
Spin transport in proximity-induced ferromagnetic graphene

Håvard Haugen,* Daniel Huertas-Hernando, and Arne Brataas
Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway

�Received 27 July 2007; revised manuscript received 11 January 2008; published 5 March 2008�

Ferromagnetic insulators deposited on graphene can induce ferromagnetic correlations in graphene. We
estimate that induced exchange splittings ��5 meV can be achieved by, e.g., using the magnetic insulator
EuO. We study the effect of the induced spin splittings on the graphene transport properties. The exchange
splittings in proximity-induced ferromagnetic graphene can be determined from the transmission resonances in
the linear response conductance or, independently, by magnetoresistance measurements in a spin-valve device.
The spin polarization of the current near the Dirac point increases with the length of the barrier, so that long
systems are required to determine � experimentally.
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I. INTRODUCTION

The two-dimensional honeycomb lattice of graphene is a
conceptual basis for describing carbon structures such as
fullerenes, carbon nanotubes, and individual layers of graph-
ite. The fabrication of free and stable monolayers of
graphene a few years ago transformed this concept into an
experimental reality that has attracted a tremendous interest
from the research community.1–3 The low energy excitations
of charge carriers in graphene are similar to massless relativ-
istic Dirac �or rather Weyl� particles. The Hamiltonian is4,5

H = − i�v� · � + U�r� , �1�

where the velocity v�106 m /s is the analog of the Dirac
electron speed of light �in the sense of limiting velocity� in
graphene and �= ��x ,�y� is a two-dimensional vector of
Pauli matrices acting on two-spinor states related to the two
triangular sublattices constituting graphene’s honeycomb lat-
tice. The approximate Hamiltonian �1� is valid near the Dirac
points K and K� in the reciprocal lattice. The two inequiva-
lent Dirac points introduce a twofold valley degeneracy.6

The carrier concentrations are typically in the range
1011–1012 cm−2, corresponding to a Fermi wavelength of
�F�50–100 nm.3,7 The mean free path �mfp� has been re-
ported to be of the order lmfp�0.4 �m.1 With improved con-
trol over the fabrication process of graphene, we expect to
see the realization of even cleaner samples with longer mean
free paths.

Spintronics aim to inject, manipulate, and detect spins in
electronic devices. Electrical spin injection in normal metals
is routinely achieved by contacting ferromagnets like Fe, Ni,
and Co with normal metals such as Cu and Al, and driving a
current through the system. In semiconductors, electrical
spin injection is more challenging because of the resistance
mismatch between the semiconductor and possible ferromag-
netic metal contacts.8 Nevertheless, spin injection into a
semiconductor is feasible from a conventional ferromagnet
when the interface resistance between the semiconductor and
the ferromagnet is sufficiently large, as recently demon-
strated by using Fe Schottky contacts in Ref. 9. Spin injec-
tion detected via the giant magnetoresistance effect in nano-
tubes contacted to ferromagnets has also been reported.10

Graphene is clearly an interesting candidate for spintron-
ics applications since the carrier concentration can be con-
trolled by gate voltages. Also, it has a very weak spin-orbit
interaction, leading to the possibility of relatively long spin
flip lengths.11,12 In a recent experiment on spin injection in
single layer graphene, the spin flip �sf� length is found to be
lsf�1 �m at room temperature in dirty samples.13 Cleaner
samples are expected to have even longer spin flip lengths.

We explore another possibility of spin dependent transport
by envisioning that graphene is put in close proximity to a
magnetic insulator. Via the magnetic proximity effect, ex-
change splittings will be induced in graphene. Strong prox-
imity induced exchange splittings due to ferromagnetic insu-
lators have been observed at EuO /Al interfaces.14–16 The
effect was attributed to the nonvanishing overlap between the
wave functions of the localized moments in the magnetic
insulator and the itinerant electrons in the metal.17 The elec-
tronic wave functions can be described by atomiclike wave
functions at the surface of thin Al films.18 The spatial range
is similar for the atomic wave functions in Al and graphene,
so we expect the overlap between the localized moments and
itinerant electrons in graphene at EuO/graphene interfaces to
induce exchange interactions comparable to those observed
for EuO /Al. Based on the results reported in Refs. 15–17
and 19, we roughly estimate that exchange splittings in
graphene due to the ferromagnetic insulator EuO could be of
the order of 5 meV �see Appendix A for details�.

