-
tral current distribution if the Fermi energy lies at +EF �elec-
tronlike carriers� or −EF �holelike carriers�. On the contrary,
in the presence of strong magnetic fields, quantized chiral
currents occur at opposite edges of the ribbon, and manipu-
lation of currents becomes possible by acting on the electron
or hole nature of carriers, with p or n doping of the material.

The manipulation of currents by shifting the Fermi energy
of the charge carriers, although of interest, does not appear as
the most convenient way to exploit the electron-hole nature
of the Dirac particles. An appealing alternative procedure
exploits the application of top gate voltages to create puddles
of holes �or electrons� in appropriate regions of the device.

In Fig. 6, we show current profiles through the nanorib-
bon with a superimposed electrostatic energy V in the region
at the left of the transverse section at the origin of the x axis.

Figure 6�a� shows the distribution of currents when carriers
are injected at energy EF=150 meV in the presence of a
potential step V=2�EF=300 meV and in the absence of
magnetic fields. From the current distribution reported in
Fig. 6�a�, it is seen that the current flows mainly in the bulk
of the system and is somewhat squeezed in the gated region.
The total conductance G=14.5� �2e2 /h� is near to the value
of 15 of the unipolar device of Fig. 5�a� and denotes an
efficient Klein tunneling of Dirac particles through the step
barrier. In the presence of the gate potential and of a uniform
magnetic field of 10 T, the current profiles is shown in Fig.
6�b�. The carriers behave as electrons in the right region of
the device, and as holes in the left part. Thus, the injected
current is expected to flow in the lower edge in the right part
and in the upper edge in the left part of the structure. The
injected spectral current is perfectly quantized to 3
� �2e2 /h�; the conductance of the ribbon is about 2
� �2e2 /h�. Around the junction, the carriers cross the device
from edge to edge, invading the bulk of the sample. Note that
the bulk of the sample in the presence of magnetic fields is
strictly prohibited to the carrier flow �as illustrated in Figs.
5�b� and 5�c�, and also in Fig. 6�c� in the regions far enough
from the junction�.

In Fig. 7, we consider current profiles through a n-p-n
structure, obtained with a superimposed electrostatic voltage
V=300 meV confined in the barrier region extending for
100 nm between the indicated transverse sections. The situ-
ations of Figs. 7 and 6 are different for the fact that the
semi-infinite steplike barrier is now replaced by a finite rect-
angular barrier; in the simulations, the p-doped region is a
square of edge 100 nm.

FIG. 5. �a� Spatial distribution of spectral current for a zigzag
graphene ribbon of width W=100 nm and Fermi energy EF

= 	150 meV; conductance is G=15�2e2 /h. �b� Spatial distribu-
tion of spectral current at energy EF= +150 meV for the same
graphene ribbon in the presence of uniform magnetic field of value
B=10 T. The current flows only in the lower edge of the sample,
and the conductance is G=3�2e2 /h. �c� Spatial distribution of
spectral current at energy EF=−150 meV for the same graphene
ribbon in the presence of uniform magnetic field of value B=10 T.
The current flows only in the upper edge of the sample, and the
conductance is G=3�2e2 /h. In the right panels, the corresponding
transverse profiles of the microscopic currents are reported. The
unit of the spectral current in the grey scale is i0=2e /h. No external
gate potential is applied.

FIG. 6. Current profiles through a graphene ribbon of width
100 nm, with a steplike electrostatic potential gate of value V
=300 meV in the region x
100 nm. �a� Spatial distribution of
spectral current at the energy EF=150 meV in the gated graphene
ribbon in the absence of magnetic fields. �b� Spatial distribution of
spectral current at the energy EF=150 meV in the same gated
graphene ribbon in the presence of the magnetic field B=10 T. The
unit of spectral current is i0=2e /h�10−3.
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From the current distribution of Fig. 7�a�, we see that the
current in the n-p-n device flows in the bulk of the system,
with a total conductance G	14.5� �2e2 /h� close to the
value of unipolar n-type device and to the value of the p-n
junction. Again, this denotes the efficient Klein tunneling of
Dirac particles through the rectangular barrier. Notice that
differently from Figs. 5�a� and 6�a�, the current maps of Fig.
7�a� show a rich pattern related to the back-and-forth scatter-
ing of carriers in the gated region.

In the presence of a uniform magnetic field of 10 T and of
the same square barrier of 300 meV, the current profile at the
injection energy EF=150 meV is shown in Fig. 7�b�. The
carriers behave as electrons in the right and left regions of
the device and as holes in the central part. Thus, the current
is expected to flow along the lower edge in the left and right
leads and along the upper edge in the central part. The cur-
rent invades the bulk of the sample and transits from the
lower edge to the upper edge at the entrance of the p region
and turns back to the lower edge on the exit. The main mes-

sage of Figs. 6 and 7 is the possibility of manipulating cur-
rent flow of relativistic particles with top gate potentials.
This may envisage the possibility of multiterminal carbon
devices for quantum logic gates, implementing concepts and
geometries of conventional coupled quantum wires45 or mag-
netically switched waveguide qubits.46

V. CONCLUSIONS

We studied the electronic structure and current profiles in
zigzag graphene ribbons within the tight-binding framework
and the nonequilibrium Keldsyh Green’s function method for
quantum transport. Simulations of charge transport in unipo-
lar and bipolar devices, also in the presence of magnetic
fields, have been investigated numerically. Insights of the
computed results have been provided by the analytic treat-
ment of the electronic structure and conductive channels of
relativisticlike particles.

We have shown that in n-p-n devices, realized when the
height of the gate potential barrier is larger than the energy of
the injected carriers, electron particles turn into holes inside
the barrier and turn back to electrons outside it. Imaging of
current profiles here presented gives a vivid picture of the
easy Klein tunneling through barriers by virtue of the elec-
tronlike or holelike behavior of the relativistic particles in the
n-doped and p-doped regions. The current maps are of par-
ticular interest in the presence of magnetic fields since the
spatial distribution of currents is sensitive to the nature of the
carriers. In strong magnetic fields, electrons and holes flow
along opposite edges of the sample and we have shown that
current manipulation is in principle possible by means of top
gates.

The investigations of this paper concern the current dis-
tribution of relativistic particles in two-terminal devices un-
der rectangular steplike superimposed gate potentials; a
wealth of other situations could be envisaged along similar
guidelines. It is likely that appropriate geometries of top
gates or multiterminal devices offer further flexibility in ma-
nipulation of currents, focusing of electron beams, realiza-
tion of ideal or nearly ideal electronic lenses, and design of
novel devices based on charge conjugation symmetry of
Dirac particles.
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