In this paper, we show that proximity-induced splittings
can be observed in the tunneling conductance associated
with a tunable barrier created by the ferromagnetic insulator
gate on top of graphene. First, for highly doped barriers, we
demonstrate that the splitting � can be directly observed
from the transmission resonances in the conductance.7,20,21

Moreover, for low doping of the barrier, we show that the
spin polarization of the tunneling current, directly related to
the spin splitting �, increases with increasing length of the
barrier. The spin polarization can be studied by magnetore-
sistance �MR� measurements in a spin-valve device where
two magnetic gates are deposited in series. Such MR mea-
surements could also allow us to independently determine
the induced spin splitting �.

This paper is organized as follows: We present a model of
a magnetic gate in Sec. II. Section III reminds the reader of
the results obtained in Refs. 7 and 22 for the conductance of
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a square barrier in graphene. Then we discuss how to obtain
analytical expressions for the conductance both far from and
close to the Dirac point. We extend the spinless situation to a
spin dependent barrier with an exchange splitting � between
the two spin channels in Sec. IV. First, we discuss the pos-
sibilities for extracting the splitting � directly from the con-
ductance of a single highly doped barrier. Second, we study
the dependence of the current spin polarization on the barrier
height and length. Section V discusses the MR effect in a
double barrier spin-valve device and discusses how it can be
used to extract �. Finally, our conclusions are in Sec. VI.

II. MODEL

A possible way to construct a ferromagnetic gate is to
deposit a magnetic insulator, such as EuO, on top of a
graphene sample with a metallic gate above it �see Fig. 1�.
So far, experimental efforts have focused on depositing non-
magnetic gates on graphene.23,24 The presence of a magnetic
insulator will induce an exchange splitting in graphene. The
normal metal gate allows us to control the Fermi level lo-
cally, i.e., to create a tunable barrier in graphene. In this way,
both control of the charge and spin carrier concentrations can
be achieved.

We assume in this paper that the normal metal gate in-
duces a sharp potential barrier below it. This is a reasonable
assumption provided the distance d between the gate and the
graphene layer is much shorter than the Fermi wavelength
�F, which is relatively long in graphene, �F�50–100 nm.7

Recently, a method for manufacturing top gates where the
distance from the gate to the graphene layer is of the order of
�F has been demonstrated.23 Observation of resonance ef-
fects due to sharp potential steps, therefore, seems feasible in
graphene.

The exchange interaction between the localized magnetic
moments in the ferromagnetic insulator and the spins of the
electrons creates an additional spin dependent offset of the
barrier potential, leading to the possibility of spin dependent
tunneling. We estimate in Appendix A that the exchange
splitting due to the magnetic insulator EuO can be around
5 meV. Here, we assume that the exchange interaction is not
affected by the gate voltage of the top metallic gate.

III. TUNNELING PROBABILITY

For completeness, we first review the results for tunneling
through a square barrier in graphene, and follow the deriva-

tion in Refs. 7 and 22. We will later extend this discussion to
a spin dependent barrier. The charge carriers we consider are
Dirac quasiparticles, described by the Hamiltonian �1�. These
quasiparticles originate from reservoirs to the left and to the
right of the ballistic graphene sample. EF is the Fermi energy
measured with respect to the Dirac point of the undoped
graphene layer. At zero temperature, the transport properties
are governed by quasiparticles that approach a square barrier
of height U and length L �see Fig. 2� at energy EF. We
assume ballistic transport across the barrier, and also that the
spin flip length lsf is much longer than the other length scales
of the problem. Given the values for lmfp and lsf reported for
graphene,1,11,13 this regime should be realistic.

The Hamiltonian �1� has the following plane wave solu-
tions in regions I, II, and III of Fig. 2, respectively:7,22

��I� = �� 1

�ei	 �eikxx + r� 1

− �e−i	 �e−ikxx�eikyy , �2�

��II� = �a� 1


ei� �eiqxx + b� 1

− 
e−i� �e−iqxx�eiqyy , �3�

��III� = � 1

�ei	 �eikx�x−L�eikyy . �4�

The momentum of the incident particle makes an angle 	
=arctan�ky /kx� with the x axis. The angle of refraction, i.e.,
the corresponding angle inside the barrier, is �
=arctan�qy /qx�. We consider only elastic scattering at the in-
terfaces and define

kF 	 �kx
2 + ky

2�1/2 = ��v�−1
EF
 �5�

and qF 	 �qx
2 + qy

2�1/2 = ��v�−1
EF − U
 . �6�

The parameters �=sign�EF� and 
=sign�EF−U� determine
the wave function in the corresponding regions as either
electronlike �positive sign� or holelike �negative sign�. Trans-
lational invariance in the transverse �y� direction implies
conservation of transverse momentum:

ky = qy ⇒ kF sin 	 = qF sin � . �7�

It is convenient to introduce the dimensionless variable

� =
EF − U

EF
�8�

as a measure of the gate voltage U. �=1 corresponds to the
case of no barrier. Throughout the rest of the paper, we will

� � � � � � � � � � 	 
 � � � � 


L

� 
 � � � � � �

d

� 
 � 	 � 
 � � �

� � � �

FIG. 1. A ferromagnetic insulator on top of graphene induces an
exchange splitting in graphene. A metallic gate on top of the insu-
lator controls the electrostatic potential.

L
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U

FIG. 2. Square barrier of length L.
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make the substitution u=sin 	, and we recall that by defini-
tion �kF=EF /�v and 
qF= �EF−U� /�v.

Matching the wave functions at the interfaces, ��I��x=0�
=��II��x=0� and ��II��x=L�=��III��x=L�, and solving for t
give the transmission probability T	
t
2 for a given incom-
ing angle7,22 	:

T�u� =
��2 − u2��1 − u2�

��2 − u2��1 − u2� + u2�1 − ��2 sin2�qxL�
, �9�

where

qxL = kFL��2 − sin2 	 . �10�

Both t and T are invariant under the transformation ky→
−ky as a consequence of the continuity condition �7�.

In a real device, the sample has a finite width W. The
allowed incoming angles 	 are, therefore, determined by the
channel index n, due to the quantization of the transverse
modes. This quantization condition is, for the infinite mass
boundary condition, ky→kn= �n+ 1

2
� /W, where n are integers

in the range 0–Nmax= �kFW /
−1 /2�, and the transverse
states are superpositions of states with positive and negative
ky.

22,25 Provided that the transverse momentum is conserved
across the barrier interfaces, Eq. �9� is valid for systems of
both finite and infinite width.22

The conductance through the barrier for each spin inde-
pendent channel is given in the Landauer-Büttiker formalism
as

G = gv
e2

h �
n=0

Nmax

Tn, �11�

where gv=2 is the valley degeneracy and Tn is the transmis-
sion probability 
Eq. �9�� for a given transverse channel kn.
When the number of channels N becomes large, i.e., kFW
�1, we can replace the summation over channels with an
integration over transverse momenta, such that the conduc-
tance becomes

G = G0�
0

1

duT�u� = G0g , �12�

with G0 defined as

G0 =
2e2

h

kFW



. �13�

The dimensionless conductance g in Eq. �12� is plotted in
Fig. 3 as a function of the dimensionless gate voltage �.

From Eq. �10�, we see that the longitudinal momenta in
the barrier region, qx, can be either purely real ��2�u2� or
purely imaginary ��2�u2�, corresponding to propagating and
evanescent modes, respectively.22 The contribution to the
conductance from the evanescent modes becomes dominant
around �=0, and the scaling of the conductance with length
at this point resembles that of a diffusive system.22,26 For

�
�1, the conductance �12� can be split into the contribu-
tions from propagating and evanescent modes:

g = �
0


�


duT�u� + �

�


1

duT�u� = gprop + gevan, �14�

from which it is readily seen that the evanescent modes
dominate in the region near �=0 as long as T�u��0 for at
least some u� 
�
 �see Appendix B for details�. For kFL�1
and setting �=0 in Eq. �9�:

T�u� �
1

cosh2�kFLu�
. �15�

This corresponds to the limit Nmax�W /L in Ref. 22. Upon
insertion of Eq. �15� into the integral �12�, we find that the
conductance at the Dirac point is inversely proportional to
the system length:

g �
1

kFL
. �16�

This corresponds to the so-called minimal conductivity gsG
�L /W=gsgve2 /h
,22 gs=2 being the spin degeneracy.

For 
�
�1 and kFL�1, we can approximate the conduc-
tance by the expression

g � �a1 + a2��
�
 +
1

kFL
exp�− kFL
�
� , �17�

with a1=0.79 and a2=0.21 �see Appendix C for details and
Fig. 3 for a comparison with the exact solution�. Equation
�17� reduces to Eq. �16� when �→0.

For 
�
�1, corresponding to a well or a large barrier, only
propagating modes contribute, and we would expect to see
resonances in the conductance due to quasibound27 states in
the barrier region. In the limit 
�
�1, using that u2�1, the
tunneling probability �9� becomes

T�u� �
1 − u2

1 − u2 cos2�kFL��
, �18�

resulting in the expression

� � � � � � � � � 	 


� � � 
 � � 
 � �

�

� � �

� � �

� � �

� � �

�

� � � � � � � � � � � � � �

g

ξ

� � � � � 
 � � 
 � �

FIG. 3. �Color online� Conductance g=G /G0 as a function of
�= �EF−U� /EF normalized to one spin channel when kFL=14. The
solid �blue� line shows the numerical result using Eq. �12�, while
the dashed �red� line is computed using the approximation �17�.
G0=2e2kFW /h
.
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g �

cos�kFL��
 − sin2�kFL��arctanh

cos�kFL��
�


cos�kFL��
3
�19�

for the dimensionless conductance �see Appendix B for de-
tails�. The period of g as a function of � is 
 /kFL. Also g
oscillates between 2 /3 and 1. The transmission probability
analogous to Eq. �9� for a square barrier in a nonchiral two-
dimensional system,7

Tnonchiral =
4��2 − u2��1 − u2�

4��2 − u2��1 − u2� + �1 − �2�2 sin2�qxL�
, �20�

also gives oscillation with the same periodicity, but, in this
case, the conductance oscillates between 0 and 1. The fact
that the conductance given by Eq. �19� oscillates between
2 /3 and 1 is due to the perfect tunneling of carriers near
normal incidence in graphene. Another difference between
graphene and a nonchiral system is that the transmission
probability of the latter 
Eq. �20�� is symmetric around �=0,
while the transmission probability for graphene 
Eq. �9�� de-
pends also on the sign of � through the �1−�� factor in the
denominator. The asymmetry for the case of graphene can
readily be seen in Fig. 3.

IV. SPIN DEPENDENT BARRIER

We now turn to a situation where the two spin channels
see barriers of different heights, i.e., the bottom of the con-
duction band at the barrier is shifted differently according to
spin. Such a shift can arise through a Zeeman interaction due
to an in-plane magnetic field or exchange field.

The exchange term � splits the system into two separate
subsystems according to spin. For an external magnetic field
B, the splitting is given by ��2�BB. We introduce the spin
dependent variables

�� = � � � =
EF − U

EF
�

�

EF
, �21�

where � denotes spins parallel ��� or anti parallel ��� to the
exchange field �see Fig. 4�. In the following, we will let g+�−�

denote the spin resolved conductance for spins parallel �an-
tiparallel� to the exchange field. Assuming no spin flip, lsf
�L, the total conductance gT across the barrier is given by
the sum:

gT = g+ + g− = g��+� + g��−� . �22�

Because � /B�5.8�10−2 meV /T, a direct interaction of
the spins with an external magnetic field gives only a very
weak effect �about 1 meV per 20 T�, and one will have to
rely on more indirect effects to observe such spin splittings.

We propose depositing a ferromagnetic insulator, e.g.,
EuO, on top of the graphene sample to induce an exchange
splitting in graphene. A normal gate on top of the insulator
allows us to control the Fermi level in the same region. The
resulting potential profile is sketched in Fig. 4. A rough es-
timate suggests that the splitting energy can be of order �
�5 meV at EuO/graphene interfaces �see Appendix A�.

As can be seen from Fig. 5, the effect of the splitting is
simply to shift the conductance of each spin channel with
respect to the other, leading to a broadening of the dip in the
total conductance gT near the Dirac point �=0. To be able to
observe the splitting directly in the gT near the Dirac point,
the magnitude of the splitting must be larger than the width
of the dip of each spin resolved conductance, g+�−�. A mea-
sure w= �kFL�−1 of the width of the dip is discussed in Ap-
pendix C, leading to the condition

L �
�v

�


�23�

for observation of the splitting directly in gT at the Dirac
point. However, the broadening of the dip due to a spin split-
ting would be difficult to distinguish from a broadening due
to other effects.

From Fig. 5, it is apparent that the spin splitting has a
more dramatic effect on the total conductance gT at large
barrier doping, since, due to the transmission resonances, g+

and g− can differ substantially at a given �. The asymptotic
expression �19� for 
�
�1 implies that gT has periodicity

 /kFL in � for �=0, as shown at the bottom of Fig. 6. With
increasing �, each peak of gT gradually splits into two spin
resolved peaks. The splitting measured from the conductance
2� equals 2� /EF �see Fig. 6�, so, in principle, � can be
determined directly from the total conductance across the
barrier in this way.

L

2∆
EF

U

U−

U+

FIG. 4. Ferromagnetic proximity effect splits the barrier accord-
ing to spin such that U�=U��. �

� � �

� � �

� � �

� � �

�

� � �

� � �

� � �

� � �

�

� 	 � � � � � � � 	 �

ξ

gT = g+ + g−
g+
g−

g

FIG. 5. �Color online� Spin resolved conductance through a
square barrier for kFL=14 and �=� /EF=0.05. The normalization
of conductance is chosen as in Fig. 3 to correspond to g�1�=1 for
each spin channel.

HAUGEN, HUERTAS-HERNANDO, AND BRATAAS PHYSICAL REVIEW B 77, 115406 �2008�

115406-4



On the other hand, it is also possible to study the splitting
by examining the spin polarization across the barrier.

We define a normalized spin polarization p along the di-
rection of the exchange field as

p =
g+ − g−

g+ + g− . �24�

Inserting the approximate expression for the conductance
from Eq. �17� and comparing to exact numerical calcula-
tions, we find good agreement in the whole region 
�
�1
�see Fig. 7�.

Equation �17� implies that the polarization becomes more
pronounced with increasing barrier length L �see Fig. 8�,
owing to the fact that the evanescent modes are increasingly
suppressed as L increases.

V. MAGNETORESISTANCE

Placing two magnetic gates a distance D apart in the
graphene sample is a possible way to probe the polarization
p in Eq. �24�. We assume either that D is much larger than
the mean free path lmfp �but still much shorter than lsf�, or
that the experimental setup is realized as a three-terminal
experiment, where the middle terminal completely random-
izes the momenta between the two barriers �see Fig. 9�.

Assuming that no spin flip processes take place in the
sample, the conductance for each spin channel is found by
treating the two barriers as resistors connected in series. Ar-
ranging the magnetizations of the ferromagnetic barriers par-
allel or antiparallel to each other gives different conduc-
tances g⇑⇑ and g⇑⇓, corresponding to the two situations in
Fig. 9, respectively. We study the polarization using the “pes-
simistic” definition of the magnetoresistance: MR= �g⇑⇑
−g⇑⇓� /g⇑⇑. For the general case of different left �L� and right
�R� barriers, we obtain

MR =
4pLgLpRgR

�gL + gR�2 − �pLgL − pRgR�2 , �25�

assuming that the resistance of the region D between the
barriers is negligible compared to the typical resistances of
the barriers. For clarity, we have suppressed the subscript T
denoting total conductance of the left �right� barrier: gL�R�
	gL�R�

+ +gL�R�
− .

For identical barriers, MR reduces to the simple expres-
sion

MR = p2. �26�

The combination of Eqs. �17�, �24�, and �25� allows us to
experimentally determine � from magnetoresistance mea-
surements. The change of sign in the polarization, shown in

2δ

δ = 0.02

δ = 0.03

δ = 0.04

δ = 0.05

δ = 0

δ = 0.01

π/kFL
�

� � �

�

� � �

�

� � �

�

� � �

� � � � � � � � � � � � � � � � � � � �

ξ

g

FIG. 6. �Color online� Total conductance gT=g++g− when 
�

�1 for a range of different splittings �=� /EF. For clarity the
curves are shifted upward in steps of 0.5 with increasing �.

FIG. 7. �Color online� The polarization p from the approxima-
tion �17� compared to the exact numerical result obtained directly
from Eq. �12�. Both plots are for kFL=14 and �=0.05.
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p

FIG. 8. �Color online� Polarization p as a function of �= �EF

−U� /EF for different barrier lengths L with �=0.05.
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FIG. 9. Measuring tunneling magnetoresistance by placing two
short barriers a distance D� lmfp apart.
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Fig. 8, is directly related to the relative shift of the conduc-
tances corresponding to each spin channel. The coefficient
MR is proportional to p2, which produces the double peak
structure seen in Figs. 10 and 11. The condition for observ-
ing MR effects is also given by Eq. �23�, L��v / 
�
. How-
ever, since the MR signal is only sensitive to the spin degree
of freedom, we expect MR experiments to be a more direct
probe of a spin induced splitting. Any broadening of the dip
introduced by sources other than � will also be less impor-
tant, since the polarization p changes sign around �=0.

For a splitting of �=5 meV, the condition in Eq. �23�
gives L�110 nm �or, equivalently, kFL�20�. As can be seen
in Fig. 8, the features in the polarization becomes sharper
when increasing the length above this value. This also trans-
lates into a clearer signal in the magnetoresistance, which is
plotted in Figs. 10 and 11 for barriers of equal and unequal
heights, respectively.

Finally, even if the top gate creates a smooth tunable bar-
rier, far from the perfectly square potential discussed here,
magnetoresistance measurements should still provide an ex-
perimental demonstration of proximity-induced ferromag-
netism in graphene, as the magnetic insulator still creates a
sharp splitting of the spin up and spin down states in the
region underneath the magnetic insulator. The exact depen-
dence of the polarization p on the splitting � may be differ-
ent in this case than the one presented here.

VI. CONCLUSIONS

We suggest using magnetic insulators deposited on top of
graphene to create ferromagnetic graphene. The exchange

interaction between electrons in graphene and the localized
magnetic moments in the insulator will give rise to a
proximity-induced exchange splitting �. We have estimated
that the graphene exchange splitting due to the magnetic in-
sulator EuO in close proximity can be around �=5 meV.

We have studied how the conductance of a square barrier
in graphene is modified by the presence of a ferromagnetic
insulator. We show that for large barriers or deep wells, 
�

�1, the splitting � can be determined directly from the total
conductance across the barrier, provided that the barrier is
sharp enough for transmission resonances to appear. For a
barrier of length L��v / 
�
, where v is the Fermi velocity of
the charge carriers in graphene, � should be observable in
the polarization of the tunneling current near the Dirac point
of the barrier, irrespective of whether the barrier is smooth or
sharp.

Demonstration of proximity-induced ferromagnetism in
graphene should be possible through magnetoresistance mea-
surements both for smooth and sharp barriers.

Note added. Recently, we became aware of a related work
by Semenov et al.,28 where a similar system with a magnetic
gate is considered. Their work discusses the possibility of a
spin field effect transistor, the feasibility of which relies on
variations of the spin splitting across the sample of the same
order of magnitude as our estimate for the splitting itself.
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APPENDIX A: ESTIMATION OF EXCHANGE SPLITTING
AT EuO/ GRAPHENE INTERFACES

Experiments on depairing at EuO /Al interfaces suggest
that the superconducting quasiparticles of Al experience an
exchange field due to the Eu2+ moments.14,19 This interaction
is short ranged; essentially, only the nearest layer of Eu2+

ions contributes. It has be shown that the exchange interac-
tion between Eu2+ ions and charge carriers can be described
as a Zeeman splitting14–17,19

� � cJ�Sz� , �A1�

where c is the fractional density of Eu2+ ions to that of itin-
erant electrons in Al at the interface, J is the spatial average
of the exchange integral, and �Sz� is the average spin of Eu2+

ions at a given temperature.
Perpendicular to the surface of thin Al films, the elec-

tronic wave functions can be well approximated by atomic-
like wave functions.18 The spatial range of an atomic wave
function is determined by the ratio Z /n,29 where Z is the
atomic number and n is the energy level. Since this ratio is
approximately the same for the 3s and 3p orbitals in Al
�Z /n=13 /3�4.3� and the 2p orbitals in graphene �Z /n
=6 /2=3�, we expect the overlap between the wave functions
of localized moments and itinerant electrons at EuO/
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kFL = 31

kFL = 17

kFL = 3

� � � � �

�

� � � �
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M
R

ξ

FIG. 10. �Color online� Magnetoresistance for two barriers of
equal height. The curves are shifted upward in steps of 0.25 for
clarity.
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ξ

FIG. 11. �Color online� Same as in Fig. 10, with one barrier
being lower than the other �
�L−�R
=0.1�.
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graphene interfaces to be comparable to those for EuO /Al.
Accordingly, we assume that the exchange interaction be-
tween Eu2+ ions and itinerant electrons are the same at
EuO /Al and EuO/graphene interfaces. Reference 17 reports
the value J=15 meV for Eu /Al interfaces, which also agrees
with the exchange energy hex=0.1 meV estimated in Ref. 19.

Using a nearest neighbor distance in graphene of
1.42 Å,30 we obtain for the areal density of itinerant elec-
trons nC�40 nm−1. Similarly, the areal density of Eu2+ ions
at the surface of EuO is nEu2+ �4 nm−1. Together this gives
c=nEu2+ /nC�10−1.

The temperature dependence of the average spin of Eu2+

ions in EuO is calculated in Ref. 31, showing that 3.5
� �Sz��3 for 0�T�30 K.

Collecting all together, we arrive at the estimate

� � 5 meV �A2�

for the exchange splitting in graphene due to EuO. We stress
that this is a very rough estimate which needs to be tested
experimentally.

APPENDIX B: LIMITING CASES FOR THE
CONDUCTANCE

1. Large potential

For large barriers or deep wells, 
EF−U
� 
EF
, �−1�1.
The transmission probability �9� then becomes

T�u� �
1 − u2

1 − u2 cos2�kFL��
. �B1�

The conductance in this case is

g � �
0

1

du
1 − u2

1 − u2 cos2�kFL��

=

cos�kFL��
 − sin2�kFL��arctanh

cos�kFL��
�


cos�kFL��
3
,

�B2�

which oscillates between the values 2 /3 and 1 with period

 /kFL as a function of �.

2. Evanescent modes

When 
EF−U
� 
EF
, the evanescent modes dominate the
transport so we neglect the contribution from the propagating
modes. Using that 
�
�u for evanescent modes, and that

�
�1, we find

T�u� �
1

cosh2�kFLu�
, �B3�

which is valid for kFL�1. The conductance then becomes

g � �
0

1 1

cosh2�kFLu�
�

1

kFL
. �B4�

APPENDIX C: DIP OF THE TUNNELING CONDUCTANCE
AROUND THE DIRAC POINT

We study how the width of the dip in the conductance
around the Dirac point scales with barrier length L. The con-
tributions from both evanescent and propagating modes must
be considered when 
�
�1.

The conductance due to propagating modes can be written
as

gprop = f���
�
 , �C1�

where

f��� = �
0

1

dv
1

1 +
v2�1 − ��2

�1 − v2��1 − �2v2�
sin2�kFL��1 − v2�

.

�C2�

When kFL�1, f��� is well approximated by a linear curve
a1+a2� for all 
�
�1. The function f��� deviates from linear-
ity in an oscillatory fashion in a small region around 
�
=0,
but f��� is allways of order unity. For kFL�1, the conduc-
tance due to propagating waves in the region 
�
�1 can,
therefore, be approximated by

gprop � �a1 + a2��
�
 , �C3�

where the value of the constants a1=0.79 and a2=0.21 de-
pend weakly on kFL when kFL�1, and are found by fitting
Eq. �C3� to numerical calculations.

We have not been able to obtain an analytical expression
for the contribution due to evanescent modes. However, we
note that the contribution from T�u� in Eq. �9� to evanescent
modes can be well approximated by a decaying exponential
function. We have fitted our numerical calculations of gevan
=�
�


1 duT�u� to an exponentially decaying function of 
�
:

gevan � Ae−B
�
. �C4�

The constant A is found to be 1 /kFL by letting �→0 and
comparing with Eq. �16�. Numerical evidence suggest that
B=CkFL, with C of order unity.

We define the width w of the dip in the conductance at the
Dirac point as w=2
�c
, where 
�c
 is the value of 
�
 for
which gprop��c�=gevan��c�. Taking advantage of the fact that
gevan decays rapidly away from 
�
=0, we ignore the second
order term in the expression for gprop for the purpose of es-
timating the width w. We find that

w = 2
�c
 �
1

kFL
, �C5�

using 2W�1 /a1��1, where W is the Lambert W function.
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